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| Abstract

Complexity Theory has recently become an important area of
research in Computér Science. In recent years, new efficient algo-
rithms were developed to solve various problems. Other problems have
been shown to bevinherent1y difficult or altogether unsolvable.

In this thesis, we take a variety of problems relevant to Formal
Language Theory and analyze their complexity. In some cases, the main
question is whether or not a certain problem is solvable. When pro-
blems are known to be solvable, we try to find efficient algorithms
for them or otherwise evaluate their computational complexity. We
also discuss the complexity of deterministic context free languages
as measured by the number of accepting configurations required by a
deterministic pushdown automaton accepting the given language.

First we discuss grammatical transformations. Analyzing some
well known algorithms, we discover that some of these algorithms are
very inefficient (e.g. the algorithm used in the 1iteréture to elim-
inate null rules takes exponential time in the worst case). In some
cases, however, we are able to devise new more efficient algorithms

(é.g. a linear time null rule elimination algorithm).




Then the "equivalence problem" is considered. Is there an
algorithm which decides whether or not two given languages are equal?
In the general context free case, this problem is unsolvable. We
suggest a general strategy for solving the equivalence problem if some
conditions are satisfied. Then we use this strategy to produce a
decision procedure for the equivalence of two deterministic context
free languages, one of which is simple. The general strategy is based
on grammars and is a generalization of an algorithm to decide the
equivalence of two simple languages due to Korenjak and Hopcroft.

Finally we deal with the complexity of deterministic context
free languages. We propose as a new measufe of complexity, the number
of accepting configurations required by a deterministic pushdown
automaton accepting the given language. Using this measure we obtain
an infinite hierarchy of the deterministic context free languages
which is related to some well known language families. As a conse-
quence we get "relative closure" results for some subfamilies of the

deterministic languages.
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CHAPTER 1
INTRODUCTION AND PRELIMINARIES

Section 1.1 - Introduction and Summary

Complexity Theory has recently become one of the most important
areas of reseafch in Computer Science, In recent years new efficient
algorithms were developed to solve various problems. Other problems
were shown to be inherently difficult or altogether unsolvable.

In this thesis we take a variety of problems relevant to Formal
Language Theory and analyze their complexity. In some cases the main
question is whether or not a certain problem is solvable. When pro-
blems are known to be solvable we try to find efficient algorithms for
them or otherwise evaluate their computational complexity. Ve also
diséuss the complexity of deterministic context free languages as
measured by the number of accepting configurations required by a
deterministic pushdown automaton éccepting the given language.

The thesis consists of four chapters. The present Chapter 1 is
an introduction and review of some preliminary concepts.

In Chapter 2 we consider grammatical transformations. These are
algorithms that take one context free grammar and produce another
grammar generating the same language subject to certain additional
conditions or constraints. UYe discuss various such transformations,
analyzing some well known algorithms. We discover that some of these
algorithms are very inefficient (e.g. the algorithm used in the litera-
ture to eliminate A-rules takes exponential time in the worst case).
In some cases, however, we are able to devise new more efficient

algorithms (e.g. a linear time A-rule eliminating algorithm).




Chapter 3 is devoted to the "equivalence problem": Is there an
a]gorithm which decides whether two given lanquages are equal? In the
most general case this problem is unsolvable. We suggest a general
strategy for solving the equivalence problem if some conditions are
met. Then we use this strategy to produce a decision procedure for
the equivalence of two deterministic context free languages, one of
which is simple. The general strategy is based on grammars and is a
generalization of an algorithm to decide the equivalence of two simple
languages (cf. Korenjak and Hopcroft [1966]).

Chapter 4 deals with the complexity of deterministic context
free languages. We propose as a new measure of complexity the number
of accepting configurations required by a deterministic pushdown
automaton accepting the given language. Using this measure we obtain
an infinite hierarchy of the deterministic context free languages
which is related to the language families AO and A1 as discussed by
Harrison and Havel [1973], and LR(0), as described in Geller and
Harrison [1977]. As a consequence we get a "relative closure" result

for the A; and LR(0) families as follows. If LT’ L, are languages

1

in A](LR(O)) then if L]ﬁL2

it must also be in A](LR(O)).

2
is a deterministic context free language




Section 1.2 - Preliminaries

Let X be a set. A partition of X 1is a collection
T = {X1,X2,...} of‘nonempty subsets Xi C X such that X = g Xi and
the ;ubsets are mutually disjoint. Subsets Xi are called blocks of
partition m. When X .and Y
are sets then any set p CXxY 1is a refation (between X and Y).

Let pCXxY and o CYxZ. We define

oo = {{x,z) € XxZ|xpyoz for some yeY} ,

and, if X =Y,

OO = {(x,x)|xeX} (the diagonal) ,
onﬂ =p"p , n>0,
p¥ = LJOpn (the reflexive and transitive closure of p) ,
n>
ot = p%p (the transitive closure of p) .

Let X and Y be sets of words. Let XY = {xy|xeX, yeY} where xy

is the concatenation of x and y. Define XO = {A} where A is

U Xi.
R i>0
Let X = X*X and 9 denote the empty set. Let x be a word over

i

the null word. For each 1 > 0, define X1+] = X'X and X*

some alphabet I. Then there exists some n > 0 such that

x = ay---a . with a;ex for 1.<i<n. Then we define |x] =n.
Note that if ‘X is a set then \|X| designates the cardinality of

the set. No confusion should arise from using the same notation for
these two concepts, however.

We need the usual concepts of grammars and languages.




Definition 1.2.1. A context-free grammar (hereafter a grammar)

G is a 4-tuple
G = (v,z,P,S)

where V and I are two alphabets, £ CV (letters in I and in

N=V-% are called terminals and nonterminals respectively), S e N

and P s a finite relation, P CNxV* (the set of productions).

As usual, we write A+ a is in P 1instead of (A,a) e P.

Certain conventions are adopted in usage of symbols. Capital
letters near the beginning of the alphabet are used for elements of
V or N. Lower case elements like a, b, ¢ for elements of % or

ZA = $U{A}. One uses a,B,Y,... for elements of V¥ and u,v,w,...

for elements of £*. We use VA to denote the set VU{A}.

Definition 1.2.2. Let G = (V,I,P,S) be a grammar, UYe define

a relation =C V*xV* as follows. For any a, B e V¥, a =8 (read

a .directly derives B) if and only if o = u]Aaz, B = ayva, and
A->+vy isin P for some A e !N and Gps Opy ¥ € V¥, In particular,

if(l]e ¥ or Gy €7 we sometimes write a:f B(n~a=ﬁ B ‘respectively
(o directly derives B leftmost or rightmost). =§,=% and =% are
the reflexive transitive closure of =, f' and ﬁ' respectively.

a>8 is read o derives B. Uhen the grammar G involved rust be

*

specified we write =, 2, etc,
G’ G

The language generated by G is the lanquage

L(6) = {wez*|s S w) .

Two grammars are called equivalent if and only if they generate the

same language.




The concept of a derivation is needed. Let & = (V,5,P,S) be a

grammar and suppose, for some n > 0,

a=>a=> =D e e = R
0 T % %n

Then this sequence is called a derivation of a, from ao,‘ or simply a
derivation of o if oy = S. if for each i, O <1i<n, o f'ui+1
(ai ﬁ'ai+1) then the derivation is leftmost (respectively rightmost).
We may write oy Q-an to indicate the length of the derivation
(i.e. number of steps).

A grammar G s said to be unambiguous if each x e L(G) has
exactly one leftmost derivation.

tle say that a language L C £*¥ is prefix-free if ue L and
uv € L implies v = A,

e will also need to use the theory of strict deterministic

grammars and languages, cf. Harrison and Havel [1973,1974].

Definition 1.2.3. Let G = (V,%,P,S) be a context-free grammar

and let m be a partition of the set V of terminal and nonterminal
lTetters of G. Such a partition = is called strict if and only if
(i) Z e
and (ii) For any A, A' e N and o, B, 8' € V¥ if A >aB, A' > oB'
are in P and A = A' {mod m) then
either (a) both B8, B' # A and (])B z (])B' (mod )
or (b) B=8" =N and A =A",

Definition 1.2.4. A context-free grammar G = (V,I,P,S) is

called strict deterministic if and only if there exists a strict

~




partition ofv V. A language L s called a strict deterministic

language if and only if L = L(G) for some strict deterministic

grammar Q.

Now let us introduce "simple" grammars, cf. Korenjak and Hopcroft

[1966].

Definition 1.2.5. A context-free grammar G = (V,I,P,S) is

said to be a simple grarmar if for all A e N, aeZ, and o, B e V¥,

A~ aoc and A > ag in P

imply o = B. A simple language is a language generated by a simple

grammar.

It will also be necessary to have the terminology to deal with
deterministic pushdown automata, cf. Aho and Ullman [1972] and

Harrison and Havel [1973].

Definition 1.2.6. A deterministic pushdown automata (abbreviated

DPDA) is a 7-tuple
M= (Q,5,7,8,q4,2,,F)

where Q is a finite nonempty set, I and I are two alphabets,

qO e Q, Z0 el', FCQ and § 1is a partial function
8 Q><ZA><T ?? QxT*

with the property that for any qe Q and ZeT, 6(q,AZ) # D
implies 6&(qg,a,Z) = P forall aec:. If forall qeQ and ZeT,

8{q,A,Z) = @ then this is said to be a real time DPDA.




Next we must describe how a DPDA moves.

Definition 1.2.7. Let M= (Q,Z,F,S,qO,ZO,F) be a DPDA and let

Q= QxT*. An element of ( is called a configuration.

For each g, q' € Q, ae ZA’ o, B € I and Z e we write
(q,0Z) —%+ (q',aB) if and only if 6(q,a,Z) = (q',B); read "M moves
from configuration (q,0Z) to configuration (q',oB) while reading

a". M may be omitted whenever understood. Ve extend this by writing

(i) for all ceQ, ¢ AL
X4 Xo XX
and (ii) if ¢ — ¢ and c, — ¢ then ¢ —% Cye
Sometimes we use the word derivation when referring to a move

Tike ¢ 25 ¢'.

(qO,ZO) is the initial configuration. A configuration (g,y)

is said to be reachable if there exists some x € I* such that
X
(qo:zo) - (q’Y).
We now endow a DPDA with an ability to define, or accept, certain

languages over its input alphabet.

Definition 1.2.8. Llet M= (Q,Z,F,d,qO,ZO,F). For a given

K CTI* define the language T(M,K) CI* as follows:
T(M,K) = {wesz*l(qo,zo)-11+(q,a) for some qeF and aeK} .

A configuration of the form (q,a) where ge F and o € K is

called an accepting configuration.

Two configurations ¢ and c¢' are said to be equivalent if

{wlcfw—r (q,a) for some qeF and a €K}

= {WIC{—E+(q,a) for some geF and aeK} .




In particular let

To(M) = T(,07)
T,(M) =TT,
T, (M) = T(M,0)

A, = {Ti(M)IM is a DPDA}. By Harrison and Havel [1973] By is
the family of strict deterministic languages, while AO is the
collection of deterministic languages, cf. Aho and Ullman [1973] and
Harrison and Havel [1973]. Ay has only been briefly studied in
Hafrison and Havel [1973]. A, is a particularly important family

because, among other reasons, each L e AO can be mapped into A2 by

"endmarking", i.e. L — LS.




We need the basic definitions from finite automata theory.

Definition 1.2.9. A finite automaton is a 5-tuple A = (Q,Z,G,qO,F)

where
(1) Q 1is a finite non-empty set of states,
(ii) ¥ s a finifé non-empty set of inputs,
(iii) & s a function from Qx% into Q called the direct

transition function,

(iv) Gy € Q is the initial state,

(v) FCQ 1is the set of final states.

Next, it is necessary to extend &§ to allow A to accent

sequences of inputs.

Definition 1.2.10. Let A = (Q,Z,d,qO,F) be a finite automaton.

For each (q,a,x) € QxZxI¥, define &(q,A) = q and 6&(q,ax) =

8(6(q,a),x).

The notation rp(y) = 6(q0,y), the "response" to y, 1is some-
times used and denotes the state A reaches after reading y. Finally,
A accepts a string x e ¥ Oif A, starting in 9 at the left end
of X, goes through some computation and reads all of x, and stops
in some final state. The set of all accepted strings is denoted as

T(A). More compactly, T(A) = {x eZ*IS(qO,x)e F1.

Definition 1.2.11. A set L C1* is called reqular if there is

some finite automaton A such that L = T(A).



Next we present some concepts regarding relations.

Definition 1.2.12. Let R be a relation on X (i.e. R CXxX).

Then R is an equivalence relation if R s

(1) reflexive: for every a e X, (a.,a) € R.
(ii) symmetric: for every a, be X, (a,b) ¢ R implies that
(b,a) € R.
(fii) transitive: for every a, b, c € X, if (a,b) € R and
(b,c) e R then (a,c) e R.
If R s a relation we will sometimes write aRb instead of

(a,b) e R.

Fact. If R s an equivalence relation on a set X, then there
is a pértition II induced on X by R. The members of this partition

are called equivalence classes. Conversely, if 1 is a partition on

X then 1 induces an equivalence relation R = X/ on X. lle will
denote by [x]R the equivalence class (with respect to R) containing

the element x e X.

Definition 1.2.13. rk(R) the rank of equivalence relation R

is the number of equivalence classes induced by R.

Definition 1.2.14. Let E1 and E2 be equivalence relations

on X. We say E, refines E, if E] CE, (i.e. XEqy implies

that szy).

Fact. Let E] and E2 be equivalence relations on X. If

E, CE, then rk(E]) 3_rk(E2).

1 =72

10




Definition 1.2.15. Let R be an equivalence relation on I¥*.

R 1is a right congruence relation if xRy implies that for any word

z e L%, (xz)R(yz), i.e.

(x,y)eR = (¥Yzez*) (xz,yz) ¢ R .

11
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CHAPTER 2
COMPLEXITY OF GRAMMATICAL TRAMSFORMATIONS

Section 2.1 - Introduction

In this chapter we analyze the time complexity of various gramma-
tical transformations.

Grammatical transformations are algorithms that take a grammar
and produce an equivalent grammar (i.e. one that generates the same
language) in a certain restricted form. Many algorithms of this type
may be found in the textbooks on this subject (Hopcroft and Ullman
[1969], Harrison [1978]) and in the Titerature.

_ The purpose of this work is to analyze well known algorithms for
their complexity and, if they are not efficient, either find better
algorithms or show that the problems are inherently difficult.

Some of the algorithms found in the Titerature are given as
constructive proofs for "Normal Form" theorems. They are intended to
show that any language can be generated by a grarmmar of a certain
form. As such, these algorithms are meant to be clear rather than
efficient (and often there is a tradeoff between these two properties),

Other algorithms may have stood the test of time because they
perform efficiently in most cases. Such algorithms may be very ineffi-
cient in the worst case, but these inefficiencies may oﬁ]y surface on
;pecia]]y designed grammars.,

We would like to present our algorithm in a readable way without
hiding the main complexity issues. UWe choose to write algorithms in
Pidgin ALGOL (cf. Aho, Hopcroft and Ullman [1974]). This representa-
tion enables us to specify as much or as Tittle of the actual implemen-

tation of the algorithm as we find necessary. We then analyze the




time complexity assuming the algorithm is executed on a reasonable

model of a computer.

As hinted above, we are interested in worst

case complexity, and as is customary we consider its asymptotic

behavior.

To describe our results in terms of "order of magnitude", the

following notation is convenient.

Definjtion 2.1.1. Let

g(n) =

0(f(n))

if and only if there exist positive constants

c, NO such that g(n) < cf(n) for all

if and only if there exist positive constants
such that g(n) > cf(n) for all n > Ny
if and only if there exist positive constants

c, ¢’ and N, such that cf(n) < g(n) < c'f(n)

0

for all n z_NO.

One can read O(f(n)) to be "order at most f(n)", o(f(n)) as

"order at least f(n)", o(f(n)) as "order exactly f(n)".

Note that when dealing with 0 or @, = 1is not reflexive.

However using 0

leaves = both reflexive and transitive. © dis-

tributes over the various arithmetic operators.

Since the complexity is computed as a function of the input size,

and since the input to the algorithms is (an encoding of) a grammar

we need to discuss the size of such an encoding. A reasonable encoding

consists

mostly of a list of the productions in the grammar. (The

size of any additional information such as the list of nonterminals

13




and terminals, as well as delimiters signifying end of production, etc.

will be smaller.) There are two principal ways to measure the size of

the encoding (i.e. of the production list of a grammar).

Definition 2.1.2. Let G = (V,i,P,S) be a context free grammar.

Define
1G] = ) [Aaf
A->a
in P
and
IGI = |G ~1092]V| .
|G| is simply the number of symbols involved in productions. WGl s

a more realistic measure because it takes into account the number of
bits needed to encode each symbol in V (assuming a fixed alphabet).
Unless otherwise specified n will denote the size of the input using
either measure.

Whenever IGI s assumed as the size measure, we need to esti-
mate |G| and |V|, in order to compute the complexity. The follow-

ing Temma establishes some relationship between these quantities.

Lemma 2.1.1. For any context free grammar G = (V,I,P,S), if
L(G) # @, L(G) # {A}, and if every letter in V occurs in at least

one production, then
(1) 2 < |v| < g

(ii) |V i-TEéLﬁ where n = |Gl = |G]log|V]. (A11 logs are to

the base 2.)

14
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Proof. Since S e N, |[N| >1. Since % # @, we have

1]

V] = [N|+]z] > 1+1 = 2. "The upper bound of (i) follows from the

assumption that each symbol of V appears in at least one production.

From (i), we have
n = |G|log|V] > |V|log|V] > 2Tog2 .

Consider the function

f(x) = 2/X - log x .
If f(x) is differentiated

Frix) = LoC = xoc

/)—(‘ X X
where c = S 1.44269... .
log 2
Thus f'(x) > 0 if x> ¢ = 2.0813... . The minimum of the

function is at c¢2 and is f(c%) = 1.8278... . The function f fis

. . . 2 . .
monotonically increasing for all x > c¢~. Since our concern is only

at positive integer values, the above argument shows that
f{n) > f(3)
for all integers n > 3. It is also true that

f(3) = 1.8791... > 1.8284 = f(2) .

Hence

f(n) > f(2) =2/2-1>0

or for a1l n > 2

2/n - logn >0,
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It follows that, for a11 n>2
2/n > log n .
Taking logs

1og(2/n) > loglogn
log2 + %1ogn > log logn
log2 + logn - loglogn > %logn
1

2n
109(10g n) > ?109r1.
Multiplying by 1;g]n (which is always positive in this range)
en n
‘ log n 109 (109 n) n
But
n > |V]log|V]

S0

Zn n
Tog 7 %9 (Tog ) [V]Tog|V] .

It follows immediately that if x, y > 1 and xlogx > ylogy then

x >y. Taking x = 1;2]n and y = |V|, we have shown that
2n
log n > vl O

When discussing the complexity of algorithms we will often make
two evaluations according to the size measure we use. The use of a
specific measure for the size of the input will imply that if theA
algorithm has a grammar as its output then it is assumed to be written

out in the same "format".
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An interesting property of amny of the algorithms that perform
grammatical transformation is that their timé complexity is dominated
by the size of the output grammar. In such cases we need only evaluate
the size of the output grammar (using either size measure), and show
that the computation itself is of the same order of magnitude as that
size, in ordef to obtain the algorithm's complexity.

The rest of the chapter analyzes the complexity of various

transformations.




Section 2.2 - Reduction
Reduction is a basic transformation used to achieve a property

which is always desirable when dealing with grammars.

Definition 2.2.1. A grammar G = (V,%,P,S) is said to be reduced

* *
if P=0 or for every AeN, S=caAg=w for some a, Be V¥,

*
we&l.

It is well known that every language has a reduced grammar.
We shall now describe and analyze an algorithm for reduction
which appears in most text books (cf. Aho and Ullman [1972]).

A high level version of the algorithm is

Algorithm 2.2.1.

Input: G = (V,I,P,S)

Output: grammar G' where G' 1is reduced and L(G') = L(G)

~ o~~~

P

N i= GEN;

Y oi= MU,

p' := {A+oeP|Aae V"),

REACH := {AeN"|3a,Be V"™, S = aAg);

N' := REACH;
P' := {A»aeP"|Aae (N UL)*);
5' := {aer|a appears in some production A+o in P'};
Vl - N'UZ’
G o= (V',I',P',S)
end
else G' := ({S}’Q’Q,S)

~ o~

end.

~ o~

18
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Example 2.2.1. Let 6 = (V,%,P,S) where & = {a,b},

V= {S,A,B,C,D}UL and P contains S > aA]AaB, A - SblaC, B - BD,
C+a and D - bC.
We apply Algorithm 2.2.1.
. ' * * * *
First GEN 1is computed: C=a, D=ha, A=aa and S = aaa

_ % :
but for no x € £¥ does B=x. So GEN = {S,A,C,D}. Since S e GEN, : |

we proceed to compute N" = {S,A,C,D}, V" =N'UZ and P" contains

S+ aA, A= SblaC, C->a and D - bC. Next REACH is computed:

* * * ' * *
S=S5, S=aA, S=aaC but, forno o, B e V'"" does S =aDB, so
REACH = {S,A,C}. Consequéntly N' = {S,A,C}, P' contains S - aA,
A~ SblaC and C-a, I'=1 and V' =N'UZI. Finally

G' = (Vv',z',P',S).

Algorithm 2.2.1, as presented, does not specify how the sets GEN
and REACH are computed. The traditional way to do it is by the so
called "nested-sets" construction:

Let NO =f and for i >0, w1+]
ae (W, UL)*}. Also let U, = {S} and for i >1, U, =U U{AeN"]

= wiu{AeNIA—meP for some

B-+oAB e P" for some a,BeV"* and BeUi}.

The following results are proven in Harrison [1978].

Lemma 2.2.1. Let W, U. be as above, IN| = n.
1. (i) Forall i2>0, W, CW.,,.
. . - =
(ii) If, for some 1, Ni Ni+]’ then for all m > 0, w1 Ji+m'
(1) W =W .,

(iv) For all 1 >0, Wi = {AeN|A % x, for some xeZ in a
generation tree of height <i}.

(v) W, = GEN.




2. (i) For all i>0, Us S UL

(ii) If, for some 1, - Ui =y then for all m > 0, Ui =y

417
(ii1) U =V .,

*
(iv) Forall i>0, U, = {AeN"[S=aAB for some a,BeV"™ in a

derivation of length<i-1}.

(v) Un = REACH.

Lemma 2.2.1 shows that if we repeat the nested set construction

to compute Nn (Un) we get the desired set GEN (REACH), The next

lemma shows that we may need to repeat the computation that many times.

Lemma 2.2.2. There exist grammars for which wn_] # GEN and

U, # REACH, where n = [N].

Proof. Let G = (NLJ{a},{a},P,A]) with N = {A1,A2,...,An} and

P={A, ~A, 411 <i<n}U{A ~al.

Clearly wO = g, N1 = {An},‘ wg = {An—1’An}""’
Wn_] = {A29A3,o--,An} g {A],Az,,,,,An} = wn = GEN.

Also (noting that here N" = N, P" = P) we have Uy = {A]},

U2 = {A],Az} sreey U = {AjLA,, LA L) G {A]’AZ""’An} = Un

n-1" -+
= REACH. O

n-1

We are now ready to compute the time complexity of the algorithm,

Theorem 2.2.1. Let G = (V,z,P,S) be any grammar. Algorithm

2.2.1 with the nested set construction, produces an equivalent
reduced grammar G', in time O(nz) if n=|G| is used as size measure,

or time 0(]—0%7) if n = IGl is used.

i+m”
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Proof. The correctness of the algorithm is proved in Harrison
[1978].

To compute W from wi, one needs to scan the entire produc-

i+1
tion set P of G. This takes time 0{(n). By Lemma 2.2.1, we need
to repeat this process at most |N| times (and this upper bound is
achievable).

‘n).

So the time required for the computation of GEN 1is O(|N
The complexity of the entire algorithm is of the same order of magni-
tude since REACH is similar in time complexity to GEN and the other
steps are of smaller complexity (bounded by the size of the grammar).
To complete the proof for the two size measures we recall that
IN| < [V| and that by Lemma 2.2.1 |V| < |G| and |V i%@”]@r—"w

Hence if |G| 1s the size measure, Algorithm 2.2.1 requires time

O(IN]-]G]) < o(|G|+]|G]) = O(nz) and using [Gl as size measure the

time required is

2

. Gl - n
IGIH) 5_0(]09“G”HGH) = 0(109 =) . a

o(IN

A question raised by the above analysis is whether or not we can
do better. A close examination of the nested set construction shows

that while each computation of W. involves rescanning the entire

i+1
grammar, only a small fraction of it is pertinent. Moreover, each
production can only yield information about the symbols that appear

in it. It appears that if we organize the information provided by the

grammar in some meaningful way, scanning the grammar many times will

not be required.
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We present an algorithm to compute GEN wusing ideas suggested by
Hunt, Szymanski and Ullman [1974]. First we discuss the data struc-
tures used by the algorithm in some detail. W and U are both sets.
W 1is used to collect elements known to be in vGEN (elements are added
but never removed from W). The use of U will become clear later.
When the grammar is read, a symbol A is entered in both W and U
whenever a production A -+ x where x € ¥ is encountered (and
provided A is not yet in GEM). For each B e N, POS(B) is a
multiset (i.e. analogous to a set but elements may appear more than
once, cf. Knuth [1969]). Elements of POS(B) are productions in P.
In particular when a production A » a is read in,'if is entered in
POS(B) & times if B appears in o & times, This is done for all
B e N. The information in POS(B) 1is later consulted in the process
of "updating."

For each production A +a in P the integer MONGEN (A » o)
denotes the number of occurrences in o of symbols not yet known to
generate any terminal string.* This number is constantly updated and
if and when it reaches 0, we may conclude that A can generate some
terminal string. If that is not already known (i.e. if A 1is not yet
in W) then A is entered in W and in U.

The process of "updating" is as follows. A symbol B is removed
from U. B s now known to be in GEN (i.e. to generate some
terminal string). Therefore for each A~ o in P we decrement
NONGEN(A-a) by one for each occurrence of B in «a. To do this

only POS(B) need be inspected (rather than the entire grammar):

E3
In fact NONGEN(A=a) 1is defined only for a & I¥, but one can
assume that the value is 0 for o e £*, since this value is never
consulted anyway.
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for each occurrence of a production A>a in POS(B), MONGEM(A+a)
is decremented by one. As mentioned above we add A to W and U
whenever, in the course of decrementfng NONGEN(A~+a), 1t reaches 0O
and if A is not in W. Note that U 1is always a subset of W
containing those elements for which "updating" was not yet done.
When U becomes empty the algorithm terminates.

GEN appears as a variable in the algorithm, Just before
termination it is assigned the value of VY.

Next we present the algorithm.

Algorithm 2.2.2.

Input: G = (V,£,P,S)

*
Output: GEN = {AeN]ixer™, A= x}

begin
LT: W := 0;
U:=9;

for all BeN do POS(B) := 0;

T N e
~ A

—~ o~~~

P L™

e o

W= WU{A}; j
U := UU{A}
end
end
else begin

~~~~~~~~~ _ -
Sgllnjg[l:t on—ocOB] ~-ak_]Bkak, k>1, Bi eN, o €L
= k;

P

end;

~na




L3: while U is not empty do
~YTbeqgin ~

N~

EVRVEVE VRp Ve

~aa e

e s

P Y ST VRV

W 1= WU{A};
U := UU{A}
gnd
end -
end;
L4: GEN := W

end.

~

The statement labels L1, L2, L3 and L4 used in the algorithm
designate the start of four phases in the algorithm: Initialization

(of W, U and POS), reading the grammar (the for loop), "updating"

~

(the while loop), and outputing the result.

~ s~

The following example illustrates the behavior of the algorithm.

Example 2.2.2. Let G = (NkJ{a},{a},P,A]), where
M= {A},Ay...5A } and P o= {A1-+Ai+]]1_ii <n}U{A_ ~al. (This is

the grammar used in proving Lemma 2.2,2). Apply Algorithm 2.2.2,

When L2 is reached for the first time W =0, U=§ and POS(B)

is empty for all B e N.

After the for loop at L2 is executed once (with the production

~

A] -+ A2), we obtain NONGEN(A1~>A2) =1 and POS(AZ) contains the

single element A] -+ A2 (once). The for loop is then executed with

~~ o~

the productions A2->A3,...,An_]-+An and finally An + a.

24
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wWhen L3 is reached for the first time POS(Ai) contains the
single element Ai-T - Ai (once) for all i, 2 < i <n. The values
of the other variables at that point are summarized inthe first column
of the following table. Note that afterwards; the values of POS(B)
are not changed for any B € N.

The wbjlg loop is executed n times. The values of the relevant
variables after executing that loop 1,2,...,n times are displayed
in the following table. Note thaf the va]ue of NONGEN(An-+a) is
given in parenthesis. This variable does not exist in the algorithm,
X and its value is given for the sake of (theoretical) completeness. As
mentioned above, this is true for all values NONGEN(A=+a) when
o€ I*.

It should be noted here that if the productions in the grammér
were ordered differently, then the gbilg Toop may have been executed
fewer times. However even in this worst ordering the computation is

efficient because we only look at the "right points" in the grammar

rather than make a full scan every time.
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A completely formal proof of correctness of Algorithm 2.2.2 (using
the techniques of Hoare [1969]) is lengthy and rather technical. e
will give a less formal argument.

We denote, for any set M C N and any string o € V*, OC(M,a)
to be the number of occurrences of symbols from M in «. To avoid
confusion we will use D and C > B as bound elements from N and
P respectivefy.

The next Temma establishes invariant conditions fof the while

s

loop at L3.

Lemma 2.2.3. The following conditions are invariants to the

~—~ s~

~ A .

that execution).
(1) For each De N and each C > 8 in P, 0C({D},B) = the
number of times C ~ B appears in POS(D).
(2) UcCw
(3) Foreach C=+8 in P NONGEN(C~B) = OC(N,B) - OC(N-U,B).
(4) W= {CeN|3Be V™ such that C»B is in P and NONGEN(C +B) = 0}

(5) WC{CeN|ixez*, 3 x}

Proof. Assume (1)-(5) hold when the while condition is about to

o~

be executed. Also, suppose U # @ and B e U. Then the while Toop

will be executed.

(1) holds after execution of the Toop since POS{(D) remains

unchanged for all D e N.
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Execution of the loop removes B from U and then adds zero or
more elements onto both W and U. Thus U CW must remain true.
Moreover the only change in W-U 1is the addition to it of B (before
execution of the loop BelU and UCHUH, B is removed from U but
not from W). For all C -+ B8 in P, execution of the loop decrements
NONGEN(C-*B) by the number of occurrences of C - B in POS(B). By
(1) that quantity is 0C({B},B). So, for all C -8 in P both
sides of equation (3) are decremented by the same number so that (3)
remains true.

From (3) and the fact that W-UCN it is clear that
NONGEN(C+B) > 0 is satisfied for all C - B8 in P. Therefore,
since the loop never increments NONGEM(C-B8) for any C-> g in P,
no element may leave the right hand side of eauation (4) during execu-
tion of the Toop. The same is true of W, the left hand side of that
equation. An element C may enter the right hand side if NONGEN(C-R)
is decremented to zero for some C >R in P so that C was'not yet
in the set. But whenever that happens, the jf condition is satisfied

and the element is placed in W (and in U). Hence condition (4) is

preserved.




Now suppose (5) holds just before execution of the ybjlg loop. Let
C e N be any element that would be placed in W during execution of
the loop. Since (4) would hold after execution of the loop it follows
that for some production C -+ B8 in P, NONGEN(C-+R) would be zero
after execution of the loop. From the proof of (3) it follows that
for that particular production NONGEN(C-8) = OC({B},B) just before
execution of the Toop. By (3) that means Be {(W-U)U{B}UZ) C (WUL)*.

We can write B = 808181---Bn8n for some n > 0, Bi e W for all

1

A

i<n and B, ez* forall 0<i<n. By (5 (which holds just
before execution of the loop), there must exist, for all i, 1<i<n
X5 € £* such that Bi :'Xi for all 1, 1 <1 <n. Therefore
C=8=8yB:8y " "B.B, ;'BOX]B]-'-ann but  ByxyBy+erx B € ¥ so

that C belongs to the right hand side of equation (5), Since ¢

was an arbitrary element which is added to W during execution of the

Toop we conclude that (5) is satisfied after execution of the Toop.

Lemma 2.2.4. Algorithm 2.2.2 correctly computes -GEN in linear

time.

Proof. First we consider "partial correctness" (cf. Manna [1974]).
We want to show that if the algorithm terminates then
GEN = {C(EN]BxezZ*, C ;-x}. This will follow directly from Lemma 2.2.3
and the next two claims, which deal with the parts of the algorithm

before and after the while Toop, respectively.

~ s~

Claim 1. When L3 is reached for the first time (after execution
of the initialization and reading phases) conditions (1)-(5) of

Lemma 2.2.3 are satisfied.

29
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Proof. It is quite easy to verify that when L3 is reached for

the first time (1) is satisfied. Also

(6) For all C~= B in P, NONGEN(C=+B) = OC(N,B) -~

{CeN|3xex* so that C+x is in P}

—~
~d
~—
=
1i

W

o)

=
o
—
co
~—
e

n

Then (2) follows directly from (8), (3) follows from (6) and the
fact that W-U = @. From (6) we also obtain that MONGEN(C~B) = 0
if and only if B e I*, hence using (7) we get W = {CeN|3er*, C—»x‘
is in P} = {CeN|there exist C+g8 in P, NONGEN(C~g) =0} and (4)
follows. (5) clearly holds since for all C e W, C=x for some

X € L*,

#. Then

Claim 2. Suppose (1)-(5) hold at L4, and assume U

after this line has been executed GEN = {CeNl‘erZ*, C z xJ.

Proof. For this condition to be satisfied after execution of this
line, we must have W = {CeN|Ixez™, C %%} at L4. This will be
shown fo follow from (1)-(5) and U = @. In particular (3) and U =0
implies that for each C -~ 8 1in P NONGEN(C~B) = OC(N,B) -0C(1,R).
So that NONGEN(C~B) = 0 if and only if B8 e (HUL)*. Therefore,
‘using (4), W= {CeN|3IBe(WUZ)® such that C»B is in P},

e now prove that W = {CeN|IxeZ™, C Z x} by contradiction.
Since (5) directly yields containment in one direction we assume, for
the sake of contradiction, that {CeN]Ber*, C 5 x} %N, and choose
Ae {CeNjaxez™, C 5 x} - ¥ such that A has a shortest derivation

of a terminal string A & x among all elements in this set difference,
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1

2V x. Then for each j,

Since i > 0 we can write A= B.B,---B
) 172 m

1<J<m, Bj L X5 for some X; € £* in a derivation of length less
than i, and x = SERRE S By the minimality of 1 none of the Bj's
can be in {CeN[E]er*, C 5 x} -W., But all the nonterminals among
the Bj's must belong to {CeN|3axex™, C 5 x} and therefore also to
W. Then B,-*'B e (WUZ)* and Ae {CeN|IBe (WUZL)* such that

1
C+B is in P} = W. This contradiction completes the proof of the claim.

We can observe that every element of N can be removed from U
at most once (since an element is entered in ¥ and U only when it
is not already there, and nothing is ever removed from W). Therefore
the ybilg Toop is executed at most = |N| times. This immediately
proves termination and hence total correctness (cf. Manna [1974]).

Before we can compute the time complexity of the algorithm we must
specify the implementation of some data objects,

We use an array of bits to impiement W so that membership may
be checked in constant timej4 U is implemented as a stack so choosing
an element takes constant time. For each D e M POS(D) 1is stored as
a list, so that adding an element takes constant time and scanning the
entire 1ist requires a constant time per element.

Note that the comment that 'a = aOB]'--Bnan does not imply extra
computation since the various elements may be determined as o is
being read in.

The comment B e U implies the operation "choose an element."”

Initialization consists of |[N|+2 operations (of assignment to
). For every A.+ o € P, NONGEN(A-+a) 1is once set to a value

n < |a| and then decremented at most |a| times, and compared to 0

TWhen uniform cost criterion is used, array indexing takes constant
time.  Cf. Aho, Hopcroft and Ullman [1974].




that many times. The numbef of operations involving NONGEN is
therefore proportional to the size of G. The same is true for opera-
tions on POS, .since every position of a nonterminal is recorded
once and consulted at most once. As noted above we can have at most

IN| operations of each of the following types: adding an element to

W, adding an element to U, choosing and removing an element from U.

Checking for membership in W can be.performed at most  2|P] times.
In the reading phase, a check may be done for each production and one
check per production can occur in the "updating" phase, In fact one
can show that only |P| operations are required. Each operation dis-
cussed takes a constant amount of time. We conclude that the time
required by the algorithm is 0(|G|) 1if we consider reading of a

symbol a constant-time operation and O(lGI) otherwise. O

An algorithm similar to Algorithm 2.2.2 can be given for other
nested constructions. We now present an algorithm to compute REACH.
W and U play the same roles as in Algorithm 2.2.2, For each
Be N, R(B) is a set containing all nonterminals A such that
B+ oaAR is in P for some o, B e V¥. R(B) can be likened to

POS(B) of Algorithm 2.2.2.

32
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Algorithm 2.2,3.

Input: G = (V,I,P,S)
Output: REACH = {A€N| 8,8, €V*, S > B8,A8,)

begin
L1: W := {S};
U := {S};

for all BeN do R(B) := §;

B

L2: for all B-+aeP do R(B) := R(B)U{A],/\Z,...,An}

~~~~~~ *
comment o« =a A0, A, n>0 .eN, a, el
~~~~~~~ 011 nn’® = ’A1 > '

L3: while U is not empty do

“hegin
comment B eU;
U:=U-{B};
for all AeR(B) do if AgW then begin
i W = WU{A);
U = UU{A}
end
end; o
L4: REACH := W
end.

~ s

Example 2.2.3. Let G = (V,I,P,S) where I = {a,b},

{(S,A,E,C,D}uUZ and P contains the productions S -+ AEA, A -+ a,

-
L]

E-+bC, C - aAlbE and D - AC.
We apply Algorithm 2.2,3. When L2 is reached for the first time

W

U= {S} and for all B e N, R(B) = @. After executing the for

~ A

Toop (at L2) once with S > AEA we get R(S) = {A,E}. Then the fgr:
loop is executed with A-+a,,..,D-~AC. When L3 is finally reached we
have W =U = {S}, R(S) = {A,E}, R(A) =@, R(E) = {C}, R(C) = {A,E},
R(D) = {A,C}. The values of R(B) are not changed from here on for

any B € N.
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The while Toop is now executed with B = S, After that we have
W= {S,A,E} and U= {A,E}. The loop is executed three more times
and finally W = {S,A,E,C} and U= §. REACH 1is the set {S,A,E,C}

and the computation terminates.

Lemma 2.2.5. Algorithm 2.2.3 correctly computes REACH in

Tinear time.

Proof. Since the proof closely parallels the proofs of Lemma 2.2.3
and Lemma 2.2.4, it will not be given in detail. Instead we present
the invariant conditions (analogous to (1)-(5) of Lemma 2.2.3) of the

while loop:

s

(1') For each D e N, R(D) = {CeNIBB],BzeV*, D~ 8,C8, is in P}
(2') UCH
(3',8') W= {Celjthere exist DeW-U and 8],826V* so that
D~ B,CB, is in P} U{S}
(5') W C{CeN|as,,ByeV*, S = 8,CB)) 0

We now turn back to the original problem, that of reducing a

grammar.

Theorem 2.2.2. There isan a1gorithm that performs reduction of

any grammar G = (V,%,P,S) in time linear in the size of the grammar.

Proof. The algorithm we will use is Algorithm 2.2.1 with
Algorithm 2.2.2 computing GEN and Algorithm 2.2.3, applied to
G" = (v',z,P",S), calculating REACH. Since except for GEN and
REACH Algorithm 2.2.1 takes linear time, the result follows by

Lemma 2.2.4 and Lemma 2.2.5. 0




Theorem 2.2.2 shows that reduction is a fairly easy operation.
The result implies that we can perform this transformation as fast
as one can ever hope to do, and that we need not be content with the

algorithms that use nested set construction.
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Section 2.3 -~ Null Rule Elimination

Null ru1es.(i.e. productions like A - A) are often undesirable
in a grammar either for a theoretical reason (it may be easier to
prove properties of grammars with no such rules) or for practical
considerations (some parsing techniques may fail to work in the pre-
sense of null rules). Transformations to remove null rules are

therefore necessary.

Definition 2.3.1. A grammar G = (V,%,P,S) s said to be A-free

if A->Ae P implies
(1) A=S5S

and (2) S does not appear in the right hand side of any production.

This definition allows S~ A in P to cover the case A e S.
The restriction that if S~ A 1ds in P then S does not appear in
the right hand side of any production is designed to insure that the
production S -+ A appears only in derivation of A.

It is a well known fact that every language has a A-free grammar
which can be effectively constructed.

The following is the classical algorithm due to Baé—Hi11eL Perles
and Shamir [1961}. It starts out with a reduced grammar, as do all the

algorithms we discuss from here on.
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Algorithm 2.3.1.

Input: G = (V,IZ,P,S) a reduced grammar

Qutput: grammar G' such that L(G')'= L(G) and G' 1is A-free

begin
NULL := (AeN|A 3 A
N' :=N;
P! =0, _
for all A~aeP do coment o=opBy By, 020, ByeNULL,
e (V-NULL)™;
for a1l (yuye.c s, € (Byud x (B,) x -+ x (B A} such that
OX-IOt] X O %A do P' :=P U{A+0t 1 '-Xnan};
if SeNULL then PSSEL‘ N' s=N'ULS'E; P =Pt U(S' 5,5 »A) end
else §' :=5;

G' :=(N'"UL,Z,P',S")
end.

~ o~

This algorithm should be followed by reduction, since some non-
terminals may become useless.

The computation of NULL needs to be specified (as was the case
with the sets GEN and REACH 1in Algorithm 2.2.1). It turns out,
however, that the above algorithm has time complexity which is so

large that the way NULL is computed is irrelevant.

Lemma 2.3.1. Algorithm 2.3.1 performs null rule elimination in

exponential time.

Proof. The correctness of this algorithm is proved in Harrison
[1978].
We will now present a grammar G, for which Algorithm 2.3,1

produces a A-free grammar G' which has size exponentially larger
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than that of G. This will be sufficient to prove the result since

the size of the output is clearly a lower bound on the time complexity.
More precisely we will consider an infinite family of grammars

G]’GZ""’Gk"" where Gk = (Vk,zk,Pk,A), Nk = {A’B]’BZ""’Bk}’

I = {a)sap,...58, ) and P = {A>BB,e+-B JU(B.~a,, B~A[1 <1 <kl

(In subsequent discussions the subscript k will be omitted whenever

no confusion may arise and we will talk about G, N, &, V, P, etc.).

We can see that NULL = N since Bi = A for each 1 and

A=88, B %A The production A~ B.By---B, in P will yield

2k-1 productions in P', namely A - B for every non-null subword R of

172 k*
is G' = (VU{S},2,P',A") where P' = {A'>A, A'>A}U{A>X Xoe e X |

B The result of the transformation (again omitting subscripts)

X; & (B AY, XyXore X, #AYU(B, ~a 1 <1 <k).

We can compute the sizes of the grammars involved:

V| = 2k+1
|G| = k+1+(2+1)k = 4k+1
V'] = [V][+1 = 2k+2
k
1G'] = 2+1+ 3 (3+1)(K) + 2k
L J
J
Kok, &k
=2k+3+ ) i(5)+ ¥ () -1
j=0 1 y=0J
= 2k+ 24 k2K T4 0K
6] = (k+2)25 V242
|G'| s exponentially larger than |G|, and the same is true for
IG'f as a function of [GI. O

1

The proof indicates a stronger result than the one stated in the

lemma.
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Corollary. Any algorithm for null rule elimination which produces
the same output grammar as Algorithm 2.3.1 takes at least exponential

time.

In Graham [1974] an algorithm to eliminate null rules without
destroying the (m,n) BRC property is introduced. While the later
requirement calls for a more complicated construction than Algorithm
2.3.1, it does resemble it, In particular, when that algorithm is
applied to the grammar G in the proof of Lemma 2.3.1 (which is
clearly (k,k) BRC), the resulting grammar is essentially G', which is
exponentially larger.

Rosenkrantz and Stearns [1970] present a null rule elimination
algorithms for LL grammars which guarantees an LL(k+1) grammar as a
result if the original grammar is LL(k). This algorithm cannot be
used for arbitrary grammars since the construction is shown to produce
a finite number of nonterminals only for unambiguous grammars,

The question to ask at this point is: why does this algorithm
produce such large grammars, and is there any better way to do it?
Clearly, the exponential growth is the result of a "subset construc-
tion" reminiscent of the transformation from nondeterministic to deter-
ministic finite automata. ‘The following observation proves useful in
the realization that unlike the finite automaton case, null rule elim-
ination may be done without possible exponential explosion. If

the length of the right hand sides is bounded by &, then [G'| will

only be of size 0(22- G|) since a production A - B]Bz-'-B will be

2y

replaced in Algorithm 2.3.1 by productions of total length < ) (j+1)(§)

J=1
= (JL+2)2£~1 -1. If & is constant this means a linear growth in size.
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Since % may be forced to be small by an appropriate transformation
(which, as we shé]] see in section 2,5 is quite efficient) there is a
good prospect that A-rules can be removed without huge increases in
size. This approach will be directly used later (in section 2.5).
The next algorithm for null rule elimination uses similar ideas in a
somewhat different way.

Every production A -+« in P 1is written as A~ uOB]---Bnan

where the Bj's are the only symbols in the right hand side that are in.

NULL. The production is then factored using some new nonterminals
Aj(A-+a) for all 1 <j <n-1 (or /\j for short). Aj will simu-
late aij+]'°°Bnan. For instance we let A - aOB1A1 and A - aOA]
be productions in the néw grammar. The second of these two will be
used when simulating A -» aOB]---Bnan followed by B1 ;'A. Special
attention is needed for the case where a suffix of the fight hand side
may derive A; If, for example, in the above production
Ay =0, = =al =\ then A E‘uOB]---Bnan ;-uOB] need to be simulated
by the new grammar. We therefore need A - aOB] as we]]. In general
we define, for each production, a number m which designates the
beginning of such a suffix. |

We now present the algorithm. MNote that as in Algorithm 2,3.1

some nonterminals may become useless so reduction must follow

Algorithm 2.3.2 as well.
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Algorithm 2.3.2.

Input: G = (V,z,P,S) a reduced grammar

Qutput: grammar G' such that L{(G') = L(G) and G' is A-free

begin
NULL := {A e NJA 3 A}
N' :=N;
P':=D;

L: for a]l A-»a in P do
" begin

~

*
comment o = GOB] Bndn, n>0, Bj e NULL, and o e (V-NULL)™;

m: —mnHO<J<anG+T'ﬂn=A}U{nﬂ}h
1f n=0 then begin

T R

1f m=1 then P' :=P'U{A+a} comment o€ (V—NULL)+;

~ L Ry

end
glsg Bg§1n
i ﬁ7~~ U{A Am|1<3<n1}
comment denote A (A>a) by A for short, A==AO;
f?f ji=0 to n-2 do p' :=p! \J{A >, B]+]A]+],
AJ OLJAJ ]}

Pri=P UA  va iBa )

if m>n then P! :=P'U{A q~o o)

~ ~ A

comment o _]un #A

for j=max{0,m-1} to n- -2 do p' :=p kJ{Aj-*ijj+]};

~

1f1<m<n 1 then P' ;=P U{A 17 }
m-1 m-1

~

end
end; T
i SeNULL then begin N' :=N'U{S'}; P! :=P' U(5'>S, S'+A} end
else §' :=5; o
G' := (N uzw,ijl;' ,S'Y)
end.

~

The following example demonstrates the way Algorithm 2.3.2 works.
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Examp1e 2.3.1. Let G = (v,z,P,S) where % = {a’b]’bZ’b3}’.

V = {A,B],BZ,B3}LJZ and P contains A - B]aBZB3, B] > b]|A,

82 > b2|A, B, ~ b3|A. Apply Algorithm 2.3.2. The only "interesting"

production is S ~ B]aBZB3. B], 82, 83 e NULL so we have n = 3,

=A and o, = a. Hence m =2, When the for loop in L 1is

-] ~

G4y =0y =0y
executed with this production we place in P' AO - B1A1|A],

A, ~ aBZAZIaA2 and A, > By

and finally A] + a. When the for loop is executed with B] > b1 we

~ o~

(where A = AO). Then we add A] - aB2

get n=0, m=1 so this production is placed in P' (same for
B, -~ b, B, ~ b3). When the for loop is executed with B] + A,
n=m=0 and nothing is placed in P' (same for B, > A, By A).

In the next example we apply Algorithm 2.3.2 to the grammar used
in the proof of Lemma 2.3.1. This is to demonstrate the efficiency of

the new algorithm.

Example 2.3.2. For any k> 1, let G = (V,z,P,A),

N={A,B],...,B }a Z=(a],...,ak} and P = {A->B 82"'B}U

k 1 k
{Bj-+aj, Bj-*All_ij_gk}. Applying Algorithm 2.3.2 we get

WA LA B.,...,B }. The

O ‘IS' ’k_'l’ ], k
production A - 81"'Bk e P is replaced by a set of new productions

G' = (V',Z,P',AY), N' = {A', A=A

(here n=k, m=0), and we get P' = {A'+A, A'>A} U {Bj-+aj|1_§j_5k}

U {Aj-+8 A A —+Aj+], Aj-+Bj+]}O;gj;3k-2} ] {Ak—1"8k}' We get

JH1i+
[V'| = 3k+1, |G'| = 9k-2 so that here both |G'| and [IG'l are
linear in |G| and NGl respectively., IGI = (4k+1)Tog(2k+1),

IG'Il = (9k-2)Tog(3k+1).

We now prove the correctness of Algorithm 2.3.2.
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Lemma 2.3.2. Algorithm 2.3.2 correctly performs null rule

elimination.

Proof. All the algorithm does is scan the grammar G and add
productions to P' (and nonterminals to N') as it goes. It is clear
that the algorithm terminates. [t is also easy to verify that G' is
A-free. We need to verify that no null rules are placed in P'. The

only two places that need to be checked are 1) when An_] > g0 is

o

placed in P' and 2) when Am—] ooy s considered. 1) An_]-wxn_1 0

is placed in P' only when m>n>1 so a _qe, # A 2) A 217 %000
is placed in P' only if n>1 and 1 <m < n-1 9n which case
S is defined and, by minimality of m, a9 # A.
We negd to show that L(G') = L(G). First, it is clear that
Ae L(G') if and only if S' -+ A ds in P' if and only if S e NULL |

*
if and only if S E'A if and only if A e L(G). Therefore we will

now consider nonnull strings in the Tanguage.

The following claim is a first step in showing that L(G) C L(G'),
It shows that each derivation in G which consists of one production
A -~ o followed by the derivation of A from any number of symbols in
o, can be simulated by G'. For example consider all derivétions in

G' (Example 2.3.1) that corresponds to A +‘B]a8283 followed by some

A-rules in P.

AO =>'B]A] =>'B]aBZI\Z = B]aBZB3

AO =°'B]A] = B]aA2 = B_]aB3

AO =°-B]l\] =°'B]a82

A0 = B]A] = B]a

AO ="A] = aBZA2 = a8283
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A =>A.‘=>aA = aB

0 2 3

AO =>A1 = a82

A0=>A]=>a

We now state the claim formally,

Claim 1. Let A-+a be in P o = oo B, 0>,
By e NULL, o e (V-NULL)* and Tet Aj = As(Aa), 1 <j<n-1 be

the new symbols introduced into N'. Let A = AO' For‘each

0 <i < n-1 and for any set of indices 1<j1<j2<~--<jt_<_n,

0 <t < n-idefine Xj, 1 <j<n is defined to be
X.={Bj , 36{31,J2,---,Jt}
J A, otherwise ,
*
and denate 61. =a].x1.+]a].+]---xnocn then A]. & 6]. provided &5 #A.

Proof of Claim 1. An induction on n-i.

Basis: n-1i=1. Then i =n-1, 0<t<1 and there are o'n1y two
possible ways to choose the index set,

Case 1: t =0, we have the empty set and therefore Xn = A and

g = a g0, IF a, 1%, # A then m>n and the algorithm places
An—] o 40, In Pt.
Case 2: t =1, Jp = and Xn = Bn’ Gn—] = O‘n-ano‘n' Clearly

An-—] - an—18nan is in P',

Induction step: Assume the claim holds whenever n-i < r for some r,

1 <r<n. Nowlet‘n-1’=r, 0 <1< n-2.

Case 1: a1'+1x1'+2”'xnan = A. Then 61. a].XH], It also follows

that «, = A so by definition m < i+1, We must consider

a’. -c-u
17142 n

the following subcases:




Subcase a: aiXi+] = A. Then the claim is vacuous since
§. = A
i
Subcase b: Xi+1 = Bi¥1' In this case Ai + aiBi+1 is in
P' since max{0,m-1} < i < n-2. Hence A, é? aiBig = 6
Subcase c: X1.+1 = A, ¥ # A. Then m = i+l sc that
1 <m= i+1 < n-1 and we have A +> o in P'. Hence,
- - m-1 m-1
A. = 0. = 6..
i i i
Case 2: ai+]x1+2---xnan # A, Then, by the induction hypothesis
o .
Ai+1 é? ai+]Xi+2-'-Xnan. It remains to show, then, that Ai > aiX1A1+1

is in P. Since 0 < i < n-2, this is indeed true for the two sub-

"

cases X. =B, and X. A.
j i i

This completes the proof of Claim 1.
Claim 1 directly yields the following.

Claim 2. For all A-~>a in P such that o = LN

n>0, Bj e NULL, o e (V-NULL)* and any choice of Xj € {Bj,A},

*
1<Jj<n, A & aOX1---Xnan unless aOX]aT"-Xnun = A.

Proof of Claim 2. For n > 1 this is a direct application of the

claim with i =0 (recall AO = A). For n =0 there is one choice

namely o and if o = ag # A then A->a is in P' (the clause

O’
n=0, m=1 1in the algorithm).

Claim 2 dealt with a restricted form of derivations in G. We
*
now generalize this result, by considering derivations Yz B where v

is either of length one or contains no symbol in NULL.

Claim 3. Let vy € (V-NULL)*UNULL, B e V¥ where B = A only

* *
if v = A, If v E-B then. vy é? B.
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Proof of Claim 3. The argument is a double induction, involving

*
the length h of the derivation v B and &= Y| over the well
ordered set consisting of pairs (h,2) with ordering described below.
Basis: Let h =0 and & > 0. The claim holds trivially.

Inductive step: Assume, for some hO and 20 such that h0 > 0y

%9 > 0, that the claim holds for all (h,2) < (ho,ﬂo) (i.e. for all

h and £ such that either h < h0 or h= hO and 2 < 20).
Now let <y e (V-NULL)*UNULL, |y] = %, and B € V* and suppose
h '3
Y 7? B. If QO = 0 then clearly vy =8=A and vy 59 B. So assume

25> 0, Yy#A and B # A. HWe need to consider two cases.

0
Case 1: 20 =1. So y=AeN since vy eI 1is not possible
*
(h0 > 0). Factor the derivation as follows. A T o T R where o # A,

1 - .« 8 - *
A+o in P, a = aOB1 Bnan, n>0, Bj e NULL, o e (V-NULL)".

*
We can factor B accordingly: B = BOY]B]---yan such that aj T Bj

*
for all 0<j <n and Bj ¢ Y5 for all 1 <j <n. Let

X; =

for 1 <j<n.
J 4z

B. if vy. # A
{ g oyt
At oy, = A
YJ
*
For Yj = A it is obvious that Xj é? Yj' The rest of the derivations

0<Jj<n and Xj =B 1<j<n, Y5 # A are all of

* *

o=> 29 c::>.’
%565 iG Y
length Tess than hO’ so we can apply the inductive hypothesis and

*
conclude that «o. % Bj and X. = Yj' A1l these combine to

j G J G
*

apkqoy e Kne, gF BYytoBpy, = 8

By Claim 2, and the fact that aox]---xnan # A (since B # A)

* *

A é? aOX]a]"‘Xnan so that A é? B.

Case 2: 20 > 1. We can write vy = Ay' and B = aB' for some

h

Ae V-NULL, v' e (V-NULL)*, and a, 8' € V¥ such that A El o and




h
Y E? g'. Since h]+h2 = h0 and h], h2 > 0 it must be the case
that hy < h, and Al =1 <2, andalso h, <h, and Iv'] = 25-1
*
< 20. So the induction hypothesis may be applied to obtain A Eﬁ o

* *
and v' é? B'. Hence vy = Ay' éﬁ aB' = B.

This completes the proof of Claim 3.

The next claim dwells on the disjoint sets of productions placed
in P' for every production in P. It shows that once we start using
productions of one such set we must continue until G' has simulated
one production in G (plus derivation of null substrings). This

claim will go a long way in preparing for the proof that L(G') C L(G).

Claim 4. Llet Cel'-{S'}, Be V" suchthat C % 8. Then

*
either (1) C 8 o & B for some o e V' where C-a is in P

o

or (2) ¢C

Ai(A+a) for some A~+a in P, a = a081a1"-8nan,

n

v

1 where Bj e NULL, o e (V-NULL)*, 0 < j < n-1

and there exist X1.+1,X1.+2,...,Xn where Xj € {Bj,A}

and o, K, qo g X o # A such that the derivation can
+ *
be factored C_é? “1X1+1"'Xn“n & 8.

Proof of Claim 4. Consider C >y in P', the production used

in the first step of C é% B, If C-»vy 1ds in P then let y =oa # A

and (1) must hold. Suppose C -y is not in P. Then it was placed

in P' when the main for loop was executed for some A - a in P.

~ o~

Then there must exist some i, 0 <1 <n-1 sothat C= Ai(A+a).

We proceed by an induction on n-i.
Basis: n-i =1 then 1 = n-1. The only rules with An-1 which may

be in P' are A ;o B and Ay > o qe, (f o qo f ).

no‘n n
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One of these must therefore be used in the first step of the derivation

A é% g and if we choose Xh =B, or X =/ depending on the

n-1

. *
production, we get An_1 G O‘n_1xn0‘n G B

Induction step: Assume the result true if n-i < r where 1 <r <n.

Now let n-i =vr, 0 < i <n-2. The first step in the derivation

_ Ai é% B must employ one of the following productions:

Case 1: Ai > a18i+1Ai+] or Ai -+ aiA1+1 from P'., Then choose
- ; = i

Xigp = Biyq OF Xigp = A irespect1ve1y. A & aiX1+1Ai+] G B (the

last step must be of length one or more since B € V+, Ai+1 ¢ V).

- - X - Y
Then we can write B = 8182 such that a1X1+] & B] and Ai+1 & 82.

We apply the inductive hypothesis to this last derivation to conclude
%
i+1 G' i+l

derivation we obtain

* R
cXa B When this is used in the original

X1+1 nn G

that . A 2°

+ *
A 4t M @ ofinsin T e @ BB T R

Case 2: A. - o.B, or A, ->a. in P' in which case i > m-]
—_— i i q+1 i i z
or i =m-1 respectively. In any event, we conclude by the definition

of m that CypqOyqpt 0 = A and if we choose Xi+1 = Bi+1 or
=X

X = A respectively, and in addition let X1.+2 X =Xn==A

i3

1.+]oc1.+]x].+2~''XnOLn is this first production in

i+

we get that Ai > . X

.i

. . *
the derivation so that indeed A, = o.X. ,-"-Xa & 8.

The proof of Claim 4 is now complete.

The following is a direct consequence of Claim 4.
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Claim 5. Let A e N, Be vt and suppose A é% B. Then there

exists o € V+, A-+o 1is in P such that o = o Bia;*-*Boa , n>0,
e A nn -

Bj e NULL and oy € (V-NULL)* and there exist X sXpseo X where

Xj € {Bj,A} and a]X]aZ--~Xna # A such that the derivation can be

n
~ + +
factored A é? a]X1 Xnan é* B.

Proof of Claim 5. Apply Claim 4. If case (1) holds then A+«

is in P and in P' so o € (V-NULL)+. ltet n=0 then A 3 o é% 8

[sp]

is the desired factorization. If (2) holds the result follows

trivially.
Claim 5 will be used in proving the next result.
. * * * *
Claim 6. Let yvye V', Be V. If ¥y 5? B then vy E-B.

Proof of Claim 6. An induction on h, the length of the deriva-
*

tion vy 6? B.

Basis: h =0 trivial.

Induction step: Assume the claim true for every vy e V¥, B e V¥,

h
Y o B and h <hh0 where h0 > 0.

Now let v 59 B, v e V", BeV* Since hy > 0 we can write

Y = YiAv,, B = BB'B, so that A e N, Yy, Yp, Bys By € VY, e v
Ql 2 + . . :

and Y & B], Yo & 82, A é? B'. Using Claim 5 for the last deriva-

3 + 7 : = LI
tion we get that for some a eV, A->oa 1in P, a= GOB]al Bnan

there exist X.,X,,...,%X  where X. e {B.,A} for all j, 1 <J<n
1’72 n J N = =
) 2

and a]X]"'Xnan # A such that for some h' >0, A gﬁ a]X]'--Xnan & B'.

Since h'-+h1-+h2-kh3 = hO

.o * . . -
h3 < hO‘ Also a]X] , Xnan e V© so we can apply the induction hypo

b ho "3
thesis to Yy & B], Yo & 82 and a]x]---x a_ = B' and conclude

it follows that h] < hO’ h2 < hO, and

nn G




* * * . .
that Yy E’B], Yo E‘BZ and a]X]'--Xnonn E-B'. Clearly, for all j,

3 * 3 - *
1<J <n, Bj z Xj (either by Bj = Xj or Bj TA as Bj e NULL)

*
therefore we can combine all the derivations and get vy = YIAYZ =

* *
Y1098y Bragy, B Y Xyt Xy, E B8'8, = B,

It is now a matter of combining the claims to complete the proof:

We have already seen that A e L(G') if and only if A e L(G).
Claims 3 and 6 applied to S and w e Z+, and the knowledge that
S é% S must start every derivation in G' of a non-null string,
combine to prove that w e L(G') if and only if w e L(G). This

completes the proof of the Temma. O

Lemma 2.3.3. The grammar G' = (N'UZ,I,P',S') obtained from

G = (NUZL,Z,P,S) by Algorithm 2.3.2 has size

6"} = 0(]6])
IN] = o(]6])
IG'I = 0(IGIToglGl) .

’

Proof. For each A -+ a 1in P a number of new nonterminals may
be placed in N'. In particular, if o = aOB]a]'°'Bnan, Bj e NULL,
aj € (V-NULL)* then n-1 new nonterminals are added.

But Ja| < n (equality may be achieved when

age e, = ). So [l N+ T (Jal-1) < [N+ 6] < 2va].
A+ in P

AMso [V'| = [N'|+]z] < 2-]6] +[6], [v'] = o(]&]).

To analyze |G'| we examine the productions placed in P' for

every A->a in P. If o =a.B ---Bnan then we can count the number

071
of occurrences of oss Bj and Aj in these productions. Each may

appear at most a constant number of times (at most 4) so the size of
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n n n-1
the relevant productions is bounded by c'-{ Yolasl+ Y B+ T AL
TR Rt LA

<c'(laltn-T) < c'(Ja]+]|a]) < c"|Aa] where ¢' and c" are
constants. |G| 5[ ) c~|A.a|] FISt S|+ s Al < clg].
A-aeP
Finally
IG*I = |G'|log|V'| = 0(|G|Tog|G])
and since [G| < IGl
IG'I = O(IGNToglGl) . O

Note that using the measure |G| the output grammar is Tinear
in the size of the input grammar, but many new nonterminals are intro-
duced which may require more space for encoding each symbol,

This change is reflected in the fact that using [Gl as a measure
the output grammar is of size 0(nlogn). In Example 2.3.2 above, even
IGI grew Tinearly, but this is not always the case.

The following example shows that the additional log in the bound

for IG'l in Lemma 2.3.3 is not a result of crude estimations.

Example 2.3.3. Choose any function f over the integers such

that f(k) > k forany k> 1. Let G = (V,£,P,S), N = {S,A],...,AP},

- - (k) F(k), .. ,f(k) N ;
L= Aapseesa b, P={SHATA, Ay }U{Aj 35 /\J.—>/\|1533k}.
Applying Algorithm 2.3.2 yields G' = (V',L,P',S') where

L ' = ' = t LI
N {s', S SO’S]"'"Sk~f(k)—]’A]""’Ak} and P {S'+>S, S'>4}

S S.~+A.,|0<j<kf(k)-2,

U{AJ.+‘aj|1~<_Jik}u{Sj+Aj.S J.+SJ.+1, 57

J+1”

j'= L—f—(lm +13 U (Spepyoy A
Computing sizes we get |V| = 2k+1, |G| = kf(k)+3k+1 and

V'] = kef(k)+2k+1, |G'| = 7k-f(k)+2k-2 so that there exist

¢y» ¢, forall k> 2
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IGH = (k-f(k)+3k+1)T0g(2k+1) < c -k+f(k)-Tog k , Gl > F(k)

1

(7k+f(k)+2k-2) Tog(kf(k)+2k+1) z_czkf(k)1og f(k) .

and IG']

To see how the gap between |Gl and IG'l may grow define a

family of functions as follows: for all k > 1, fo(k) = k and if

f (k) .2k

m>0, fo(k)=2" " so f (k) =22 with m 2's. Then

Tog fm(k) = fm_](k) for all m>1 and Joglog ---1ogjﬂn(k) =

= 1og~fo(k) = Tog k.

m¥ 1

Now let f = fm for some m > 1 in the definition of G, We

get that
fa(k) < 161 < ¢ kf (k) Tog k
TogllGl < Tog(c kf (k) logk) < cqyf 1 (k)
and 1" > e, kf, (k) (k)

for some constants c], Cos ci. So

C c kfm(k)log keclf ](k)

. -2 1 m-
16'1 > cpkf £ (k) = e Tor R
. “GH]ogNGH HGH]O glGl

]c' ,109109 109}'(k) Z =0 10@W§T

cnlogn

And the size IG'll of the output grammar is more than
where Gl = n. m+1

Since m may be chosen at will the upper bound on IG'll may be

arbitrarily close to cnlogn.

So far we have not discussed the computation of NULL. The

algorithms in the Titerature use the nested set construction:

Tog log---Togn .
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Wy =9

-
Q
-3

—ra
v

o

=
i

=W, U {AeN|A>aeP for some(xevq}

and we can Tet NULL = WINI'
A result similar to Lemma 2.2.1 can be proved, and the complexity
2
of this construction shown to be O(—ME[——).
ToglGll
As in the case of GEN and REACH we can do better. In fact we
can exploit the similarity between NULL and GEN and use Algorithm

2.2.2 as a subroutine. (A similar idea was suggested by Tim Winkler

[1977], and in Hunt, Rosenkrantz and Szymanski [1976]).

Algorithm 2.3.3.

~Input: G = (V,5,P,S)
Output: NULL = {AeN[A = A}

PPNV

G:=(V,0,P,S);

apply Algorithm 2.2.2 to G, obtaining GEN,;
NULL := GEN

end.

~ o~

Example 2.3.4. Let G = (V,z,P,S), I = {a,b}, V = {S,A,B,C}UZ

and P contains S > aAB, A~ BC, B~ a|A, C - BB|b. G has the

same productions but has nonterminal set N=V and ¥

|

we obtain GEN = {B,C,A} so NULL = {B,C,A}.

GEN
Lemma 2.3.4. Algorithm 2.3.3 computes NULL in Tinear time,
Proof. By the correctness of Algorithm 2.2.2, Algorithm 2.3.3
computes

NULL = GEN = {AeV|3xep*, A=g>x} = (ReVIAZ A = (AeN|A N

f. Computing
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which is the desired set.
Algorithm 2.3.3 operates in linear time since Algorithm 2.2.2

does, by Lemma 2.2.4. Note that |G] = |G| and IGI = IGl, 0

We can now present the main result of this section, which considers

the combination of Algorithms 2.3.2 and 2.3.3.

Theorem 2.3.1. There is an algorithm that performs null rules

elimination on any grammar G = (V,r,P,S) in time O(nlogn) (0(n))

if the size measure is Gl (|G]) respectively.

Proof. Follows from Lemmas 2.3.2, 2.3.3 and 2.3.4 and the obser-
vation that the time spent by Algorithm 2.3.2 (besides computing NULL)

is dominated by the size of the output grammar. O

A polynomial time algorithm for eliminating null rules has been
independently obtained by Hunt, Rosenkrantz and Szymanski [1976].
Their algorithm runs in times 0(n21og n) or O(nz) depending on the

size measure.
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Section 2.4 - Eliminating Chains

It is sometimes an advantage to have grammars with no rules of
the form A - B, A, B e N. Rules of this form can result in very
long derivations for short strings. In grammars for programming

languages such rules often exist with no semantic significance.

Definition 2.4.1. A grammar G = (V,I,P,S) is said to be

chain-free if P N NxN = §,

We present a slightly modified version of the "classical"
algorithm for the elimination of chain rules. Here, for each B € N,
CHAIN(B) represents the set of all nonterminals A generating B
(rather than generated by B). Also, we remove the requirement that

the original grammar be A-free.

Algorithm 2.4.1.

Input: G = (V,5,P,S) a reduced grammar

Qutput: grammar G' such that L(G') = L(G) and 'G' 1is chain free

~ s

for all BeN do CHAIN(B) := {AeN|ASB];

P VP

for all B+aeP do

B

if ¢ N then for all AeCHAIN(B) do P' :=P'U{A~a};

G = (Vazipl 35)
end.

~

Before we discuss the computation of the sets CHAIN(B), we

state the correctness of this algorithm.
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Lemma 2.4.1. Algorithm 2.4.1 correctly computes a grammar G'
such that L(G') = L(G) and G' 1is chain free. Moreover if G is

A-free then so is G'.

Proof. That G' 1is chain-free is easily seen by inspection.
It is also easy tolverify that L(G') = L(R), cf. Harrison [1978].
If G is A-free then the only null rule which may be present in
P is S~ A. Since S never appears in the right hand side of a

production CHAIN(S) = {S}, and as a result P' may only include one

‘nu11 rule, namely S -+ A. a

To examine the size of the grammars produced by the algorithm we

first consider an example.

Example 2.4.1. Llet G = (V,Z,P,A1) where N = {A1, 2""’Ak}’

L= {a,ay,...5a.} and P = {A, ~A, Ay »a.h T<i<klU A ~a

i+1° 1+1l k}'

G is A-free. Apply Algorithm 2.4.1 to G. We get, for 1 < i <Kk,
CHAIN(A, {A |1<j<i}, and therefore P' = {Aj-+a1A1+1|1.ij.ii <k}
U {Aj-+akl1.33‘§k}, and G' = (V,Z,P',A]).

Computing the sizes of these grammars we get |V]| =
|G| = 5k -3 whereas

k-1 2
6] = ] 3eis2ek = K
=1

We have [V| = 6(k), 6] =8(k), |&'] =e6(k%). so |G'| = of IG[Z

Also Gl = |G]log|V]| = 6(k Togk) and UIG'I = |G'|Tog|V] = k log k).
Note that ToglGl = 06(log(k Togk)) = 6(log k+1loglogk) = 6(log k).

Hence

(k Tog k)2 K )

161 = o(k* Tog k) = o(Hqloikly - o100




We can make the following general observation with respect to

size:

Lemma 2.4.2. Algorithm 2.4.1, when applied to a grammar
G = (V,2,P,5) produces a grammar G' such that [G'] = O(]G[z),

, 2
and IG'll = O(Tgéﬁtmd. These bounds may be achieved.

Proof. For each B ~+a e P, P' may include as many as
|CHAIN(B)| productions of the same size. Since CHAIN(B) CN we

have |G'| < |N|-|G|] and by Lemma 2.1.1
6] < lo]® .

Since the alphabet for the output grammar is the same as that of the

input granmar we get

IG"I = |G'|-Tog|V] < |G|+|V]|+Tog|V]

1GH+ V|

216l 1612
But by Lemma 2.11 [V < yooqep so 1G') = 0(q5opep)-

That the bounds are reached 1$ evident in Example 2.4.1, O

Assume that the input grammar is A-free. This simplifies the
computation of CHAIN(B) for B e N, since it implies that the deri-
vation A3 B rmust include only chain rules. >In fact we are
interested in the reflexive transitive closure R* of the relation
RCNxN where (B,A) e R if and only if A - B is in P,

Generally speaking we need to compute this reflexive transitive

closure in as little time as a function of |G| (or 1GI) as possible.

Note that |G| s a good measure of the number of elements in R, i

the number of nonzero elements in a matrix representation of the relat

.e,

jon R,
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whereas |N| s the size of thismatrix. This implies that we will
choose techniques that work well for sparse relations (graphs, matrices):
When |G| = O([N|) the general methods will require time O(|GI3)

2’8]), whereas sparse representation will enable computation

or 0(|G]
in time O(IGIZ), cf. Aho, Hopcroft and Ullman [1974] for a discussion
of various transitive closure algorithms.

One may hope to show that chain rule elimination is at least as
hard as computing the closure. For this it is necessary to show that
an algorithm for chain rule elimination can be used to compute the
closure of any relation (or a directed graph, a boolean matrix).

This does not seem to work because of the different data representa-
tion in the two problems. If we let a grammar represent some relation
by its chain rules, and apply a chain eliminating algorithm, we will
need to compute the language generated by the output grammar in order
to get the transitive closure.

We shall address ourselves to the issue of a Tower bound on the
size of a chain free grammar (and thus a lower bound on the time to

perform chain elimination) in the next section when we will be able

to make some strong assumptions on the form of the output grammar.
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Section 2.5 - Chomsky Normal Form and Related Forms

In this section we discuss a number of canonical forms which

y

insist on "short" right hand sides.

We start with the following definition (from Hunt, Szymansky and

UTlman [1975]).

Definition 2.5.1. A grammar G = (V,r,P,S) 1is said to be in

2-Normal-Form (2NF) if P C Nx Ve,

The only restriction for 2MF grammars is that the right hand
sides be of size at most 2. The next form, however, is slightly more

restrictive.

Definition 2.5.2. A grammar G = (V,%,P,S) is said to be in

Chomsky-Normal-Form (CNF) if ;

(1) P CNx(N

Uz U{S~17}
and (2) if S+ A is in P then S does not appear in the right

hand side of any production.

So that CNF restricts the productions to three types: A - BC,
A>a or S->A where A, B, CeN and a € L. WUe would like an

additional normal form which will be intermediate in nature.

Definition 2.5.3. A grammar G = (V,Z,P,S) 1is said to be in P

Strict 2-Normal Form (S2NF) if P C Nx UfZUVLJ{A}).

Harrison [1978] defines two other related forms which we do not

discuss here: canonical two form and binary standard form.

Fact. Every CNF grammar is in S2NF, every S2NF grammar is in 2NF.




The following is a simple algorithm to convert any grammar to 2NF.

This is done by factoring "long" right hand sides and introducing new

nonterminals where necessary.

Algorithm 2.5.1.

Input: G = (V,Z,P,S) a reduced grammar

Output: a grammar G' in 2NF such that L(G') = L(G)

begin
N ee .
P' :=0;
for all A+aeP do
" begin -
;;NT&liZ then P' :=P'U{A~q}
© else begin
comment o= Xykyre ko w23, Kyel
for 1:=1 to r-2 do
begin
N' =N UG, (o)}
comment abbreviate Ci’ let CO==A;
P'i=PlULC, > X.C)
end;
Pri=P ULC LXK (X ]
end
ends -
G':=(N'UZx,Z,P',S)
end.

~ o~

Lemma 2.5.1. Algorithm 2.5.1, when applied to G = (V,%,P,S)
correctly produces an equivalent grammar G' in 2NF. Moreover if G

is A-free (chain free) then so is G'.

Proof. It is easy to see that P' does not contain any produc-

tion with a right hand side longer than 2.
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That L(G') = L(G) can be seen as a result of the following

claims.

Claims. For all Ae N, o, B e VX,

1) if A>aeP then A =

G=°.0L

* *
2) if A E’B then A :> B8

(\ 1
3) Let A->o bein P, a= X, X,---X_ for some X.,X.,....X €V
172 r 1’72 r

and let C. = Ci(A+a) be in N' for some i, 0 < i < r-2.

;
> B then this derivation can be factored

I+

If C,
i

& X
Ci & K17 % G B

jep}

. * *
A => =>
4) if A & B then A i B

The proof of the claims is similar to, though much simpler than,
the proof of the claims in Lemma 2.3.2:

Claim 1 can be proved by induction on |a|, Claim 2 by induction
on the length of the derivation, Claim 3 by induction on r-1 = |af -1
(with basis r-i=2), and Claim 4 by induction on the length of the

derivation.
Finally, productions with right hand side 0 or 1 are included in

P' only if they are in P so that the algorithm does preserve A-free-

ness and chain-freeness. O

Lemma 2.5.2. Algorithm 2.5.1 yields a grammar G' whose size
depends upon that of G as follows:
16"] < 3]G

IN'|

I A

N+ 6]
0(IGlIToglGlH)

IG* I

The time complexity of the algorithm is dominated by the size of the

output.
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Proof. For every A -+ a e P, where |a|l = r (and the production

contributes r+1 to |[G|), either A+ o e P' (if r <2) or else

we get r-1 productions (Ci -+ Xi+1ci+1’ 0<i<r2, Cr—2 - Xr—lxr)
in P'. In this latter case we also add r-2 new nonterminals to
N' - N.

Hence

Yl + ] 3(fAaf -2)
AraeP A~oeP
r=o|<2 r=la|>2

6"

so that |G'] < § 3|Aa| = 3|G]
A~ceP '

It

also SNt = N+ ) ([Aa] - 3) < IN| + ]G]

AraeP

la|>2
we have |G'| = 0(|G]) and |V'| = 0(|G|]) so the bound for HG'l s
obtained in the same way as was obtained in Lemma 2.3.3.

The statement about time complexity is obvious as there is

virtually no computation done. O

The difference between S2NF and 2NF is only in productions with
right hand sides of length 2, where S2NF insists that the right hand
side be in N2.

The following is a trivial algorithm to transform a 2NF grammar

to S2NF:
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Algorithm 2.5.2.

Input: G = (V,%,P,S), a grammar in 2NF

Output: G', a S2NF grammar such that L{(G') = L(R)

begin
N' =N
P' =0

A msms

if |a] <2 then P' :=P' U{A>q}

o

else begin

‘comment a==X]X2, X],X2 eV;
for i=1,2 do if Xi € Z then begin

~ o~~~ ~ e R N VRV

N :=N'U{)_<].};
p' .= ? LJ{X]-*Xi};
B. :=X.
i i
end

else B;~:=X1;
pt :=Pp kJ{A-+B]BZ}
end; .

'GI = (N. UZsZsP|sS)
end.

~ o~

Lemma 2.5.3. Algorithm 2.5.2 applied to a 2NF grammar G,

produces G', a grammar in S2NF so that L(G) = L(G') and the sizes

are
[Q"] < |6] + 2|z| < 3]6|
V'] < vl +]z] < 2]v|
G < 6lGI

Moreover, the algorithm preserves A-freeness and chain-freeness.

Proof. It is easy to verify that G' {is in S2NF, and is equiva-

Tent to G. For each production in P we place one having the




same size in P', and beyond that we may add productions of type
a~a foreach ae I, adding as wedo a to N'. This yields the

first two bounds. For the third we note that

IG'l = |G'|{log|V'| < 3|G[log(2|V]) < 6|G|log|V| = 6lGl

where the fact that |V] > 2 was used. The preservation of A-freeness

and chain-freeness is evident just as in Lemma 2.5.1, a

To transform a SZNF grammar to one in CNF we may first eliminate

nu1]’ru1es, and then eliminate chains. We can recall our remark from

section 2.3 that the classical algorithm (2.3.1) for null rule elimina-

tion works efficiently when the size of the right hand sides is
bounded, and conclude that here we can usexit (instead of Algorithm
2.3.2 which is usually more efficient) to do the job (provided NULL
is computed by Algorithm 2.3.3).

We have established one algorithm (which is composed of several

elementary algorithms) to transform any reduced grammar to CNF, namely:

Algorithm 2.5.3.

Input: G = (V,z,P,S) a reduced grammar

Output: G', a CNF grammar such that L(G') = L(G)

A

apply algorithm 2.5.1 to G, obtaining G] in 2NF

apply algorithm 2.5.2 to G], obtaining 62 in S2NF

apply algorithm 2.3.2 (or 2.3.1) to G,, obtaining G,, a A-free
grammar in S2NF

apply algorithm 2.4.1 to G3, obtaining G' in CNF

end.

~
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Another way to obtain the same result is

Algorithm 2.5.4.

Input: G = (V,Z,P,S) a reduced grammar

Qutput: G', a CNF grammar such that L(G') = L(R)

s

apply algorithm 2.3.2 to G, obtaining G], A-Tree

apply algorithm 2.4.1 to G], obtaining GZ’ A-free and chain free

apply algorithm 2.5.1 to GZ’ obtaining G3, A-free, chain free
and in 2NF

apply algorithm 2.5.2 to G3, obtaining G' in CNF

end.

o~~~

The only remark we need to make in order to clarify the behavior
of this algorithm is that by definition any S2NF grammar which is A-free

and chain free 1is in CNF.

Theorem 2.5.1. There exists an algorithm that takes any reduced

grammar- G = (V,Z,P,S) and outputs an equivalent CNF grammar

G' = (V',5,P',S') such that

o(]6]%)

o(fa])

HE

|6']
v

The time needed to do this is dominated by the size of the output.

Proof. If we use Algorithm 2.5.3 correctness follows from
Lemma 2.5.1, Lemma 2.5.3, Lemma 2.3.2 and Lemma 2.4.1. As for the

bounds we obtain directly the following:




|G1| = 0(|G]) and IV]I = 0(]6G]) from Lemma 2.5.2
IGZI = 0(|G]l) and [V2| = 0(|V1|) from Lemma 2.5.3
651 = 0(]6,]) and |Vo] = 0([6,])  from Lemma 2.3.3
l6'| = 0(153‘2) and |V'| = [V3[ from Lemma 2.4.2
I 2
so that |G'] = 0(]G]7)
[v'] = o(]a])
1612

and it follows that IIGl = O(TBQHGI)' The statement about the time

complexity also follows similarly. ]

A similar result can be obtained using Algorithm 2.5.4 (there we

get |[V'| = O(|G|2), which does not change 1G'l).

Corollary. There exists an algorithm that takes any reduced
grammar - G = (V,Z,P,S) and outputs an equivalent (A-free) S2NF

grammar G" = (V",Z,P",S) so that

6"} = o(]al)
[ve] = o(la])
16" = o(lGioglal) |

Proof. Use an initial part of Algorithm 2.5.3 and take G" to
a

We see that the increase in size in Theorem 2.5.1 is mainly due

to the elimination of chain rules.

Example 2.5.1. We return to the grammar from Example 2.3.1: for

k>1 let G=(V,z,P,A), N-= {A,B],...,Bk}, z =‘{a],...,ak},

P ={A*m%82“'8kyu{8i+ai’Bi+A|]515*}‘
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We apply Algorithm 2.5.3 step by step: G] = (V],Z,P],A )y

N] = {AO,A]’.‘.’Ak"z,B]’...,Bk}, P] = {A1-+B_i+-l/‘\_l+]|0i‘]<k"2}

U {Ak_z-»Bk_]Bk} U {Bi+a1., 81.+Al1i1'ik}.
G2 = G1 (since all rules with right hand side of length 2 are
. 2
in N1><N1).
We now use Algorithm 2,.3.7 for null rule elimination:
G3 = (V3,Z P3,A ), N3 = {A ’AO""’Ak-Z’B]’“"Bk}’
Py = {A' Ay, A2 A} U {AT.»BH]AH][OS‘ <k-2} UAA _,-B, ;8.1

U A By [0<T <k-2} U LA A, 10 < <k-2) U A _,>B} U (B, ~a,]
1<i<k}. (Note that NULL = N.l).

For convenience let A' = A 1 compute CHAIN( {A -1<j<i}
for -1 < i< k-2, CHAIN(B,) = {8, }U{A |-1<3 <m1n(1 k-1)} for
1<i<k

So that G' = (V',):,P',A_]), V' =V, and P' = {A_]+/\}

3

U A > By Ay 125 <1 <ke2, 1200 U (A +B |-1<J<k-2}

k-15
U {Aj+a1.|-1ij<m1’n(i,k-1), 1<i<k}u {Bi*ailliiik}-

The sizes of the grammars are

6] = 4k+1 V] = 2k + ]
6,1 = 6k-3, [V, = 3k-1
|65] = 9k-4, vyl = 3k
k-3 k-1
1G'] = 1+ 23 (i+2) +3k+ § 2(i+1) + 2k + 2k
=0 i=1
IG'[=52 Beog vy = sk

The following lemma sets the stage for an attempt to get a lower

bound on the time complexity of chain elimination.




CNF granmars are more restricted than chain-free and A-free
grammars. Nevertheless any lower bound on the size of a CNF grammar
for a certain 1angdage yields a lower bound for the size of any chain-
free, A-free grammar for that language since these two sizes are
Tinearly related.

More precisely

Lemma 2.5.4. Let L be any language and let n > 0. If for any
grammar G in CNF such that L(G) =L, |G| > n then for any chain-

free, A-free grammar G' such that L(G) =L, |G| 3_%n.

Proof. Let L be any Tanguage, n > 0 and all CNF grammars G
for L have |G| > n. Assume, for the sake of contradiction that &'
is a chain-free, A-free grammar, L(G') =L and |[G'| < %4L Apply
Algorithm 2.5.7 followed by Algorithm 2.5.2. We obtain a grammar G"
in S2NF which is chain-free and A-free and hence in CNF. L(G") =1L
and, by Lemma 2.5.2 and Lemma 2.5.3, |G"| < 33-|G'| < 3-3--%~n )

that |G"| < n which contradicts the hypothesis of the Temma. [

We shall now present a conjecture about a certain family of

Tanguages.

Conjecture. For k> 1, let L = {aibj]]fjfij:ik}- There
exists a constant ¢ such that for every k > 1 and every CNF grammar

G with L(G) =1L {G| > c+klogk.

k’
Discussion. We now present three (families of) grammars for

L =1L, (we drop the subscript where possible). The first is not

Kk
chain free. G = (V,z,P,S), I = {ai,b1|1_ii <k},
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“where Vk = {Sk}LJNkLJZ
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N = {S}LJ{Ai,Bi|1_31.gk}, P={S>AB,, A, >a,, Bi-}bil]-ijvik} U
LJ{Bj-+Bi+1|1_§i <k}. It is easy to verify that L(G) = L, |N| = 2k+1
and |G| = 9k -2. Note that the longest chain is B]=*82=°---=*Bk,

so the sets CHAIN(Bi) of Section 2.4 are large, e.g. CHAIN(Bk) =
= {B],...,Bk}, |CHAIN(Bk)|= k=06(|G]). It is not surprising then that

an application of Algorithm 2.4.71 to eliminate chains yields grammar
G' = (v,z,P',S), P! ={S+A@i,Af+a”1iigk}u{8{+%l1iiijik}
which is CNF and whose size is |[G'| = k2+-6k = e(kz).

There is a CNF grammar for L that is asymptotically smaller
than G'. The idea is that if we are allowed chains we can make them
shorter by arranging them és a balanced binary tree, thus Timiting the
length of a chain to Tog|N| < Tog|G] so that when we eliminate the

chains the size of the grammar becomes 6(k logk).

We define a family of grammars recursively. First we Tet

woo - RS R 2 _ N
1 {C],D]}, Z] = {a],b]}, P] {S]-+C]D]} and P] {C] ays
3 | L — 2] " ] 2 "

]-+b1}. We define G] = ({S]}kJN]\Jz],z],P]LJP1,S]). Note that
N? denotes all the nonterminals except S? and that we grouped the

productions into those with a pair of nonterminals in the right hand

D

side (S'-»C D]), and those with a single terminal (C]-+a], D]-+b]).

171
Suppose GE is defined for some Kk > 1. We make the following
assumptions (which are easily verified for k = 1): GE = (VE’Ek’PlLJPE’SE)

- . -1 " 1]
R {as,b.|1<i<kl, P C {SidxNy,
I ny = = 1 i
CNpxZ, and L(Gp) =L, = fajbsfT<i<]<kl,

Define a set of new symbols Ny = {AJAeMy}. Also let §u be a

2

Py

new symbol, let I, = {a;,b,|k¥l<i<2k} and V= {S;}UN UL, .

Define an injection h: VK - VE as follows. For all A in {SE}LJNE

let h(A) = A. Forall i, 1 <i <k, 'h(ai) = A and h(bi) = bi+k'




Extend h 1in the usual way to be a homomorphism from (Vi(')* into (\7;(')*
~ - un ¥ 51 52 cn =1 _ ] =2 - 2

and let Gk = (Vk,zk,PkUPk,Sk) where Pk = h(Pk) and Pk h(Pk)' Then

L = L(GR) = fagby k1 << <2k}

We now use Gi(' and Gié to define o e Tet
" — 1 Yl ] - 1 t " . . ]
N2k = NkLJNk\J{CZK,CZD}, P2k = {SZk->C2kD2k}LJ{SZk-*EFISk-*EF is in Pk
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= L. =] 2 - . : .
or Sy~EF is in P}, P, {C2k+a1.|151ik}U{D2k+bj‘|k+1_<_J_<_2k}U |
2 52 n = 1 n fl - " 1 2 "
U PkkJPk. We let V2k {SZk}(JNZkLJZZk and o (VZk,ZZk,PZkLJPZk,SZk).

We would Tike to show that the inductive assumptions on properties

of Gi(' extend to ng. The only property that does not follow trivially

is that L( Ek) = L2k' Before we prove it, we characterize L2k:

—
1

ok = {aibj“iif_jiZk}

1

lagby 1< icjckiulagh kel <i<j<ak)

U (aibj|1_<_1'ik and k+1 < j <2k}

L VL Ula, ]l < ik}-{bjlkﬂ <J <2k}

w is in L(GZk) if and only if SIZ'k GTZ?k EF 65, ef for some
n " i ] 1 hd
E, F e N2k’ e, fe ZZk so that SZk -~ EF s in P2k’ E-+e and

F>f 1in ng and w = ef. This is true if and only if one of the

following three cases hold.

.Casel. EF:CZkDZk’ e=a, for some 1 < i <k and f-_-bj

for some k+1 < j < k. So wg{ailliiik}'{bilkﬂijiZk}.

Case 2. | S, » EF s in P,](. In this case there is a correspond-

k

ing derivation Sl'< ¢t EF G‘Z?, ef =w so that we Lk'
k k

Case 3. §ié ~ EF is in F’l. Following Case 2, w e [k'
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So we have shown that w e L(Gék) if and only if
we{a1.|1i1'ik}-{bj|k+1_<_ji2k} or wel, or we[k. Hence
L(G3) = Loy

To compute the sizes note that+

el =2, Nl o= Nl IRy 2 =2 ez, k2
1 1 1 . ys] 1

[Pol= 1 APy b = 1 [P+ [Pl = 2o [P [ 4T, k>
2 2 2, =2 )

Pl =25 [Pg ] = kek |PE|+[Py] = 2 fPpl + 2k, k>

The solutions to these recurrence relations are |Nk| = 4k -2,

[Pyl = 2k-1 and [PF| = klogk + 2k where these hold for each K
which is a power of 2. Thus, since IVEI = I{S;}LJNELJEk{,

|VU = 1+4k-2+2k = 6k-1
and 6] = 3]p,| +2]PC| = 2k Togk + 10k - 3 .

The claim of the conjecture which we were unable to prove is that
this grammar is asymptotically the smallest, It is true that for any
k >2 we can get a smaller grammar, but the optimizations are local

and do not seem to lower the size beyond 6(k logk).
From Lemma 2.5.4 it follows that

Theorem 2.5.2. If the conjecture is true then A-free preserving

chain rule elimination requires time Q(|G|log|G]).

Proof. By Lemma 2.5.4 the conjecture yields that every chain-free
A-free grammar that generates' Lk is of size at least <c¢'+klogk for
some constant c¢'. But the grammar (family) G from the above dis-

cussion is A-free, generates Lk and is of size 6(k). If we apply

+|P| is the cardinality of the set P.
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any chain eliminating algorithm that preserves A-freeness to G, the
output grammar must be of size at least c'klogk. So the algorithm

requires time 6(|G|log|G|). 0

The reason we had to restrict ourselves to A-freeness preserving
algorithms is that it is easy to eliminate chain rules by introducing
A-rules, in a way which is not desirable. We just add on a new symbol -
T to the nonterminal set, replace each chain rule A > B by A - BT

and place T+ A in the production set.
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Section 2.6 - Uniquely Invertible Grammars

The property we wish to achieve in this section is helpful in
parsing. It makes the reduction phase (cf. Gray and Harrison [1973])

in bottom up parsing‘trivial,

Definition 2.6.1. A grammar G = (V,Z,P,S) 1is said to be

uniquely invertible if for each A, B e N, ae V*, A-+o, B-+a in

P dmply A = B.

In Gray and Harrison [19721 it is shown that this property is not
compatible with both A-freeness and chainfreeness: The Tanguage
a*U{b } does not have any grammar which is A-free, chain free and
uniquely invertible.

Two problems may now be discussed: obtaining a grammar which is
uniquely invertible and A-free, or one which is uniquely invertible
and chain free.

The second problem is trivial and will not be discussed here
(cf. Gray and Harrison [1972]).

For the first problem we discuss two algorithms by Gray and
Harrison [1972] and by Graham [1971].

The first algorithm is reproduced here with Tittle change. Ve
do not make any effort to clarify the details of the implementation,
since it will be shown that the algorithm is inefficieht no matter

how it is'implemented.
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Algorithm 2.6.1.

Input: G = (V,I,P,S) a A-free, chain free granmar

Qutput: G', a uniquely invertible A-free grammar, L{G') = L(G)

begin
N' := {UCNJU#P}U{S'}; comment S', a new symbol;
P' 1=

if S+A is in P then P' :=P'U{S' > A},

~

for all UeN" such that SelU do P' :=pP' U{S'~>U};

PPNV v oV

for all B=xgByxy+-Byx, e P do

o~

R

for all A,,A ..,An eN'-{S'} do

~~~~~~ ']9 2"
begin
A;:{c|c+xoc]x]~-cnxneP, CiEAi};
p' :=p LJ{A~+xOA]x]---Anxn}
end
end

v~

end.

~

The proof that Algorithm 2.6.1 is correct can be found in Gray
and Harrison [1972] (Theorem 1.5).

This construction is reminiscent of the subset construction to
transform nondeterministic finite automata to deterministic finite
automata. In many cases, however, the grammar G' shrinks substan-
tially when reduced. We present an example that shows this algorithm

is exponential in nature even when reduction is performed.

Example 2.6.1. Let k be a positive even integer. Let

t = {a,b,c} and N = {A .,Ak}. Let o = (1,2,...,k) and

1°° a

6. = (1,2) be two permutations written in cyclic notation. These

b
two permutations generate the symmetric group on k-letters. Define P
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by

A; aAoa(i)leob(i) for each i, 1 <1 <k
Ai +>C for each odd i, 1

A
—_
A
=

For G = (V;Z,P,A]), we have
V| = k+3  and  |G] = 7k

Now the variables of G' - will be sets of variables such as

{A],A .}. To simplify the notation we will write {1,3,...}

3o
instead. If the computation of G' s carried out and G' s

reduced, we get N' = {BCN||B| =k/2}U{S'} and P' = {S'~+B]

A, €BCN, [B] =k/2}U{B~aB', B>bB"|BCN, [B] =k/2, B' =0 (B),

B”=<Jb(B)}LJ{{1,3,...,k-1}->c}. Clearly

k
- (k/2
= 2+6(

)44 > 2k/2

k
k/2

1

k k/2
v (k/Z)

> 742

jwp]
t

) +2

so that for some constants Cys Cp > 0

¢y |G
|6'] > c]2 2

Example 2.6.1 clearly indicates that Algorithm 2.6,1 takes expo-
nential time. In fact a much stronger result foliows. It says that
even if the non-reduced version of the output grammar is never

produced, the aigorithm is still exponential. More precisely

Theorem 2.6.1. Any algorithm that outputs the same grammar as

Algorithm 2.6.1 followed by reduction does takes exponential time.




The next algorithm is adapted from Graham [1971]. Before present-

ing it we explain the ideas behind it using an example.

Example 2.6.2. Consider a grammar with productions S > AB|AS,

A > ABla, B - AB|b. There are three productions with AB as their
right hand side. We would like to retain one of them, say B - AB,

and add chain rules A+ B and S+ A to be able to simulate the
other productions. However these Ehains would introduce undesired

- derivations like S = A =B =b. So we have to make distinct copies

of the nonterminals for each production. We get two such copies for
each of S, A and B. We .then place the productions

B, » A]B1IA]BZIAZB]IA282 instead of B~ AB, and B, > b instead of
B~>b. We also need a new start symbol S' with productions

S' » 51|SZ' Note that since these are chain productions with»(copies
of) S as the right hand side, we may not use S] and 52 as fhe
right hand side of any other chain rule we introduce. The new grammar
has the fd]]owing productions: S' - 81152’ S1 - A1,

S2 - A]S]}A]SzlAZS]IAZSZ, A] -+ B

and 82 + b,

We now describe the variabies in the algorithm. We use the

12 Ay > an By ABy[AB,[AB[AB,

variable RHS to store all the strings that appear as Right Hand Sides

" of productions. For each a € RHS, LHS(a) 1is a set and LAST{LHS(a))
is an element of ‘LHS(a). It designates the last element to be removed
from LHS(a). LHS(a) is used to store all A; e N' such that A -«
is in P and A, is a copy of AeN (A is the Left Hand Side of
the production). If a copy Si of S appears in LHS(a), then

LAST(LHS(a)) = Si'

76
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For each A e N, NRHS(A) 1is an integer which is used to count
the Number of Right Hand Sides o such that A > a 1is in P. This
count is used in determining what index needs to be assigned to a

certain copy of A.

We now present the algorithm.

Algorithm 2.6.2.

Input: G = (V,Z,P,S), a chain free grammar

Output: G', a uniquely invertible grammar such that L(G') = L(G)

~ e sy

L1: RHS: —{a]there exists AeN such that A+a is in P};
for all aeRHS do LHS(a) := 93

T

for all AeN do NRHS(A) 1= 05

PPV
s

~

NRHS(A) := NRHS(A)+1;

LHS(a) := LHS(a )U{ANRHS(A)};

if A=S then LAST(LHS(a)) ::SNRHS(S);
end,

~ o~

N :={Aj|1_<_jiNRHS(A), AeN}U{S'};
p -={s'+s.|1 < J <NRHS(S)};
L3: for all aeRHS do

~m i msee

””””” _ 1 i
commenta—xOB xm]Bx,m>O x er*, B

- A

remove C from LHS(a);

1l - i i <m):
p' =P U{C—»aOBJ] BJmo‘m“iJiiNRHS(B ), 1 <i<m};
while LHS(a) is not empty do

~ s

eN;

begin

N N

remove D from LHS(a);
P' :=P'U{D~>Cl};
C:=D

end

o~

end;

G' :=(N'VUL,Z,P',S");
end.

~
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Example 2.6.3. We use the grammar in Example 2.6.2 to observe the

way the algorithms works.

When L2 is first.reached we have RHS = {AB,AS,a,b}, LHS(a) =9
for all o in RHS and NRHS(T) = 0 for all T e N.

After the 99 lToop in L2 is executed once with S -+ AB, we get

LHS(AB) = {S]} and NRHS(S) = 1. The for loop in L2 is then executed

~

for the other productions and when L3 is reached we have LHS(AB) =
= {S4,A;,8,}, LHs(As) = {S,}, LHs(a) = {A,}, LHS(b) = {B,},
LAST(LHS(AB)) = S] and LAST(LHS(AS)) = 52. NRHS(S) = NRHS(A) =

= NRHS(B) = 2. N' = {S],SZ,A A,,B S'} and P' = {S'->S S'—+52}.

1°A2:81:8, K
The for Toop in L3 is now executed with AB e RHS. UWe first remove B]

~

from LHS(AB) (we could have picked A] but not S which is the

last). We place B] +~A. B, in P' forall 1 <j, <2 and
J'IJZ -V -

1 §_j2 < 2. Then we remove A] from LHS(AB) and place A] > B] in

P' and finally S, » A1 is placed in P'. The for loop in L3 is

~ o~

1
executed with the rest of the elements of RHS, yielding the grammar as

in Example 2.6.2.
We illustrate the structure of derivations in the new grammar by

placing side by side the derivation tree of abb in 6 and G'.

S ﬁ'
Sﬂ
Aﬂ
e
A B A] \\\82
Ny g L
| ! N
a b A2 B




Notice that in the G' derivation tree a chain appears between

Sy and the production that has /-\]B2 in its right hand side. This

1

corresponds to the production S -+ AB used in the G derivation tree.

The algorithm we presented does not preserve A-freeness;r This is
easy to fix. If we have a A-free grammar with S=A in P, we can
remove this production temporarily, apply the algorithm énd finally
add S' -~ A back to P'.

Since we have changed af Teast the appearance of the algorithm

quite substantially we now present a proof of its correctness.

Lemma 2.6.1. Algorithm 2.6,2 when applied to a chain free

grammar G = (V,%,P,S) produces a uniquely invertible grammar G'

such that L{(G') = L(G).

Proof. First, it is clear that the algorithm terminates.

We need to show that G' is uniquely invertible and that
L(G") = L(G). Before we proceed we introduce some notation. For all
A eN we call each 'Aj where 1 < j < NRHS(A) a copy of A, and

{Aj|1_5j.5NRHS(A)} is the set of all copies of A. This is extended

to strings in V* as follows. If o e V¥ and o = xOB]x]---Bmxm

for some XO’XI""’xm e £¥ and B],BZ,...,Bm e N then

BT x  is a copy of a if B} is a copy of B' for
m i
all i, 1 <i <m MWeusecopies(a) todenote the set of all copies

The following claim characterizes the effects of the first part

of the algorithm, up to L3.

TThe algorithm does not preserve chainfreeness either, as can be

expected.

79
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Claim 1. The following hold the first time L3 is reached:"

(1) RHS = {althefe exists AeN so that A»>a is in P}

(2) Forall AeN, NRHS(A) = |{a|A>ceP}|

(3) For all a € RHS, LHS(a) contains exactly one copy of A
for eaéh A e N such that A~ a 1is in P.

(4) {LHS(a)|ceRHS} s a partition of N'-{$'} (i.e. each
element Aj of N'-{S'l appears in exactly one set
LHS(a)).

(5)' For all o € RHS if Sj e LHS(a) for some Jj, then

LAST(LHS(a)) = Sj'

Proof of Claim 1. (1) is trivial. For each A e N, HNRHS(A) is

set to 0, then incremented by one for each A=+ o in P so (2) holds.
Aj is placed in LHS(a) when the for loop in L2 is executed for
A~o in P. So (3) follows. Since the index used is j = NRHS(A)
and NRHS(A) 1is incremented just prior to placing ANRHS(A) in
LHS{a), that particular copy of A appears in no other set. Then

(4) holds. (5) is trivial.

After label L3 RHS is not changed and for all A e N, NRHS(A)
is not changed. For all o e RHS, LHS(a) is changed only when the
fgr Toop in L3 is executed with o e RHS and then elements are removed
from LHS(a) one by one. We therefore find it convenient to use the
names RHS, NRHS(A) and LHS(a) to denote the values of these variabies
when L3 is reached for the first time.

We can now examine the productions in P' (at termination time).
There are essentially two types of productions; chain rules and others.

The chains are either S' » Sj or D>C where D, C € LHS(a) for
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some «, and where C # LAST(LHS(a)). It follows from that and (4)
and (5) of Claim 1 that no right hand side in this group appears in
more than one production.

The other rules are of the form Aj +~ o' where A-+a e P,
o' € copies(a), 1 < j < NRHS(A) and Aj is the first element in LHS(a).
Since G 1is chain free, no unique invertibility conflicts with the
chain rules in P' can occur. Conflicts within this type of production
‘are impossible because for o, 8 € RHS if a # B then copies(a) Ncopies(B) =
= @, and because for each o € RHS and o' e copies(a) only one produc-
tion in a' as the right hand side will be included in P'.

This completes the proof that G' is uniquely invertible.

Next we will show that L(G') = L(G).
We start by showing that for every production A~ o in P

every copy of o may be derived in G' by some copy of A.

Claim 2. If A-»a is in P then for all e copies(a)

al
there exists some Aj e copies(A) such that /\j é% a'.

(We prove something stronger, that the same Aj derives all

these copies of «).

Proof of Claim 2. If A~ o is in P then, for some 1 < j < NRHS(A),

Aj € LHS(a). Suppoée Aj is the 1th element removed from LHS(a), i > 1.
We prove by induction on i, that Aj é% a' for all a' e copies(a).
If i =1 then Aj is the first element to be removed from LHS(a),

and therefore Aj +~a' s placed in P' for each o' € copies(a).

£ 0 il s s . . th
_Assume Aj G @ 1f i< igs g > 1., If Aj is the 1 element

removed then Aj + C is placed in P' where C 1is the (i =i0-1)th




element removed from LHS(a), and by the inductive hypothesis A & ¢
é% o' for all o' e copies(a). This completes the proof of the claim.
We now generalize this claim to derivations:

*
Claim 3. For all AeN, o€ V¥, {if A % a then for each

*
a' e copies(a) there exists Aj e copies(A) such that Aj & a'.

Proof of Claim 3. By induction on the length 1 of derivation

*
A g o
Basis: i = 0. Then o = A, copies(a) = {Aj.ll_ij'_gNRHS(A)}. For
- . 0 ‘ *
each o' = Aj. e copies(a) take J = j'. Clearly Aj, & Aj"

Induction step: Assume the result holds for all derivations of length

. .. i . .
00 g7 0. Now suppose i = 9 A E o. We can rewrite this as

i-1 .. _ 1, ...
A E'B E- o, where A -8 1is in P. Let B = BOB B] B

i<

m
B where
m

2 * . _
B” ¢ N, By € Z'. MWecanwrite o= By By e B and for 1 < & <m
L

*
B” % a,, with a derivation of length less than i. For any o' e copies(a)

we can write o' = Boais]'--a58m with ai € copies(az) for all &,

1 <2 <m (recall that B, € £¥ so that copies(B,) = {B,}). We can

now apply the induction hypothesis m times to obtain elements

9 . 9 , L *x
BY € copies(B™) for all 2, 1 <2 <m such that BY = o'.
Jg -7 - Jy G' 72
Now we consider B' =R 81 o™ copies(B8). By Claim 2,
0 J] J."m
there exists Aj e copies(A) such that Aj
. . + 1 m
d t t A, 3 B' = B. +++B.
erivations we ge 56 B BO i BJm

€
% B'. Combining the various

+ I-oo ! = 3
= Boa] amBm o which

completes the induction and the proof of the claim.
We can now show that L{(G) CL(G'): For all we £ if we L(G)
then S=>w and we copies(w), so by Claim 3 Sj é% w for some j,

G
1 < j < NRHS(S). But S' = Sj is in P' so that w e L(G').

82




The following notation will help us prove that L(G') C L(G).

For all a' e V'* define copies-](a‘) to be the element o e V¥
such that o' € copies(a). As was pointed out copies'](a') is always
uniquely defined (and is simply the string a' with subscripts omitted).

For Aj e N'-{S'}, o', Bi, Bé e V'™ we say tﬁat BiAjBé E)Bia'Bé
if AJ.G%BRE'«:

*
only non-chain rule used in this derivation. =) is the reflexive

o' for some B2 e N' where BR +o' in P' is the
transitive closure of =) .
For example, the derivation tree in Example 2.6.3 can be written

as S' =S, = AB, = A.B 82 =) aBZB2 =) abB2 =) abb,

G' 71 172 272
The next claim shows the connection between a special type of

*
derivation in G' (namely =) and derivations in G'.

* *

Claim 4. If, for some Aj eN', a'eV', A, 2a' in G

then A %-copies_](a').

Proof of Claim 4. By induction on the "length" i of the

"derivation" Aj 52)@'.
- *
Basis: i = 0. Then a' = Aj’ copies ](a') = A and A T A

Induction step: Assume the claim holds whenever i < 10, iO > 0.

Let Aj D o' for i =i Factor it (using the definition of =)
i-1
;=

AU DU . RSNV P
A g copies ( 18182)’ or if we denote B, = copies (B]) and

82 = copies-](Bé), A %'B]BBZ. Now, by the definition of =) we must

0"

A >Bi828é =) Biy'Bé = a'. By the induction hypothesis

*
] > H ]
have some Cm e N' such that Bl E-Cm using only chain rules and Cm +> Y

in P' is a non-chain rule. By inspection of the algorithm it is clear

that for some y € RHS, B Cm € LHS(y) and moreover y' e copies(y). It

QI’
follows that B>y, C+y are inP and vy = copies"](y'), We can combine
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N N . . * - ~'-l|||
our derivations in G to obtain A ¢ 81862 ='B]Y82 = copies (B]Y 82)

= copies'1(a'), and complete the proof of the claim.

We now prove some sufficient conditions that enable us to express

derivations in G' 1in terms of =),

*
Claim 5. If for some Aj e N', o' e V', Aj é? o' such that no

symbol in a' is generated in the last level of the derivation tree

by a chain rule, then Aj 52) a'.

Proof of Claim 5. By induction on the length i of the deriva-

. *
=% ]
tion Aj Goet.

Basis: i =0, trivial.

Induction step: Assume the claim holds whenever 1 < io, iO > 0.
J:, | o= 3 . -l:-l ' 1 I, 1!l =
Let Aj g o' i Factor it as Aj :ﬁ 18282 ='B]y 82 o

where B2 +~y' € P' is not a chain rule. MNow reorder the derijvation

* *
as follows. Aj é? B]CmB2 6? B]BQBZ ='B]y 82 where the rule, in

* *
Aj é? B1Cm82’ that generates Cm is not a chain rule and Cm é? B2
uses only chain rules. By the claim's hypothesis no symbol in Bi and

Bé is generated, in the last step, by a chain rule, so we can use the
*
inductive hypothesis for the derivation Aj é? BiCmBé (whose Tength
“is at most i-1) and conclude that Aj éé) BiCmBé. By definition of
. *
=) we have B]CmB2 =) B]Y 82 S0 Aj =) B]CmBZ =) B1y 82 = g

and Claim 5 has been established.

Now let w e L(G'). Then, for some 1 < j < NRHS(S),

* *
S! 53 Sj = W. Sj é? w satisfies the condition of Claim 5 (since no
*
element of ¥ can be generated by a chain rule) so Sj =) w. Using




* -
Claim 4 we get S E-copies'](w)==w so we L(G). This shows that
L(G'") CL(G) and combined with what we already know, completes the

proof that L(G) = L(G') and the proof of the lemma. O

Next we discuss the complexity of Algorithm 2.6.2, using the

following example.

2

Example 2.6.4. Let G = (V,5,P,S), N ={s,8',82,...,8%,

I=A{apse.nabl, and Po= (5887 8K ugs’sa., BToblT < <k,
Apply Algorithm 2.6.2. \Vhen L3 is reached for the first time
RS = (8'8% 85,0} Ufa |1 <i <k}, LHS(B'BZ...B¥) - (s,}. For all 1,

1<i <k LHS(a) = (8]}, LHS(b) = {B}]1<i<k} and

N' = {S',S]}\J{B},B;]1 <1<k}, When the algorithm terminates we get
Pt = {S'>5. JU{S, +B) B -+ 8K |1<j. <2 for all i, T<i<k} U
L I B it -

i . : i+1 .
U{81+a1|151ik}U{B‘2<+b}U{B%+B; |1<i<k}, and
G' = (N'UZL,Z,P',S'). G s reduced.

The sizes of the grammars are

[V] = T+k+k+1 = 2k+2
|G| = k+1+k(2+2) = 5k+1
V'] = 2+2k+k+1 = 3k+3
1G] = 2+ (k#1)2R+ 2K+ 24 2(k=1) = (k+1)2K 4 ak + 2

¢
so |G'] > c]|G|2 2 for some positive constants ¢, and c,.

Since the size of G' 1is exponential in the size of the input

we get the following result.

Theorem 2.6.2. Algorithm 2.6,2 takes exponential time.
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Examination of Example 2.6.4 can convince us that the grammar 6'
s large mainly due to the fact that there is a production with a long
right hand side. In fact, we can use the same approach employed in

Section 2.3 to obtain a more efficient algorithm.

Lemma 2.6.3. Algorithm 2.6.2, when applied to a CNF grammar G
with no A-rules produces a uniquely invertible grammar G' so that

16" = 0(]6]%) and 1G'I = 0(I6I%/ToglGl).

Proof. We estimate the size of the output grammar G'. Let
G = (V,z,P,S). Forall A, BeN, aegy define 2(A,B) =
= [{C[C>ABeP}| = |LHS(AB)| and &(a) = [{C|C~aeP}] = |LHS(a)],
r(A) = |{a|A+aeP}| = NRHS(A). Clearly
[Pl = 7 a(AB)+ T 2(a) = T r(A)
A,BeN ae
and
6] =3 ) &(A,B) +2 J 2(a)
A,BeN ael
so that 2|P| < |G| < 3|P|. 1In the construction of G', we see that
INY[ = ) r(A)+1 = |p|+1.
Ael
Productions in P' are of several types. First there are r(S)
St - Sj productions. Then there are productions generated from
1

LHS{a) for o € N2 and for o e £, which are either C ~ aOBj ---Bg o

type or chain-rules. We get

|G'| = 2r(S) + ) 3r(A)r(B) +2(&(A,B) -1) + § 2-1+2(2(a)-1)
’ B €
)

A,B'e N aewx
2(A,B) > 1 2(a) > 1
=2r(S)+3 ) r(A)r(B)+ 2 ¥ (2(AB)-1)+ 2 ¥ g(a)
A,BeN A,BeN aer
2(A,B) > 1 2(A,B) > 1 2(a) > 1
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6] <2r(S)+3 ] r(A)r(B)+2 - } 2(A,BY+2 - ) a(a)
B

A,BeN - A,BeN ael
2(A,B) > 1 g(a) 21
- 2r(s) + 3|P|% + 2|P| < 3[P|% + 4lp] .
We conclude that |[V'| = [N'|+]|Z] E_C]IGI and |G'| f_c2|G|2
for some constants ¢y, €, > 0.
2

G dis a CNF grammar with no A-rules so P C NxN UNxZ hence

3-+2-|N|-IZ! f_5[VI3 and therefore |V] 3_(l%l01/3. It

follows that IGI = |G]log|V] > |G|1og((L§—L)”3) > ¢,16]10g]6] for
some constant c, > 0. Also, since IGI = |G|1oglV|>i|G|2 we have

TogllGll < 2 log |G|. We use these estimates to compute 1G'0,

% og(cy 16]) < c16|%100]6]

IG'1 = 6" [log|V'| < 02|G
. for some constant c4 > 0. So

2
2¢c, (c3|Gl1og|G]) 2¢, yg)?

16" < 2 T2 Togl6] = 2 TogiGl
3 3
_— 2
hence 6] = o(l6]")
and G = of ”GHGW) . H

The next examb1e shows that these bounds are achievable.

Oy, = a0l nN,

Example 2.6.5. For k>1, G = (V,I,P,A

B=fag.ads P e wiaalalocrcrum ~alnd|2<ici v

b’{A1-+aill_§i_ik}. The computation of the algorithm yields




RHS = {(ATAT,a]1< i<k}
Lhs(A'AY) = {a%,A0,. A (AD last in the 1ist)
Lhs(ATAT) = (A]}  for 2 <<k
o
| LHS(a]) = {Ak+]}
LiS(a,) = (A} for 2 <1 <k

so that N' = {\S',A?}U{/\l“iiik+]}U{A‘],A%|2ijik}’

p' = B'+A%«MAK+M Al [T <,y <HJMJMJ+N+”O<j<k}U
1 1 i, = 12— 171 =
T a1, o . 1 i ,
Y {Apl\j As |1§J1,J252, 2_<_1_<_k}U{AkH+a]}U{A2+a1|211ik},

1 VY2 »
G' = (N' UZ,Z,Plgsi)'

The sjzes of the grammars involved are

V| = 2k+1 , |G| = 3(k+1) +3(k-1)+2k = 8k
V'] = 24 k+T1+2(k=1) +k = 4k +1
6] = 2+3(ke1) 2+ 2K+ 3028 (k=1) + 2 + 2(Kk-1)

= 3P+ 22k-7 .

We now obtain the main results of this section.

Theorem 2.6.3. Any CNF grammar G can be transformed to a

uniquely invertible A-free grammar in time O(nz) if |G| is the
2

size measure (O(Wé%—ﬁd if Gl is the size measure).

Proof. For CNF grammars with no A-rules the theorem follows from
Lemma 2.6.3 and the fact that the computation of Algorithm 2.6.2 is
dominated by the size of the output grammar. If the grammar has a
rule S > A .we use the technique mentioned following Algorithm 2.6.2

which does not change the complexity. (i




Theorem 2.6.4. Any grammar G can be transformed to a uniquely

invertible A-free grammar in time O(nq), using |G| as a size

measure.

Proof. An immediate consequence of Theorem 2.5.1 and Theorem 2.6.3.

O
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CHAPTER 3
THE EQUIVALENCE PROBLEM

Section 3.1 - Introduction

The equivalence problem for a language family is that of deciding
whether or not two given languages in that family (described by means
of grammars generating them or machines accepting them) are equal. 1In
a similar way one can talk about the equivalence problem for one family
of languages versus another one. In this case the given languages are
known to be in the two families respectively.

The equivalence problem is known to be undecidable for context

free languages, cf. Hopcroft and Ullman [1969]. The equivalence pro-

- blem for deterministic context free languages has been open for a long

time. Korenjak and Hopcroft [1966], Rosenkrantz and Stearns [1970],
Valiant [1973] énd Taniguchi and Kasami [1976] have shown that the
problem is decidable for various subfamilies of the deterministic
languages.

The positive decidability results for subfamilies of the deter-
ministic languages are established by providing decision algorithms.
These procedures are of two general types. One type of algorithm con-
siders two DPDA's M énd M,. APDA M is constructed to simulate

1 2

M; and M, concurrently, M exploits a certain property of the lan-

1 2
guage family that enables two equivalent machines to be simulated
using just one pushdown store. For example if M] and M2 are known
to accept two LL languages (cf. Rosenkrantz and Stearns [1970]) then
the height of the stack of M, and M2> can differ by no more than a

1
constant if they accept the same language. If the simulation cannot
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be carried out all the way (because the desired property is no longer
satisfied) then M accepts. Otherwise M accepts if and only if
exactly one of M1, M2 accepts. Hence M accepts the empty set if
and only if M] and M2 are equivalent, and the decidability of this
instance of the equivalence problem follows from the solvability of the
emptiness problem for PDA's.

The second type of algorithm considers grammars rather than DPDA's.
Such is the algorithm, due to Korenjak and Hopcroft [1966], that
decides the equivalence of the languages generateé by two simple gram-
mars in standard 2 form, cf. Greibach [1965). One of the reasons that
the simple languages are interesting is that they form the smallest
known family with undecidable inclusion (L] E-LZ) problem, cf; Friedman
[1976]. We illustrate the algorithm by an example on an intuitive

and informal level.

Example 3.1.1. Let G, bea simple grammar with productions

]

S ahB, A -~ ahBlb, B~ b and G,, 2 simple grammar with produc-

tions 52 > aC, C - aCDlbD, D - b. For each nonterminal string o,

we use L{a) to denote the language generated from o (using produc-
tions of both grammars).

L(G,) = L(G if and only if L(S]) = L(SZ)' Since the only S,

1 2)

*
production is 81 > aAB it is clear that L(S]) = {vJeZ*lS]=ﬁ W} =

* * .
= {wesZ*IS]=>aABwa} = a{uer*|AB=u} = aL{AB). In a similar way
2) = aL(C) so L(S]) = L(Sz) if and only if L(AB) = L(c).
A-‘similar analysis may be made oh AB and on C. Here A, for

L(A)L(B) =

instance, has more than one production. Hence L (AB)

al (AB)L(B) UbL(B)

* * ) *
={we2ﬂATMLW)={weZﬂA?MmfworAfbﬁMLW)




= al(ABB)UDbL(B). Clearly these two components are disjoint and since
L(C) = aL(cD)uUbL(D) 1is obtained in a similar way, we get that
L(AB) = L(C) if and only if L(ABB) = L(CD) and L(B) = L(D).

This "reduction" of one equivalence probiem to other instances of

that problem is called an "A-transformation."
We can apply this transformation again, and display the result
in the form of a tree (Figure 3.1.1). MNote that since L{B) = L(D)
= {b}, the nodes labeled B and D become a leaf in the tree indi-
cating, in this case, that this instance of the equivalence problem
has been answered in the affirmative. We mark this node with a check.
We recall that these grammars are in GNF and simple so that for
each cef and T e N, UN

1772
with o e N, Consequently, applications of the A-transformation to

there is at most one production T = ca

the pair T]B], T282 will yield pairs like a]B], uZBZ where

T, + Cay and T2 > Ca, are productions in the grammars,

1
In our example, the process of applying the A-transformation

n
are generated for each n > 0.

never terminates. Pairs ABn+1, CD
We need a new argument to create "reductions", in other words we need
a new transformation. Consider ABB and CD. b 1is a shortest
terminal string derived from A (the first symbol 1in ABB). CD must
derive some string that starts with. b, unless L(ABB) # L(CD). In
fact, for the prefix C of €D, C %-bD. Hence if L(ABB) = L{(CD)
then bL(BB) = bL(DD) and therefore L(BB) = L(DD). We can also
write L(ABB) = L(A)L(BB) = L(A)L(DD) but L(ABB) =>L(CD) so that

L(ADD) = L(CD) and because the languages involved are prefix free,

L(AD) = L(C). Conversely, if L(BB) = L(DD) and L(AD) = L(C) then
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AB,C
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ABB,CD B,D

AB>,CD BB,DD

Figure 3.1.1
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L(ABB) = L(A)L(BB) = L(A)L(DD) = L(AD)L{D) = L(C)L(D) = L(CD). We
have shown that L(ABB) = L(CD) if and only if L(BB) = L(DD) and
L(AD) = L(C) (a]though we have left out many unproven facts). This
kind of reduction is called a "B-transformation".

Figure 3.1.2 illustrates a series of applications of A- and B-
" transformation (the latter are marked with a B). A1l the leaves in
the tree, except one, are check marked as condifions known to be true.
The only leaf not check marked is labeled AD,C. However, a node with
the same label already appears in the tree as an ancestor of this leaf,
This indicates a loop in the derivation and if L(AD) # L(C) then the
leaf labeled AD,C cannot, if continued, display the shortest con-
flicting terminal string of the internal node labeled AD,C. We

therefore conclude that L(G]) = L(GZ)'

Example 3.1.1 presented some of the ideas behind the algorithm
due to Korenjak and Hopcroft [1966] without proof. (A complete proof
of a more general case appears elsewhere in this chapter.) This
algorithm led to the earliest decidability result of the equivalence
problem for a language family that includes nonregular languages.
Rosenkrantz and Stearns [1970] showed that the equivalence problem is
decidable for the LL languages (which properly contains the simple
languages). The algorithm they used was of the machine simulation
type (as described earlier). So are the algorithms in some more
recent results: decidability of equivalence of nonsingu]ar languages
(duebto valiant [1973]), deterministic finite turn languages (Valiant
[1973,1974]), deterministic one counter languages (Valiant [1973] and

Valiant and Paterson [1975]) and nonsingular versus deterministic
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‘languages (Taniguchi and Kasami [1976]).

It 'seems worthwhile to investigate the grammar oriented decision
procedure further. First, this algorithm is indicative of the struc-
ture of the languages in question whereas the machine simulation
algorithm essentié]]y Tooks at the symmetric difference of the two
languages. Also, it may be possible to obtain decidability results
for families for which it is unknown whether the equivalence prob{em
is decidable.

The purpose of this chapter is to generalize the ideas in
Korenjak and Hopcroft [1966] as much as possible. 1In section 3.2 we
define, in general terms, what a transformation is, what properties
it should possess to be useful in the decision procedure. We define
strategies which indicate which transformations should be used and
when. We discuss the ways in which a tree similar to the one in
Example 3.1.1 is devised, and how it is kept finite. A metatheorem
about decidability of equivalence is then proved.

Section 3.3 introduces some properties of strict deterministic
grammars and real time strict deterministic grammars, cf. Harrison and
Havel [1972,1973], which are needed later. |

In section 3.4 a variety of transformations, mostly generaliza-
tions of those found in Korenjak and Hopcroft [1966] are introduced
and some of their properties proved.

Section 3.5 proves, using the metatheorem from section 3.2, that
the equivalence problem is decidable for simple language versus deter-
ministic languages. This result was mentioned without proof in

Harrison and Havel [1972].
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Finally, in section 3.6 we discuss possible extensions of our
results. It is hoped that the general presentation of section 3.2 can
be tuned to prove decidability of equivalence for various other families

of 1ahguages.
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Section 3.2 - The General Framework for Deciding Equivalence of Grammars

In this section we develop the Mechanism for deciding whether two
grammars are equivalent, This is done in the most general way possible:
Qur only assumption will be that the grammars in question are in
Greibach Mormal Form (GNF) and that no null rules be present. Later
in this chapter we will use these tools for deciding equivalence for

some particular classes of grammars, but these tools may be used for

other classes as well.

Throughout the rest of the chapter we will assume the existence

1

of two GNF grammars with no null rules; et G, (Vi’Z’Pi’Si)’

1§
-7

i=1,2. We will assume N,NON, = @ where N -, i=1,2.

1 72 i i
Let r+] be the maximal length of a right hand side of any production

in P]LJP then G, and G. are in standard r-form (cf. Greibach

2° 1 2
[1965]), r > 1. Ue will denote N = N]lJNZ, p = P]lJPZ. Further,
we use F(Q) to denote all finite subsets of a set Q. In particular
denote M= F(N¥). Also M. = F(N,), = FINT), o= F(ND),

i =1,2. Derivations like « é-B, a, B e V¥ where V =NUZL, will
be understood to use productions from P (i.e. they may include
productions from both grammars).

Since we will use finite subsets of N* quite extensively,
we set aside the letters n, u, v, ¢, & to denote them.
o, By, Yy & wi]i still be used to denote elements of HN*. e some-
times use an element of N* to denote the set including only that
element.

For every finite subset of N* we denote the size

of the shortest and longest elements as follows. If ueM, u-{A}

# P then ml(u) = min{IBllBe1J,[3fA} and m (u) = max{lBl|BeP1,[3#A}.
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Mote that A is disregarded here. Whenever mL(U)::mu(U) is under-
stood we denote m(u) = mz(“) = mu(u).

Some additional definitions will be needed:

Definition 3.2.1. For each a« € N* and nu e M

—

—
Q

~—
H

{xel*|a % X}
and
{xelL(B)|Beul}

—
—
=
—~—
i

Note that productions from both grammars may be used.

Definition 3.2.2. For each Ae N, aeZ, R(A,a) = {y|A>aveP}.

Note that R(A,a) CN*. Extend this notion for o e N*, x e Z*,
R*(a,x) = {y eN*|a % xy}.
Note that the length of the derivations involved is |x|, because

our grammars are in GNF and are A-free.

We are now ready to define a notion that is central to our

discussion.

Definition 3.2.3. For u, v e M we say that p 1is equivalent

to v, written u = v, if and only if L(u) = L(v).

It is not too hard to see that = s a congruence relation.

Lemma 3.2.1. Let Gi’ i=1,2 be as above. The relation =
is a congruence relation on M, i.e. it is an equivalence relation

and furthermore for n, u, v, & in M if n=zpy and v = & then

nv = uk.




Proof. The proof that = s an equivalence relation is immediate.

Suppose m = yu and v = & for some n, u, v, £ € M. For each
X € L*

x € L{nv)
if and only if there exist y, z € £* such that
x=yz., yel(n) and z e L(v) .
This holds if and only if
x=yz , yel{n) and z e L(E)
which, in turn, holds if and only if
x e L(ug) .
Thus nv = ug. ’ a

The following constants exist for every grammar (and, in our case,

every pair of grammars).

Definition 3.2.4. For each A e N let 2(A) = min{lx]‘A %'x,

xeI*} and let & = max{2(A)]AeN},

Lemma 3.2.2. Let Gi’ i=1,2 be as above.

(1) If aeN and |a| =m then there exists x e T* such

that « % x and |x| < mf. Moreover, for all y e * if
lyl <m then o ¥>y.
(2) Let up, veM., If there exists B8 e v such that for all

A aeu, o] >28] then u# v.
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(3) Let x e z*, |x| <2, BeN+, [B] >2 and suppose
B %-xy for some vy € N*. We can write B = B'B" with

I8'| = & so that B'%xy', v = YR,

Proof. (1) is a trivial consequence of the fact that the grammars

are reduced and A-free, and of the definition of 2.

If B e v then there exists x # A, [x| < 2]|B], x e L(B) CL(v).

i

If u = v then there must exist a ey, o # A, « %-x, i.e.
la| < |x| < &|8]. But this contradicts our assumption about all the
elements o # A of u. Hence u % v, proving (2).

* = DR )
For (3) factor B8 T Xy as follows: Let B B]B2 Bm’ Bi e N

for all i, 1 <i<m and let xy = Y{Yo Y, SO that Bi;i Y; for

L
all i, 1 < i <m Since the grammars in question are A-free, none

m

of the Y; is empty. Recalling that xy e I*N* there is a unique J,
. i + + oy
1 <Jzsm such that Y],YZ,...,YJ—] g x, Yj el N and

*
But in GNF grammars the derivations Bi TY;

€ N+
Yj+]st+2a--'aYm °
for j < i <m must be trivial; that is Bi'= ¥ (because Yi does
not start with a terminal). Let Yj = xjyj where xj € Z+, Yj e JI*.

Then x = Y]YZ"'yj_]xj where each of these j parts has length at

least 1. So 5_1Y1Y2"'Yj_1xj| = |x| < 2. Ve now let
B! = B]---Bz, g = Bz+1"'8m and y' = Yij+1"'BQ (or just V5 if
2 = 3j) and the derivation is as described. : O

Corollary. Let wp, veM. If mg(u) > sz(v) then u § v.

Proof. By definition of g 5 there exists f e v with

|8] = mz(v) and for all A faeu, |a 3_m2(u). The result now

follows from part @) of the lenma. O
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lle need some additional terminology to explore situations where

HE v

Definition 3.2.5. Let Gi’ i=1,2 be as above, and let

W, v € M. Ne define the set of witnesses for u and v as
W(p,v) = {xez*|xelL(y) if and only if x¢L(v)}

The set of shortest witnesses is

W(u,v) = {xeW(u,v)|for each yeW(u,v), |x| <|yl} .
Thus a witness is a terminal string which distinguishes u from wv.

- We now introduce the building b]bcks for our decision algorithms.
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Definition 3.2.6. A transformationJr T s a partial function

from MxM dinto {fail}U{UJUCMxM, U finite and nonempty}, If

~ o~~~

T(u,v) = fail we say that T failed on (u,v). If T(u,v) is

~ o~~~

defined and is not fail then T(u,v) = {(u],v]),...,(u

~ o~~~

m’vm)|“1’vi eM

for all 1<1i<m where m>1}.

Two important properties of transformation are now introduced
which are relevant in determining which transformations are useful in

testing for equivalence.

Definition 3.2.7. A transformation T is valid with respect to

a set Q CMxM if the following conditions hold for each (u,v) € Q
at which T s defined.

(1) w=v implies T(u,v) = {(u],v]),...,(um,vm)} for some

m>1 and My E Vg for 1T <i<m

and (2) uw F v implies that either T(u,v) = fail or there exists

PUPPIR

(uiovi) € T(uv) and wy § vy
The next property is a little more complicated.

Definition 3.2.8. A transformation T 1is monotone with respect

to a set Q CMxM if for each (u,v) € Q such that u § v and
T(p,v) = {(“1’v1)"°"(“m’vm)} and if y is a shortest witness of wu
and v then there exist i, 1 < i <m and some shortest witness X

for u, and v, such that [x| < |y].

Clearly the above definition need not insist that X be a

shortest witness.

+Not to be confused with grammatical transformations.
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An obvious result of the last two definitidns is

Lemma 3.2.3. Let T be a transformation which is valid (monotone)
with respect to Q C€MxM then T is also valid (monotone) with

respect to any set Q' CQ.

We will usually have a (small) set of transformations which will
be repeatedly applied to elements of some set O CMxM, The follow- E

ing notion formulates the choice of a specific transformation:

Definition 3.2.9. Let T be a finite set of transformations and

Q CMxM. A strategy for t.and Q fis a computable function S from
MxM to subsets of such_that for all (u,v) e MxM and T et
(i) If T e S(u,v) thern T(u,v) is defined.
(i1) If (u,v) e Q-{(@,P)} then S(u,v) # .

A strategy specifies which transformation(s) may be applied to a
given pair. Ve want each of the elements of Q (with the exception
of (P,8) since they are known to be equivalent) to have one or more
transformations applicable to it. We allow certain freedom in that
S{u,v) may be a set.

Now we introduce a more global property of transformations and a

strategy.

Definition 3.2.10. Let T be a set of transformations, 0 C MxM

and let Sbe a strategy for v and Q. S leaves 0 closed under T if

for each (u,v) € Q and T e S(u,v) such that T(u,v) = {(u],v1),...,
.) € Q.

(um,vm)} then for each 1 < i <m, (Ui’v1




The idea here is that a "good" strategy may only generate pairs
that are in Q. Finally we are ready to present the process of using

transformations to build a tree.

Definition 3.2.11. Let T be a set of transformations,

QCMxM and S a strategy for T and Q. A 1,Q,S transformation

grgg_(omit T, Q, S whenever understood) is a tree with a potentially
infinite number of nodes each labelled by an element of QKJ{fgil},

where each elementary subtree corresponds to an application of T e T
where T e S{u,v). If the root of the tree is labeled (u,v) we say

that it is a transformation tree for u, v.

Note that in general not every (u,v) may have a transformation

tree.

Lenma 3.2.4. Let T be a set of transformations, Q CMxM and
S a strategy for 1 and Q. If S 1leaves 0O «closed under = then

every (u,v) € Q has a transformation tree.

Proof. The condition of the lemma guarantees that all the
internal nodes of the tree being constructed will be labeled by ele-
ments of Q, thus eliminating the only problem that may prevent the

existence of a transformation tree. ' O

We now establish the properties of transformation trees

that make them useful in decision procedures.

Lemma 3.2.5. Let T be a set of valid and monotone transforma-
tions with respect to Q € MxM and let S be a strategy for and

Q. Suppose u, ve Q and ufv and y is a shortest witness for
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u and v. For any transformation tree for u and Vv there exists a

finite path from the root to a leaf with successive labels

(“0’“0)’(“1 >V Youne ,(ut,vt) ,fail

~

where Hp = H> Vg = v and there exist strings y = Ygo¥ps- ¥y e ¥

such that
(1) t< lyl
(i1) for each i, 01 <t, u, 4 v, and y. s a shortest

witness for u. and v

-

;
and (iii) for each i, 1 <1i <t, |yi| <y 4l

Proof. The argument is an induction on |y|.
Basis: y = A. By the definition of monotonicity,any T e 1 can only
fail on u and v. Thus t =0 < |y|. The other conditions are

trivially satisfied.

Induction Step: Assume the result true whenever |yl < k and k > 0.
Let |y] = k+1 where y is é shortest witness for u, v. Let

T et be the transformation applied at the root. By validity, either
T(u,v) = fail in which case the argument proceeds as in the basis or

~~ s

else T{(u,v) = {(ui,vi),.,.,(u )} and for some i, 1 <1 <m,

m
s $ v; with shortest witness y', |y'| < ly| (by monotonicity).
Let (u],v]) = (u%,v%) and yq = y'. The induction hypothesis applies

to (u1,v]) with witness Y and yields the result. O

Corollary. tet 7,0, S, n, v and y be as in Lenma 3.2.5,
Then a transformation tree for u, v must have a path from the root

to a fail Teaf with no two nodes labeled by the same pair.

~ sy
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Proof. Two different nodes on the same path have shortest wit-

nesses of different lengths. O

Lemma 3.2.5 characterizes transformation trees for inequivalent

pairs. The next result deals with equivalent pairs.

Lemma 3.2.6. Let T be a set of valid and monotone transforma-
tions with respect to Q CMxM and let S be a strategy for T and
Q. Suppose u, veQ, wz=v. Then no transformation tree for u, v

may have a fail leaf.

~

Proof. The argument is an induction on the level n of a node
in a transformation tree for an equivalent pair,
Basis: n = 0. The only node 1nv1eve1 0 of a transformation tree for
u, v is labeled (u,v) # fail.

o~

Induction Step: Suppose that for all u, ve @, u=v and all

n <n, where > 0, no node at Tevel n of a transformation tree

0 "o
for u, v 1is labeled by fiil' Let n = nO-%l. Consider a leaf Sy
in a tree of height n. This node is on a path (so,...,sn) from the
root Sy Consider the subtree rooted at S which also contains the
leaf S Since each T e v is valid, the pair (u],v]) which
labels Sy must satisfy Wy E Vg The induction hypothesis applies

to the subtree so Sh is not labeled fail. O

PUPP VI

Because the transformation trees we have been studying can be

infinite, it is convenient to define a partial transformation tree

as the finite tree which results by taking a transformation tree which
has a cross section £ and taking everything above and including &.

An example is shown in Fig. 3.2.1.
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Figure 3.2.1

The shaded area is a partial tree of the full infinite tree.
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There are'many different ways to form partial trees. Let us
establish the convention that no path in the tree is continued if it
reaches a node label which has appeared earlier. That includes an

earlier appearance as its own ancestor.

Definition 3.2.12. Let T be a set of transformations,

QCMxM and S a strategy for T and (. Let t be a 1,Q,S-
transformation tree. If there exists a cross section £ of the tree
whose nodes are all labeled by elements of Q that appear as labels
in nodes above this cross section (or by fail, or (9,2)), we say that

~

t', the partial tree defined by £, is a 1,Q,S-equivalence tree

(omit 71,Q,S when understood). t' 1is said to be the equivalence

tree associated with t.

The following result presents a situation where equivalence

trees are guaranteed to exist.

Lemma 3.2.7. Let 1 be a set of transformations, Q CHMxM

and S a strategy for Tt and Q. If Q s finite then every

transformation tree has an equivalence tree associated with it.
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Proof. If Q s finite then when the nodes of a transformation
tree are generated (say breadth first) we must reach a cross section
£ és described in Definition 3,2.12 after only a finite number of
nodes have been created. (Note that the number of non-internal nodes

is finite if the number of internal nodes is finite.) 0.
The properties of equivalence trees are now explored.

Lemma 3.2.8. Let T be a set of transformations, Q a finite
subset of MxM and S a strategy for T and (. Let t' be an
equivalence tree for (u,v) € Q. Then- p = v if and only if t'

does not have any leaf labeled fail.

~

Proof. Starting from t' we construct a tree ti as follows,
For each leaf labeled (u',v') # (9,9) 1in the tree such that the
internal node labeled (u',v') (which must exist) is not an ancestor
of that leaf,append to this Teaf a copy of the subtree rooted at that

internal node. Repeat the process for all such leaves. This process

must terminate since it cannot generate paths of length more than |Qf.

ti includes every path from root to leaf of some transformation tree
for u, v that has no Tabel repeated twice. Moreover ti has a

fail leaf if and only if t' has a fail leaf.

~

If w=wv then by Lemma 3.2.6 ti contains no fail leaves and

~ o~

t' cannot have any. Conver;e]y, if uwf v then ti must have a fail

~ o~~~

leaf by the corollary to Lemma 3.2.5. (Note the condition that no

P

label be repeated along the path.) Therefore t' must have a fail

Teaf. O
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We are now ready to state and prove the main results of this

section.

Theorem 3.2.1. Let 1 be a finite set of transformations, Q

a finite subset of MxM and S a strategy for T and Q such that
all transformations in 1 are valid and monotone with respect to Q,
and S leaves (Q closed under T. Then for each (u,v) € Q it is

decidable whether or not u = v.

Proof. Let (u,v) be any member of Q. By Lemma 3.2.4 there
exists a transformation tree for (u,v) since S Tleaves Q closed
under T. Furthermore, by Lemma 3.2.7 every such transformation tree
t has an equivalence tree t' since  1is finite. By Lemma 3.2.8
p = v if and only if t' does not have any leaf labeled fgil.. Since

t'  has a finite number of nodes and each node's direct descendants

are computable, the decidability follows. OJ

The following is the key result which will be used in subsequent

sections.

Theorem 3.2.2. Let G], 62 be two classes of grammars such that

every grammar in G1UG2 is in GNF and has no null rules. Assume

that the following is true for every G] € G], G2 € G2 with

G, = (Vi,I,PLhS:), NyNN, = 8, No= NyUN,, M= F(N): there exists

i 1 1772
a finite Set T of transformations, a finite subset Q of MxM
such that (51,52) € Q, and a strategy for 1 and Q such that all
transformations in T are valid and monotone with respect to 0 and
S Teaves (Q closed under 1. Then the equivalence problem of G],

.G, 1is decidable.

2




Q

Proof. This result is a direct corollary of Theorem 3.2.1. O

In order to use Theorem 3.2.2 we wi]] need to specify G], G2, T,

and S and prove all the three required properties: validity,

monotonicity, and closure of Q wunder T.
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Section 3.3 - Some Properties of Strict Deterministic

and Real Time Strict Grammars

Before we turn to define the specific transformations we will use,
we need to specify the grammar domain a little further. While some
transformations will be defined for every pair of GNF grammars (in the
absence of A-rules), others will require a smaller family of grammars
in order to havé the desired pfoperties. In particular, we will be
interested in the family of GNF (without A-rules) strict deterministic
grammars, cf. Harrison and Haye] [1973] and Geller, Harrison and Havel
[1976]. Whenever the two grammars Gi - (Vi’Z’Pi’Si)’ i=1,2 are
specified as such, we will assume the existence of strict partitions
Tys Ty ON V], V2. Recall that I e ™ L€, Let S be a new
symbol not in N. Define =m = n]kantJ{S}. In particular if
M, {Z’Nil""’Nimi}’ i=1,2, m, > 1 then w = {Z,N]],...,N]m],

N sz ,{S}}. To avoid confusion, the fact that two elements of
"2

P ERERE
N are in the same equivalence class of w will be denoted A = A’
(mod m), and m will be mentioned. On occasion we will define some
new grammars for which m will become a strict partition.

e devote the rest of this section to proving certain properties
of the relevant grammar families.

The first part of the following definition is from Harrison and

Havel [1973].

Definition 3.3,1. Let a, B e V¥ and Tet A, B e V such that

A#B. If o= YAa1 and B = yBB] then the pair (A,B) 1is called

the distinguishing pair of o and B8.
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We define the relation DE C N*xN* as follows:

DE = {(a,B)]|there exists A,B such that (A,B) is the distin-
guishing pair of o and g and A B (mod m)}

(DE stands for Distinguishable by a m-Equivalent pair).

Note that any two strings a, B € V¥ have a distinguishing pair
unless one of them is a prefix of the other. When it exists, a dis-
tinguishing pair is unique.

The definition of DE requires that a distinguishing pair does
exist and that this pair appear in the same block of w. So DE is a
relation on strings that depends on the grammars in question.

The following facts about DE will be useful:

' *
Lemma 3.3.1. For every a, Gys Ops 81, 82 e N
(1) (81,82) e DE if and only if (aB],aBZ) e DE
(i1) (a1’a2) ¢ DE implies (a]B],aZBZ) e DE
(ii1) if o

]| = |a2| then

(a]B],azﬂz) e DE implies either (a],az) e DE
or ay=a, and (81’82) e DE

Proof. (1) (81’82) e DE if and only if B] = yCG], B, = YD62

o
>
o
(ep]
It

=D (mod 7). That is true if and only if aB] = Y'CG],
a82 = Y'D62 (v' =ay) and € =D (mod w), which is true if and only
if (aB],aBZ) € DE.

(i1) If (u],az) e DE then oy = vC8y, o, = DS, and

C =D (mod m). That implies that oqB = Y081, 0By = DS,




(Gi = 8,8;5 8y = 6282) and C = D (mod m). It implies that
(a8, 508,) € DE. |

(ii1) (a1B],a262) e DE implies that a,By = YCG], a,8, = DS,
C =D (mod ). Since Ia][ = |a2[ there are two possible cases
depending on the length of y. If |v| z_lu]| = |a2| then we can
write ¥ = oy’ = o,y and By = v'Cy, By = y'Ds,, C=D (mod )
which implies a; = a, and (81’82) e DE. If |y| < |a]| = o,
then oy = YCBi’ a, = YDBé (where BiB] = 6], BéBZ = 62). Since

C =D (mod w) this implies (a],uz) e DE. O
We define properties of finite sets of strings.

Definition 3.3.2. Let u e M. u is said to be a set of

associates if for each a«, B ey, o # B, (a,B8) e DE.

A set of associates is one in which every pair of strings is
distinguishable by a m-equivalent pair. The properties of sets of
associates stem from properties of sentential forms in strict deter-

ministic grammars, in which the distinguishing pair is mw-equivalent.

Definition 3.3.3. Let w e M. u is said to be unambiguous if,

for each x € I* there is at most one leftmost derivation from an

element of u to X.
We say u is prefix free if L(u) is prefix free.
The unambiquity of u depends not only on this set, but on the

grammars involved.

As a direct consequence of the definition we get the following

result.
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Lemma 3.3.2. If u is a set of associates then so is each

subset u' of u.
Pfoof. Trivial. 0

The following two lemmas establish some important properties of

sets of associates,

Lemma 3.3.3. Let Gi = (Vi’Z’pi’Si)’ i=1,2 be strict deter-
ministic GNF grammars, Let u e€ M be a set of associates. Then yu

is unambiguous and prefix free.

Proof. Define a grammar G = (VU{S},Z,PU{S+a|aeu},S). Recall
the partition m on VLJ{S}. ke will show that m is strict for
this grammar. First I e wm. Now let A, Af e NU{S}, a, B, B' e V*
such that A > aB, A->aB' € P and A = A' (mod m). The following
cases are possible.

Case 1. A e MNy. Then, by definition of m, A' e N, and
A=A (mod m ). Moreover A-aB, A~oB' e Py so, since m, s
strict for Gy, either both B8, g' # 1 and (])8 E‘(])B' (mod n])
and therefore (])B z (])B' (mod ), or B=R8"=A and A=A"'.

In any event the strictness of 7 is not violated.
Case 2. Ae NZ' This case is symmetrical to the previous one.
Case 3. A =S. Then, since S is in a singleton block of m,

A' = S. Then aB, aB' € yu. Since p 1is a set of associates

(aB,aR') € DE, and the strictness of = 1is obeyed.

We have shown that G 1is strict deterministic., Moreover
L(G) = L(u) since, for all we I*, S f-w if and only if « % W

for some o € u.




Theorem 2.2 in Harrison and Havel [1973] now yields the prefix
freeness of L(p). The unambiguity of u follows from Corollary 1

to the Left Part Theorem (Theorem 2.1 in Harrison and Havel [1974]).

Lemma 3.3.4. Let p e M be a set of associates, o a prefix
of some element of pu and x e T*. If « %-x then, for all

a'B' ey with Ja'l = Ja] and for all y e I* if a'p' %’xy then

Proof. Suppose of € u for some B e N* (which must exist).
By Lemma 3.3.1(iii), since |a'| = |a] and (a'B',a8) € DE either
(a',a) € DE or o' = a.' In the second case we are done. In the
first case factor the derivation ao'B' %’xy to o' f-x‘, g %,y',
xy = x'y'. Clearly either x' = x or-one of them is a proper prefix
of the other. If o' # o then {a',a} 1is a set of associates and

the relationship between x' and x violates either the unambiguity

or the prefix freeness of that set. . )

Next we present some operations on sets which leave them as sets

of associates.

Lemma 3.3.5. Let Gi = (Vi’z’Pi’Si)’ i = 1,2 be strict deter-
ministic GNF grammars. Let HsVsVpse e sV e M be sets of associates,

s > 1. Then

(i) For any x € £*, U R*(a,x) 1is a set of associates and
a€p

if oy # Oy Gy, Oy €U then R*(a],x)ﬂR*(az,x) = .

(ii) For any B e N*, {y|Byeu} is a set of associates.
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(iii) For m > 0, {y|yBeu for some BeN* and |y|=m} 1is a set
of associates.
(iv) If {”1""’”5} is a partition of wu, s > 1 then
S

-U]“ivi is a set of associates.
'I'::

Proof. We will use the construction of G from Lemma 3.3.3 to
prove part (i).

But first let vy, v, € 1, vy # v, where n= U R*(a,x),
1 2 1 2 0EU

*
x € Z*. Then for some Uyy Op € Uy Yq € R*(a],x) »and Y, € R*(az,x).

Consider the following derijvations (in G) S f’a] %'xy],
S f’az'% XY,. Both derivations are of length |x| +1 so we can use
Lemma 2.2 in Harrison and Havel [1973] to obtain that (xy],xyz) e DE.
Therefore, by Lenma 3.3.1(i), (Yl’YZ) e DE.

Supposg o # ey and Y1.= Yoo Then, since the grammdrs G], G2
are reduced there exists y € £* such that Y1 =Y g'y. Then
o %-xy, G %'xy Contradicting the unambiguity of .

To prove (ii) let n = {y|Byeun} for some B e N*. Then et
Yis Yp €05 Yy 7 Yo, By, By, €u SO (BY],BYZ) e DE hence by
Lemma 3.3.7(1) (y],yz) e DE.

For (iii) let n. = {y|yBeun for BeN*, |y|=m} for some m > 0.
Let Y1s Yp € s Y3 # Yoo For some Bqys B, € N*, Y1B1, YoBy € 1
SO (Y181’Y282) e DE and ly]l = |Y2[- By Lemma 3.3.1(iii),

(y,,Y,) € DE since they are not equal.
1’2

Cw

In order to prove (iv) denote n = u.v. where My sbgse ool

]11 S

nCwv -
b I

are disjoint subsets of u such that My =M and each Vs is a

j
set of associates for 1 <1 <s. Let vy, v, €n, ¥, F Yo Then
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Y] = a]B], Yo = a282 and there exist 1], 12, ] g_i],iz <s,

oy € Uy 5 0y € Y. , B] € Vi and 82 € Vi . If ay; =0, then, by

1 12 1 2
the disjointness of His we have e, so that 6], 82 € vi] = viz.
But B] # 82 (or else Yy = YZ) S0 (81,82) e DE hence
(a181,a282) e DE. Now assume a, 7 oo, Recalling oy, o, € u
we get (a],az) e DE so that (a]BZ,a261) e DE. O

Next we discuss another family of grammars, which will be used

later.

Definition 3.3.4. Let G = (V,I,P,S) be a strict deterministic

GNF grammar (with no A-rules), with a minimal strict partition .

G is a canonical real time strict deterministic grammar if, for all

A, A' e N, A=A (modw), v, y €N+, A->ay, A' ~ay' eP

implies |y| = |v'].

This definition is slightly stronger than that of real time

strict deterministic given by Harrison and Havel [1972] so we can

state the following.

Lemma 3.3.6. If G 1is canonical real time strict deterministic

then it is real time strict deterministic.

Proof. Follows directly from Definition 3.3.4 above and

Definition 2.2 in Harrison and Havel [1972]. . O

However, the language families associated with the two families

are identical.
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Lenma 3.3.7. A Tlanguage is real time strict deterministic if
and only if it is generated by a canonical real time strict deter-

ministic grammar.

Proof. That every canonical real time grammar generates a real
time strict language follows from Lemma 3.3.6.

The proof of the converse follows the "only if" part of the proof
of Theorem 2.2 in Harrison and Havel [1972]. That proof constructs a
real time grammar from a real time DPDA. It is stated there that the
grammar is A-free and is in GNF. An examination of that proof shows
that it is also canonical real time. (Rules A > ay, A' > ay' e P
for A = A' corresponds to the same move in the DPDA,
§(q,a,Z) = (p,Zk---Z]) where A =74q,2,9', A' =4q,Z,q", and

Iyl = Iy'| = k). O

The property of canonical real time grammars is extended to

derivations by the following two lemmas.

Lemma 3.3.8. Let G = (V,Z,P,S) be a canonical real time
grammar. Let A, A' € N, A= A' (mod m) where 7 1is the minimal
strict partition, and suppose x € I*, v, Y{ € N* with A=% XY,

ARyt Then [v] = |y'l.

Proof. An induction on |x| (which is equal to the length of

each of the derivations).

°

Basis: |x| = 0. Then y=A, y' =A and indeed |[y| = [y'

Induction Step: Assume the result holds for all x, |x| <n, n>0.
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n . -
let x e £ . Then we can write x = x'a, aek, Xx' el

The derivations in question may be factored as follows:

A%x'y] = X'By2 = x'aoc\(2 = Xy

' '

Al ;_I':;XlY] - XIBI,Yé ﬂx'aoc'yé = Xy

where B -+ aa, B' -~ ao' € P. By the extension of the properties of a
strict partition (Lemma 2.2 1in Harrison and Havel [1973]), and since
A ns,] x’ByZ, p sl x'B'Yé, B = B' (mod m). By the induction hypo-
thesis (applied to these same subderivations) IYZI = IBYZI -1

= |B'Yél -1 = |Yél- Finally, by the definition of canonical real time
(for B > aa, B' > an' € P, B =B' (mod m)) implies |a| = |a'|. It

follows that |y] =-|a|-+|Y2| = Ja' [+ ]v,] = Iv'[. .

Lemma 3.3.9. Let G =.(V,Z,P,S) be a canonical real time
granmar with a minimal strict partition w. Let (a,a') € DE,
*
|a| = Jo'| and suppose, for-some x e i*, vy, y' e N¥, « T XY

a % xy'. Then |y| = |y'].

Proof. Define G' = (VU{S',¢},zu{¢},PU{S'+¢a,S'+¢a'},S") and
let ©' = wU{S'}. It is easy to see that =' is a minimal strict
partition for G' (as in Lemma 3.3.3), and G' 1s canonical real
time (since the two new productions satisfy the condition). Clearly,
S f’¢a % ¢xy and S' T ¢a' %'¢xy' are derivations in G'. By

Lemma 3.3.8 |v] = |v']. O

Corollary. Let G and w be as above. Llet u = M be a set

of associates, m_ (u) =m (u), x e Z*, and define n = U R*(y,x).
'8 u YEU

n) = mu(n).

Thgn mﬁ(
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Proof. Choose any Y, Y' € n. Then there exists some o, a' € 1

and a=% Xy, o' %'xy'. But (a,a') € DE and o =a' (since u is
a set of associates and mg(u) = mu(u)). So Lemma 3.3.9 can be
invoked to show that |y| = |y'|. Since this is true for every pair
of elements in n, it follows that mz(n) = mu(n). 0

Finally, we need a certain property of prefix free sets (similar

to Lemma 12 in Korenjak and Hopcroft [1966]).

L, L

Lemma 3.3.10. Let L be nonempty sets of words and

1 72° 73
suppose L1 and L2 are prefix free. If L]L3 = L2L3 then L] = L2.

Proof. We proceed by contradiction. Let x be a shortest
string such that x 1is in exactly one of L], L2. Without loss of
generality let x e L] and. x ¢ L2. Let y be a shortest word in
L3. Then xy € L]L3 and therefore xy e L2L3. We can write
xy = x'y', x' e L2 (hence x' # x) and y' e L3. By the minimality
of |yl ly'l > |yl so [x'| <|x], but x'# x so that in fact
|x'| < |x|. Hence, by the minimality of |[x|, x' e Ly- But then x'

is a proper prefix of X e L], contradicting the hypothesis that L]

is prefix free.

L L,
l X | oy
Lox" ] y' l
L, Ls
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Section 3.4 - Specific Transformation and Their Properties

In this section we will introduce a number of transformations
and prove some of their properties. We will fry to maintain some
balance between the generality of these transformations and the
existence of the desirable properties. As a result, some of those
properties will be proven later when we specify properties of the
grammars. The transformations TA and TB are generalizations of
the A and B transformations of Korenjak and Hopcroft [1966]. TQ
is adapted from the same source.

First we discuss TA'

Definition 3.4.1. Let Gi = (Vi’Z’Pi’Si)’ i =1,2 be two GNF
grammars with no null rules. Let u, veM, uy#0, v#O0, both
u, veM (i.e. A does not belong to either u or v) then we can

write

S
B.8

U= UA.ao, , v = UB,
j=1J

J

where Ai’ Bj e N, u,, Vj e N*. In this case the A-transformation

TA is defined as TA(u,v) = { |RUA j

t S

U R(A,,a)a,, UR(B.,a)B.)|aezx}.

= 1 J:] \]

(u,v) s undefined whenever exactly

.i
A
one of u, v includes A, or either of u, v is empty.

(
TA(uU{A},\)U{A}) = TA(u,\)). T

Note that the number of pairs in TA(u,v) is exactly |I| which

is independent of u, v.

An example will clarify the way TA' works.
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Example 3.4.7. Let G] have the productions:

S] -+ aAS][aA|bAB|cA
A - aB
B~+b

62 has the productions:
Sy aCIaSZDIbDC]b
D~»c¢
¢+ aD

Then

To(S1:5,) = {({AS;,A},{C,5,D}) , ({AB},{DC,A}), ({A},0)}
and

TA({AS],A},{C,SZD}] = {[{BS],B},{D,CD,SZDD}),[Q,{DCD,D}),({Q,Q})} .

Note that the shortest witness for 51, 52 is b,

{DC,A} has a shorter witness, A.

while

{AB},

The properties we desire are guite easy to prove for TA'

Lemma 3.4.1.

valid and monotone with respect to

Proof.

Mx M.

The argument is subdivided into separate claims.

We assume,‘without loss of generality, that

Claim 1. If pu = v and TA(u,v) is defined then

TA(H7V)

each k, T <k <m.

= {(ul’v])""’(“m’vm)} for some m > 1 and W E

I
<

For any G], G2 in GNF without null rules TA is
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Proof of Claim 1. Suppose uy = v and TA(u,v) is defined. By

the definition of T, TA(u,v) = {(U]Av]),...,(um,vm)} for some

S
m> 1. In particular we have py = UA.o. and v = UB.3. for
- ]:]11 J= J J

Ai’ B.eN, a., Bj e M, and for each k, 1<k <m,

1
(]
Cet+

. \
My = 1=]R(A1,ak)di, v = 1§HR(Bj’ak)Bj for some PR .

Now suppose, for some x € £, X € L(uk). Then, for some
*
1<i<t andsome yeR(A,a), va, 7 x. Therefore, by definition

: *
of R, Aiai T 3o T ax so that ax e L(u). But then a,x € L(v),

*
so that for some 1< j <35, Bij T X Since no null rules are
*
present it must be the case that Bijff akaBj T X where
*
BJ > ak6 € P so that § e R(Bj’ak)° We conclude from SBJ ?-x that

X € L(R(Bj,ak)Bj) C L(vk).
The same argument applied in the other direction completes the

proof that My = 2 and establishes Claim 1.

Claim 2. If p % v and TA(u,v) = {(u],vl),...,(um,vm)} for

some m > T then for any y € Z+, y = ay' with aez, yeWh,v

if and only if there is some k, 1 < k <m such that y' e W(uk,v ).

-

L S
p f of 'Claim 2. Let = UA.a., = U R.R.
roof o aim et p i=1A1a1 \Y B JBJ

and Gss Bj e N*. For y# A, yelL(u) if and only if, for some

*

1<i<t and v e R(A;,a), Ao, T aye, Pay' =y. This holds if

i
and only if, for some i, y' e L(R(Ai,a)aj) if and only if y' e L(uk)

for A., B. e N
1 J

for some k such that a = a -
A similar argument holds for wv: for y # A, y e L(v) if and

only if y' € L(v where a = a . “Now y € W(u,v) 1if and only if

k)
y # A and y belongs to exactly one of L{(u), L(v). This holds if,
for some k, a = a and y' belongs to exactly one of L(uk), L(vk).

Finally this is true if for some k, y' e ﬂ(uk,vk).
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We now prove the Lemma. Claim 1 establishes the first clause of
validity (which deals with the case up = v). If u#v and if
TA(u,v) is defined then any witness of u, v 1is of the form y = ay'
(since A does not distinguish 1 and v). Then Claim 2 may be used
to establish the second clause of validity as well as monotonicity:

If y=ay' is a shortest witness for u, v then y' 1is a witness
for s Yy for some 1 < k < m. Hence by ¥ Yy and TA is

monotone. 0

We would Tike to show that TA preserves some properties of the

sets. The next lemma shows this for sets of associates.

1’ 62 be two strict deterministic GNF
)3,

grammars without A-rules. Let TA(u,v) = {(UT,V]),...,(U
m>1 for some HaVallyseeosl sVpsee sV € M. If u (respectively v)

Lemma 3.4.2. Llet G

v
m’>m

is a set of associates then, for all 1 < h <m, My (respectively vh)

is a set of associates.

Proof. TA is symmetric in nature, so it is enough to prove the

result for .
t
let u= U Ajai be a set of associates Ai e N, a; e N*  for
1=] t
1 <1 < t. Consider any s 1 <h<m Wy = -U]R(Ai’a)ai for some
i= .

a € L. We need to show that My, is a set of associates,

*
R(Ai’a)ai = {YlAi—+ay'eP}a1 = {YGiIAiai f-ayai} = R*(Aiai,a) )

So that = GKJ R*(8,a). By Lemma 3.3.5(1) My is a set of asso-
€u

ciates. 0

Next we deal with the effects of T, on the length of the strings

A

involved.




G., be two standard r-form grammars with

Lemma 3.4.3. Let G], )
no A-rules. Let TA(u,v) = {(u1,v]),...,(um,v )}, m>1, for some

m
HoVslysen sl sV ee s,V € M. Then for a1l 1 <h <m

m,(up) < m, () +r-1
and

mu(vh) 5_mu(v)~+r -1.

t

Proof. Let u = Aia' Then for each 1 < h <m there exists

i=1 1717
some a € L such that by = -U1R(A1’a)ai' By definition of m,»
i= ‘
mu(uh) = lyail for some 1 <i <t and some vy & R(A;,a). However
Iyl <r and Jo.| = [Ajel =1 <m (W) -1 so w (u) <m (u)+r-1.
The same argument works for v, 0

TB may now be presented and its properties examined,

Definition 3.4.2. Let Gi = (Vi’Z’Pi’Si)’ i = 1,2 be two GNF

grammars with no null rules. Let u, veM, u#0, v#p If

A ¢y and for all § e v, |8 > & then we can write

t rq +
w= UA., Uua,. where A. e N, a., €N
i=1 1 j=1 1 1 1J
and Ai # Ai if 1] # 12,
1 2
— 6 t 1] h ] NQ‘ 1 N+
v o= k=1BkBk where Bk € s Bk € .

In this case we define the B-transformation TB as follows: for all

1<i<t Tet X be a shortest terminal string derived from A
For each 1 <i<t, 1<k<s Tet £, = R*(B&,xi) = {yeN*|

*
By i'xiY}. Then
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i
Tglu,v) = {(J % kU]€1 K k)]1<1<t}u{(UA i kB J1<k<s),

We refer to these two sets and their elements as type 1 and type 2

target pairs. Also TB(uLJ{A},vlJ{A}) = TB(u,v); If u and v do

not satisfy the above conditions vTB(u,v) is undefined.

Note that some of the Ei K vmay be empty.

We present an example to illustrate the way TB works.,

Example 3.4.2. Let G,, G, be the following grammars: the

17 72
productions of G, are S; - aDlaE, D - bE|bjcD, E - bD|cE|c and

G,'s productions are S, ~ aAlaB, A~ bBA|c|cA, B -+ b|bB|cAB, & = 2,
> .

tet uw = {D,E}, v = {ABA,BAB}. Write u = .U]Ai~A, A] = D, A2 =t
'I:

2
and v B, B B. = AB, .B¥ = A, Bé = BA, 85 = B. We let

U

k=1 1

X, = b, Xp = C be the shortest terminal strings derived from A], AZ‘
*

Then &, 1 = (|8 L xqv} = {y[AB T = by} = {BAB), £y, = (v|BA 7 by}

= {A,BA}, Erq = {B,AB}, &y o = {ABA}. Then

TB({D,E},{ABA,BAB}> = {({A},(BABA,AB,BAB}), ({A},{BA,ABA,ABAB}),
({DBAB,EB,EAB},{aB}), ({DA,DBA,EABA}, BA})} .

We now turn to prove validity and monotonicity for TB. While proving
these properties was quite simple for TA, it will be harder in this

case, and some restriction on the pairs (u,v) will be required.

Lemma 3.4.4. Let wu, veM such that u = v and TB(u,v) is
defined. Then all type 1 target pairs are equivalent.

ry
Proof. Let u= UA. Uuqo v = U B B as in the definition
R i=1 1 j=) Rk ro k=1

of Tg- For a fixed i, let y e L(.u] ij>' This holds if and only
J'_‘.‘

-

128




129

ri '
if X:y € L(Ai U aij)' Since u = v that is true if and only if
J=1

Xy € L(Bkﬁu) for some 1 < k < s. That is, if and only if there
exists 1 <k <'s such that B By 7 5 x, sy, Since |x;] < &, while
]B'} = %, the above derivation may be factored B&BE ;-x.ysﬁ %’X.y
where Y € € K So that the derivation exists if and only if, for
some k, 1<k <s, and some vy e gi,k’ y € L(YBE). This holds if

and only if y e L(E X By) for some k, 1<k <s. Hence
ry S
Ua., = UE, BN, 0
3=1 7 i,k7k
t "
Lemma 3.4.5. Let u, veM where p= UA., Ua..,
— j=1 1 321 1J

v = U B, B as in the definition of T,. Suppose u = v. Then

= B
5 kt] )
EPERENE k18kk
f. L y y This holds i d only i
Proof. Let y e L(k | & ]A1g1 kBk) This holds if and only if

for some k and i, 1<k<s, 1<i<t, y;, ¥, ¢ ¥, 1Yy = ¥
* .
Ai 7Y and Y, € L(Ei,kgk)' Using Lemma 3,4.4, this is true if and

. . ' * _ *
only 1f’f9r 1<i<t, Yis Yo € Lo, Y¥p =Y Ai T and
i

Y, € L( v ajj). That is if and only if for some i, 1<ic<t,
e
rq
y € L(Ai U aij)' This holds if and only if y e L{py) since
j=1
t ry s t
u= U Ai Ua,., and since p = v it follows that U U A, g K ﬂ = v
i=1 1 =1 1 k=1 i=1 ’
O
The last two lemmas establish the fact that whenever we know that
S t S t
U U "'_‘ U i i
o) ]A E] K k - ]BkB implies, for all k, 1<k<s, 1S]A g1 K Z Bk’

the first clause of validity holds.
The second clause holds, as the following lemma shows (by proving

the contrapositive).
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Lemma 3.4.6. Let wu, veM, TB(u,v) is defined. Suppose all

the target pairs (types 1 and 2) are equivalent. Then u = v.

: t ri S
] Yol
N Proofé Let u = 181A1 jtﬁaii’ v = = ]iksk as above. Let
jtga ij ° ku]€1 P forall 1<i<t and ]U]A1§1 e S By for all k,
1<k<s. From that last equivalence we can conclude that
s t S
U UA.E. kBE = UR'R" = v (by the fact that = 1is a congruence
k=1 =1 1 1 k=1 KK

relation and properties of unions of sets). We will now consider the

left hand side of the last equivalence. We can write

st t S
U U AEs B ( ve, (i) and using the hypothesis about
k=1 i=] 1—] k=1
t S t r1
type 2 target pairs U A, (v £ k) = UA, (u o a;.) = u. It follows
i=1 k=1 j=1 1 ge1
that wuw = v. O

Monotonicity will depend on the properties of strict deterministic

grammars.

Lemma 3.4.7. Let Gi = (Vi’Z’Pi’Si)’ i =1,2 be two strict
deterministic GNF grammars without A-rules. Let Q] be the family

of pairs of sets of associates. TB is monotone with respect to Q].

Proof. Let u, v e M be sets of associates, u f v and assume

t ri

that TB(u,v) is defined. Further assume u = U Ai U % 5 and

S i=1 =1
v= U BkBE as above. First we need the following claim.

k=1

Claim 1. Forall 1<i<t and ye ¥, Xy € W(u,v) if and

r1 5

nly if e W ..y, UE ”

Proof of Claim 1. XY e‘L(u) if and only if for some j,

*
Aiaij T %Y (from Lemma 3.3.4 and the fact that A
Y1

Further, this is true if and only if y € L( J]
j=1

] *
B3
g

]<jf_r]',
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On the other hand, xiy e L{v) 1if and only if, for some Kk,
1 <k<s, B Bk ﬂ'x y By definition of £ K this is true if and
only if B B”==> X YBk L XY for some Y € g K and some Kk,
1<k<s, ifandonly if ye L{ U Ei k é). Now x.y e Hu,v) if
and only if exactly one of the fo1$ow1ng hold: x. y e L{u), X.y € L(v).

This is true if and only if exactly one of y e L( U Oy :)s

1 1J
S j=1
Yy € L( U Ei kB”] is true. Finally that is true if and only if
W(K:g y )
y el as:y UE. B
3=1 137 5 i,k7k

Now we examine the set of shortest witnesses for u, v, W(u,v).
We distinguish two cases.

Case 1. There exist X.y € W(p,v), for some i, 1 <1<t

- r]
By Claim 1, x.y e W(y,v) implies y e N( U , lJ £. .B.] so that
i 3=1 13 k=1 i, k k

one of the target pairs has a shorter witness than XY

Case 2. None of the elements of l(u,v) have X .as their

prefix, for any i, 1 < i <t. The following fact will prove helpful.

Claim 2. If Case 2 holds and if m fis the length of a shortest

witness of p, v then forall 1<i<t, Uaqa.. and UE,
- = j=1 1 k=1 15K k
agree on all’strings of length no more than m- |xi|.
' Ty S
Proof of Claim 2. Let ye W Ua,., UE, 8'). Then, hy
j=1 W07 k= i,k7k

Claim 1, xiy e (u,v). However, by the condition of Case 2, XLy
cannot be a shortest witness for u, v so that |x1y| > m, Hence
ly| = fX1Y| ",Xil > m‘-|x1], and the claim has been established by

proving its contrapositive.
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Now let y e W(u,v). y is in exactly one of L(u), L(v) so
there are two subcases.
Subcase 2a. y € L(u). Then for some i, 1 < i <t, Vs Yo €57,
* " .
Y=Yy A Dy, and y, e L(j:ﬁaij). By definition of x. we
have |y | > Ix.] also |y| =m so that |y, = |y] -y ] <m-]x;].
10— ' 2 S 1" — i
We can therefore use Claim 2 to obtain Yy € L{u £ kB”). It follows

k=1
that y e L(AE, B;) forsome i, k, T<ic<t, T<k<s, MNowwe

i,k7k
factor y = y¥5, v € L(Aigi,k) and y, € L(Bk). yy cannot be in
L(BL) for then y = yiyé € L(BLBE) C L(v) contradicting the fact
that y 1is a witness for u, v. We conclude that
t
vy € ”(181A151,k8k) and |yi| < |yl (because y, # A).
Subcase 2b. y € L{v). Then for some k, 1 <k <s, and some
| l * = yty! |*| ||:>|
Y]; Yz €L, Y y]yz, Bk f'y1, Bk C Yo For the sake of contra-

t

diction suppose yi e L{ U A&, k)' Then, for some i, 1< i <t,
j=1 1 1 .

y e L(Aigi,kek)‘ Write ¥y = y¥o, AP ys Yy € L(gi,kBk)° But

vl 2 Ix:0s so ly,l = Jyl - lyql <m- x| yielding (by Claim 2),

ri rj
Yy € L(u aij) S0 Y =y, € L(Ai U aij) C L(n). This contradicts
j: J=] »
the fact that y s a witness for p, v and thus establishes that
t t

vy ¢ L(iL:]Aigi,k) SOy € “‘(1S]Aigi,k’8k) and g1 < Iyl
We have shown that in any event some target pair has a witness

which is shorter than the shortest witness of wu, v. This completes

the proof of monotonicity. - O

As in the case 6f TA, we show that TB preserves the property
of sets being sets of associates. Lemma 3.3.5 will frequently be used

in the course of proving this result.




Lemma 3.4.8. Let G], G2 be two strict deterministic GNF

grammars without A-rules. Let TB(p,v) = {(u],v1),...,(um,vm)}, for

SOME  H,VsHaseeesH sVa,.ea,v € M. If u and v are sets of asso-
1 m’ 1 m

ciates then so are ., 28 for each h, 1 <h<m

t ri S
= = - p¥Xfnt
Proof. Let y = 131A1 jg1uij’ v = ku]BkBk and gi,k R (Bk’xi)
as in the definition of TB'
r ] t
Tglusv) = {(JU]OL1J ku1g1 B lT<ictr U {(iu]/\ £ kB V1 <k<s} .

Since the A 's are distinct we can write, forany i, 1 <i <t,

i Y‘-i

Ua,. = {Y|A.y'eu} so by Lemma 3.3.5(ii) Ua,.. 1is a set of asso-

o1 1 i 1:] ij

ciates. By (iii) of that Temma the set n = N B' = {y|ySev, ]y["ﬁ}
k=1

is a set of associates. Therefore, using (i) of the same Temma we
s S

get that for each i, 1<1i<t, theset Vg, = U R*(Bk,x.)
k=1 k=1 1

= U R*(y,x.) 1is a set of associates. Moreover

Yen L
R*(B! ,x.)fWR*(B' ,x.) =P unless B' =8' . If we rewrite v as
k] k2 i k] k2

v = {Bkcklke I} where I C{1,2,...,s} is a set of indices of all

the distinct 6, and ¢, = {B”.|Bk"8' }, we can then write
s

U 51 kBE = U ’i KCk where U g, K is a set of associates, the
k=1 kel 2 kel
gi o are disjoint and gk is a set of associates for each k e I
’ S
(since Ly = {YIBLY'ev}). Therefore, by Lemma 3.3.5(iv) U g1 kB
k=1
is a set of associates for each i, 1 <1 <t.
t
Turning to U A & K we note that A],AZ,...,A is a partition
t : i=] »

on U A which is a set of associates (by Lemma 3.3.5(iii) applied
i=1
to p with m

1. Recall the Ai's are distinct), Furthermore
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gi " is a set of associates so Lemma 3.3.5(iv) can be invoked to
’ t
prove that  U-A.E, | is a set of associates for each 1 < k <s.
i=1 ?
Finally {8&} is clearly a set of associates for each 1 < k <'s.

So we succeeded in showing that all the sets in question are sets of

associates. 0

The effect of T, on the length of strings is now examined.

B
Lemma 3.4.9. Llet Gy, G, be two standard r-form grammars with
no A-rules. Let TB(p,v) = {(U1’V1)""’(“m’vm)}’ for some

HsVslgse e sHoaVyseesV € M. Then for all h, 1 <h<m

mu(uh) §_max{mu(u)—1,r2+1}

mu(vh) f_max{mu(v)+(r-1)£,2}

t ri .S
Proof. Llet u= UA., Ua,., v= UBRR as in the definition
—_— N B ' ~1 k7k
i=1 Jj=1 k=1
of T,. Then
B
ri S ‘ t
Tglusv) = {(jg]uij’ kg]gi,ksk)l1fﬂ.it} U {[1E]Ai€1,k’8kjllfj<55} '

First consider the length of strings in Ci,k' If v e Ei,k then

B %-xiy, where IBLI = 4, |x11‘§ 2, and the length of the deriva-
tion is lxil. By induction on !Xi| we can show that

1y 5_IBL|-+|xil(r-1) (since each step in the derivation drops one
nonterminal and adds up to r-1 nonterminals to the sentential form).
Hence 'Iyl < 2+2(r-1) = r2. It follows that mu(gi,k) <rg, for

all i, k, 1 <i<t, 1<k<s. Wecannowsee that for each 1,

1 <i<t,
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(U (n, U ()
m(Vea,.)] <m (A, Ua,.)-T<m (p)-1
utioy 1 usi 3=1 iJ u
and
S S
n . 1] ] " 1]
mu(kg]e;i,kek) imu(kt)]Ei,k) +lepl < re BByl - (8]
f_rR-qu(v)-z = mu(v)—+(r-1)2
and for each k, 1 <k <s
t t :
m (VAL ) < T+m (Vg ] < T
i=1] 1=]
and
m (B) = 2
"
For each h, 1 <h<m ejther yu_= Uaqa,. forsome i, 1 <1i <t
t T h j=1 Y -
or w = UA.E. K for some k, 1 <k <s. So either
j=1 V1 -
mu(uh) g_mu(u) -1 or mu(uh) <re+1. In any event mu(uh) is

bounded by the largest of the two. Applying the same argument to

m (v completes the proof of the lemma. O

u h)
Next we introduce three simple transformations whose properties

are easily proved.

Definition 3.4.3. Let Gi’ i =1,2 be two grammars with no

A-rules and let uy, v € M.

T .

0 If exactly one of u, v 1is the empty set then Tg(u,v)

= fail. Tg(u,v) is undefined otherwise.

~ s~

T,: If w=v=A then TA(u,v) = (p,0). If exactly one of

~ s~

u, v includes A then TA(u,v) = fail. Otherwise TA(u,v)

is undefined.
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TQ: If mg(u) > le(v)' or ml(v) > le(u) then

Tg(u,v) = fail., Otherwise Tz(u,v) is undefined.

~ -~

T. are valid and monotone with respect

TA’ L

Lemma 3.4.10. Tg’

to MxM.

Proof. Tﬂ is defined only for a case where u ¥ v (e.g. u =19
and v # @). The first clause of validity is vacuous, the second

~ o~~~

clause holds since TQ(u,v) = fail in this case, and monotonicity
holds vacuously. If TA(u,v) is defined then if u = v we have
u=v=A, TA(A,A) = (p,0) and the first clause of validity holds.
If w¥v (A is in one but not the other) then TA(u,v) = fail so
the second clause holds, and monotonicity holds vacuously. .If
Tg(u,v) is defined then mz(p) > lmz(v) or mz(v) > Zmz(u). By the
corollary to Lemma 3.2.1 u f v. The proof now parallels the one

for Tg' a

An example for TQ may prove helpful.

Example 3.4.3. Let G1 have the productions- S] > aTlb,

T~ aT|bfc. 6, fis the grammar with productions S, - ah|aB|b,
A ~ bJaBA, B - claAB. Ve can see that % = 1. Consider w = {T},
v = {BA,AB}. mz(v) =2> 1.1 = ng(u) SO Tz(u,v) = fail. Indeed

no string of length less than 2 may be derived from v. T is guaran-
teed to derive strings of length 1 or less. (In fact T %>b.)

We now show how this instance of T, detects the inequivalence
of G, and G,. We start generating a transformation tree for S], 52

1 2
by applying TA whenever possible. We then apply TQ to {T}, {BA,AB}.




({s11,1s,1)

({T},{A,B}) ({n},{A})

N

({T},{BA,AB}) ({A},{A}) ({A},{A})

fail

~—~
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Section 3.5 - The Decidability of Equivalence for Deterministic

vs. Simple Grammars

Section 3.2 provided the general mechanism for deciding whether
two grammars are equivalent. Section 3.4 defined a number of trans-
formations and explores some of their properties in certain generality.
We now focus our atténtion on the families of grammars for which we
want to prove that the equivalence problem is decidable. For this
section we assume that G] is a strict deterministic grammar in
standard r-form while 62 is a simple grammar, cf. Korenjak and
Hopcroft [1966], in standard r-form, r > 1. As before no A-rules are
present. Recall that a simple grammar is also strict deterministic.

We need to specify the set Tt of transformations to be used, the
finite subset Q of MxM which will be the set of labels for our
équiva]ence trees and the sfrategy that will govern the construction
of these trees.

We let T = {TA’TB’TA’TE’TR}'

Define Q as the intersection of the following sets:

Qy = {(u,v) eMxM|u and v are sets of associates}
Q, = {(u.,v) eMxM||v] <1 and veM,=F(N}))
Qy = {(u,v) eMXMImu(u)iNLH and mu(\))irl(zﬂ)} .

So each pair (u,v) 1in Q must possess three properties. Both
u and v must be sets of associates, v must be a singleton (or
empty) and consists of only symbols from the simple grammar and the
sizes of strings in u and v must be bounded by r2+1 and rg(e+1)

respectively. It is this last property that makes Q finite.
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The strategy we will employ will force the application of T, T@

or T2 whenever they are defined. Uhen none of these transformations

is defined, TA and TB

the only restriction being that TA may not be used for pairs with

may be applied (if they are defined) with

long strings.

Formally, denote Tt' = {TA’TQ’TQ}’

Define a strategy S as follows: For all (u,v) € MxM

1) for Tet', TeS{u,v) ifandonly if T(u,v) is defined.

2) TA e S(u,v) if and only if

(a) for all Tert', T(u,v) 1is undefined

"and (b) TA(u,v) is defined

and (c) mu(u) < r(g-1)+2

3) TB e S(u,v) if and only if

(a) for all Tert', T(u,v) 1is undefined

and (b) TB(U,V) is defined,

Before we discuss the properties of the entities we defined, we
have to make sure that S 1is indeed a strategy. Property (i) from
Definition 3.2.9 is easily verifiable. As for property (ii), elements
of Q-{(p,8)} for which neither of T,, T, apply are of the form
(u,v) where pw# 9, v#9 and A is in none of them (or in both
which is a possibility that may be discarded since T(uu{A},vU{A})

= T(u,v) for T e {T ,T TB}). We now show that for each such pair

LA’
at least one of TQ, TA’ TB applies. If m(v) > ng(u) then TQ
applies. If 2 < m(v) j_ﬁmz(u) then TB applies and if m(v) < 2,

then TA apnlies.

The only transformation whose validity and monotonicity must be

proved is Tg-
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Lemma 3.5.1. Tp is valid and monotone with respect to Q.

Proof. Let (u,v) € Q such that u = v and TB(u,v) is
S

t
defined. Then u = UA, U

e ; 1a13 and v = kU]Bk K Here s =1, S0
v = {BiB?}. By Lemma 3.4.4 all type 1 target pairs are equivalent.
S t S
By Lemma 3.4.5 U UA, £1 K k =V B&Bu. Rewriting this using :
k=1 i=1 k=1 3
s = 1 we get
t'
A g B“ E B'BH
or ¢
(1 Y M, 18 = B18Y
t
U A, g] ] is a set of associates (by Lemma 3.4.8) and so is {Bi}.
i=1
Therefore L{ U Aigi 1) and L(Bi) are prefix free sets (by
= , ;
Lemma 3.3.3). Using Lemma 3.3.10 we conclude that U A; g1 ] = si
i=]

which is the only type 2 target pair. So TB is valid,

Lemma 3.4.7 shows that T, 1is monotone with respect to Q] (the

B
family of pairs of sets of associates). But Q] cqQ-= Q1rWQ2rWQ3 50
using Lemma 3.2.3 we conclude that TB is monotone with respect to Q.

O

We can now state the properties of all the transformations in

question.

Lemma 3.5.2. T 1is a set of valid and monotone transformations

with respect to Q.

Proof. T, 1is valid and monotone with respect to MxM

A
(Lemma 3.4.1). The same is true for -TA, T@ and TR (Lemma 3.4.10).
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Using Lemma 3.2.3 for TA, TA’ T@’ T, (Q € MxM) and adding the

result of Lemma 3.5.1 completes the proof of this lemma. O

Next we need to show the closure property. Again, most of the
work has already been done. The only new property needed here is

stated in the next lemma.

Lemma 3.5.3. Let G], G2 be as above. Suppose (u,v) € Q2.
If TA(u,v) (TB(u,v)) is defined and is equal to {(u],v1),...,
(um,vm)}, then (uh,vh) € Q2 for all 1 <h<m

Proof. Let (u,v) € Qy. Then, if T (TB) is defined at this
point v = {B}, Be N;.
. . . + . _ .
First consider TA. Since B € N2, write B = B]B] with 81 3 N2’

* —_
By € N5 - Then, for any 1 < h <m, vy, = R(B],a)B].

G, is simple hence IR(B],a)] <1 (i.e. there is at most one

2
production B] +ay € P), so v, is either empty or v, F {YB1}

where YB] € N;.

3 - [IaX Ll | Q, " *
For TB write B = B] 1’ 81 € N2, 81 € N2. Then,
for any h, 1 <h<m two forms are possible for vy
Case 1. v, = gi,]e?. Since G2 is simple
£ q = R*(Bi,xi) is either empty or a singleton hence lvhl <1,
v, € MZ'

Case 2. vy, = {Bé}. Here theresult follows trivially. W
We can now put some results together to get the fo11owing'1emma.'

Lemma 3.5.4. S leaves Q closed under T.
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Proof. Let (u,v) € Q, and suppose some T e T 1is applied
with T(u,v) = {(Ul’v1)""’(“m’vm)}' Let h be any integer 1 <h <m.
We would like to show that (uh,vh) e ). First, since T{(u,v) # fail
we must have T € {TA,TB}, or T=Ty, u=vs {A}. The latter case
is easily dispatched, so we consider only the former.

Q E.Q] so we can use Lemma 3.4.2 (for TA) or Lemma 3.4.8 (for

TB) to show that (uh,vh) € Q].

Q C Q2 so by Lemma 3.5.3 (uh,vh) € QZ'

Since T € {TA,TB}, Tﬁ(u,v) is undefined (by definition of S)
so that

m (V) = mp(v) < amy (u) < am ()
Now we need to make a distinction between TA and TB'
If T-= TA’ then, by the definition of S
m, () < r(e-1)+2,

hence mu(v) < r(e-1)+2] .

Using Lemma 3.4.3, we get

m (uh) f_mu(u)+r‘—1 <r(g-1)+2+r-1=ra+]

and m (v

A

mu(v)-Fr-1 < {r(2-1)+2) +r -1

rL(241) = 2r2 + 28 + v - 1

ra(2+1) - (22-1)(r-1) < ro(2+7)

(since 2¢ >1 and r > 1),

If T= TB’ then (by the fact that (u,v) e QZ)

mu(u) < rgH

and hence mu(v) < a(rat1) o




Using Lemma 3.4.9 we get

mu(uh) < max{rg+1-1,re+1} = re +1

max{2(re+1) + (r-1)2,2}

I~

gnd m (Vh)

max{re(2+1),2} = ra(e+1)

(since ra(2+1) > 2).
In any event (uh,vh) € Q3. It follows that

The proof of this lemma presents some facts about the nature of
the strategy S (i.e. the way the equivalence tree is constructed).
Only for Q3, namely the bounding of length of strings, did we need
to consult the strategy to decide which of TA and TB would be
used. TA cannot be applied repeatedly (in some cases) because "long"
u's may be produced, requjring app]ication of TB'

Also note that the fact that mu(v) = ml(v) plays an important

role in the proof.

Theorem 3.5.1. For any pair of strict deterministic GNF grammars

such that G, 1is simple it is decidable

without A-rules G] and G2

whether or not L(G]) = L(G

2

2)'

Proof. Let 1, Q and S be as defined in this section. For
each pair (u,v) in Q, mu(u) < rg+1 and mu(v) < ra(e+1). Since
r and & are constants for any given G] and 02 this implies that
strings in u and v are bounded in size. Therefore Q is finite.

Clearly (S], 2) e Q.
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By Lemma 3.5.2 all the transformations in Tt are valid and
monotone with respect to Q. By Lemma 3.5.4 S Jleaves Q closed

under T. We can therefore use Theorem 3.2.2 to obtain our result.

a

Theorem 3.5.2. It is decidable whether two deterministic

languages, one of which is simple, are equivalent.

Proof. Let L, be a deterministic language (described as deter-

1
ministic pushdown automaton). Then L]$ is strict deterministic and
by Geller, Harrison and Havel [1976] we can construct a strict deter-
ministic GNF grammar G] for L1$ which will not have any A-rules
(since A ¢ L1$). If L, is any given simple Tanguage then so is

L2$, and a GNF grammar 62 with no A-rules can be constructed for it.
(from a simple grammar for L2 or a simple machine). L] = L2 if and

only if L(G]) = L(G so using Theorem 3.5.1, we establish the

»)
decidability of the equivalence problem. O
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Section 3.6 - Possible Extensions

In section 3.5 we have seen that the techniques of Korenjak and
Hopcroft [1966] may be extended to decide the equivalence of a (strict)
deterministic grammar to a simple grammar. The natural question is:
Can -we db any better?

If we examine our results and their development we see two
problems which may stand in the way of further extension One is the
validity of T We need the condition that 6 A £1 K k

B’ k=1 1=1

= QJ]B B, implies, for every k, 1 <k <s, A, E] K = Bk The other

stumbling block is the ability to make Q finite. 1In particular we

Q(v), as T, will guarantee that mg(v)

will not grow beyond a certain bound. We need to bound the longest

need to tie mu(v) to m

string in v in order to limit the number of such possible sets.
kle can overcome the second of these problems for a fairly large
family of grammars. Ye can show that a connection between mu(v) and

mg(v) exists if 62 is canonical real time strict.

We replace Q2 by Qé,

Q, = Hum)eMXMWeMzandmﬂv)=m(vH

2 u

Lemma 3.6.1. Let G, be a GNF strict deterministic grammar.

1
Let 62 be a canonical real time strict grammar. For any
(u,v) € QéfﬁQ] such that TA(u,v) (TB(u,v)) is defined and is equal
to {(upvydsees ooy )l m> 1, (upov ) €0y forall 1<h<m,

Proof. Suppose TA(u,v) is defined for (u,v) e QéfﬁQ1 and
T (,v) = {(uyovy)yeey (v )}, m> 1. Then write v = U B B and
A 1° 71 m —_ j=1J

R(Bj,a)Bj for some ae . If v is a

=

for each 1 < h < m, v, =

0 Cwn
—d

J
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S ,
set of associates then so is U B, (by Lemma 3.3,5(111)). Also

j=13
S S
m{(UB.)=m(UB.)=1. So by the corollary to Lemma 3.3.9 it
L j=1 J u j=1 J s .
follows that for n = ,U1R(Bj,a), mz(”) = mu(n), that is all the
J:

strings in n are of the same length. Since all Bj's are of equal

length it follows that the same is true for Yy ml(vh) = mu(vh).

It is clear that N M, so (uh,vh) e 0,
Now consider TB' Suppose TB(u,v) is defined for (u,v) € QéfWQ],

and sspposiﬁ TB(u,v) = {§U1’v1)""’(“m’vm)}’ m>1. Let
- - t il = pk{n :

u = 181Ai jg]aij’ v Qﬁ18k " and gi,k R (Bk’xi) as 12 the

definition of Tp. For any h, 1 <h<m, either v, = Qi]gi,kgk

for some 1 <1 <t or v, = B& for some 1 < k <s. 1In the latter

case we clearly have (uh,vh) e Q. In the former case we observe

s
the fact that U 8/ 1is a set of associates (by Lemma 3.3.5(iii)),

k=1"kK

S S

U 1 - ] = 3 i
and mz(kz Bk) mu(gi18k) % so using ‘the corollary to Lemma 3.3.9

— * ' .. : "

for n = 81R (Bk’xi) we get mz(n) = mu(n). Since all By'S have
equal length (equal to mﬁ(v)-z = mu(v) - %) we conclude that
mg(vh) = mu(vh). Clearly v, €M, so (uh,vh) e Q,. O

If we could find a family of languages for which the other con-
dition, namely that Qé] ié]Aigi,kBu = £§1Bﬁ E implies for eQery k,
1 <k <s, Aigi,k = Bé is met, then we would have extended the
result further.

Another direction for further research is to look for new trans-
formations, possibly replacing TB’ which are valid and monotone for

a certain family of grammars.
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CHAPTER 4
A HIERARCHY OF DETERMINISTIC LANGUAGES

Section 4.1 - Introduction

In this chapter we discuss an infinite hierarchy of deterministic
languages defined by the number of accepting configurations required
by DPDAs accepting them.

We start by introducing, in Section 4.2, a hierarchy of languages
using a model similar to a finite state machine. This hierarchy
includes languages which are not necessarily context free.

In Section 4.3 we obtain families of deterministic languages as
a restriction of the hierarchy presented in Section 4.2. We then
characterize these families in terms of the properties of DPDAs accept-
ing the languages. In particular we show that the j-th family in our
hierarchy is the family of all languages accepted by a DPDA with no
more than Jj accepting configurations. This result is then used in

Section 4.4 to obtain some interesting consequences.
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Section 4.2 - U-Automata and the Hierarchy They Induce

We define a model of computation which will play an important
role in obtaining a hierarchy of deterministic lanquages. A similar

model was used by Salomaa [1964].

Definition 4.2.1. An Unbounded-automaton (U-automaton for short)

is a 5-tuple A = (Q,Z,G,qO,F) where
(i) Q 1ds a countable non-empty set of states,
(ii) © s a finite non—émpty set of inputs,
(ii1) & is a function from (QxZ into Q called the direct

transition function,

(iv) q, € O s the initial state,

(v) FCQ is the set of final states.

Note that this is a generalization of thé definition (1.2.9) of
a finite automaton. Here Q and F »may be infinite sets.

We use the same conventions as in finite automata theory when we
discuss the extension of . § to strings in 5¥, acceptance of a
lanquage, etc.

Next we note that despite the deterministic nature of U-automata,

they are extremely powerful.

Lemma 4.2.1. Let L C £* be any language, Then there exists

an U-automaton 'AL such that L = T(AL).
= = * = =
Proof. Let AL = (QL,Z,GO,qO,F) where QL L% q, A, F=1L
and 60 is defined, for all x € 2* and a e I as Go(x,a) = xa.

Clearly then, for each x, y € E*,v GO(x,y) = xy and in particular

rply) = 84(hy) =y so that T(A) = {y|rp(y) eF} = F = L. 0
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Note that Lemma 4.2.1 does not even require that the language be
recursively enumerable.

Next we discuss two relations on strings. The first is well
known from the investigation of reqular sets (cf. Hopcroft and Ullman
[1969]), and the second was introduced by Geller and Harrison [1977]

and is defined here in a broader context.

Definition 4.2.2. let L C £¥. We define the right congruence

relation induced EX L, RL as follows:

for each x, y € £¥, (x,y) e R if and only if

for all z e £*, xzel ifandonly if yzel .

The relative right congruence relation induced by L, RL is defined

as

RL-'-RLﬂLxL,

RL plays an important role in finite automata theory. Nerode's
Theorem shows, among other things, that L ds regular if and only if
rk(RL) is finite.

The following definitions are adapted from finite automata theory

(cf. Hopcroft and Ullman [1969]).

Definition 4.2.3. Let A = (Q,Z,é,qo,F) be a U-automaton.
States q, q' € Q are said to be equivalent (written q = q') if and
only if for every x e r”, 6&(q,x) e F if and only if &(q',x) € F.
If g, q' € Q are not equivalent then any x € £* such that exactly

one of &(q,x), &(q',x) dis in F, s said to distinguish q and q'.
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Definition 4.2.4. Let A = (Q,Z,G,qO,F) be a U-automaton.

A is reduced if and only if for all q, q' € Q, q = q' 1implies

qg=4q.

"The following result characterizes the connection between RL

and RL‘

Lenma 4.2.2. Llet L Cz* and suppose L = r*-L. Then

RL = RLkJR[ and RLFWRE = .

Proof. Suppose (x,y) € RL' Then, using the definition of RL

with z=A it follows that either x, y e L or x, yel. So

R = (R NLxL)U(R NLxL). Now R NLxL = R' (by definition). Also

L L L L L

RL = R[ S0 RL’WLXL = R[(TLXL = R[. It follows that RL = RLKJR[.
The second part of the lemma follows from the fact that

R CLxL, RthXE and LNl = 9. 0

We can restate the lenma as follows.

Corollary. For all L C1* : |

= rk(R') + rk(R:) .

rk(R ) r

L)
Next we present a generalization of a result in finite automata

theory.

Lemma 4.2.3. For each L E_Z*, rk(R, ) (rk(Ri)) is equal to the

L
smallest number of (final) states in a U-automaton accepting L.

Proof. We preéent two constructions that establish the result,
They are taken from the proof of Nerode's Theorem (cf. Hopcroft and

Ullman [1969]) and hence will not be described in much detail.
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First let L Cz*. Then define A = (Q,Z,d,qO,F) as follows:

L
Q= {[X]RL}, Gg = [A]RL, F={[x RL|xe L} = {[x] L} and for all
Xez*, aecz, 6([x]R ,a) = [xa]P . It can be shown that L = T(AL)‘
L L

It follows that the smallest number of (final) states in a U-automaton
accepting L 1s bounded above by rk(RL) (rk(Rt)).

Then suppose A = (Q,Z,G,qO,F) is a U-automaton with the
smallest number of (final) states such that L = T(A). We can define
a relation R as follows: For each x, y € I, (x,y) € R if and
only if 6(q0,x) = é(qo,y). It is easy to see that R 15 a right
congruence relation and that R C RL' Letting R' = ROLxL we get

R' C PL, and R' is a right congruence relation. Hence rk(R) >
2_rk(RL) and rk(R") z_rk(RL). But by definition rk(R) < |Q| and

rk(R') < |F|. It follows that the smallest number of (final) states

in a U-automaton accepting L 1is bounded below by rk(RL) (rk(RL)).
O

The next lemma establishes a hierarchy of languages.

Lemma 4.2.4. For each i and j, i >3>1 there exists a regular

language L, . Ca* such that vk(R, ) =1 and rk(R' ) =3j.
R Hii L3

Proof. For each i and j, 1 >J>1 define

+
Lij = 2n”|O<2<J and m>0}.

To prove the lemma we will present a U-automaton Ai ; with i

states, J final states and we will show that Ai 3 accepts Li ;

and is reduced. Let Ai 5= (Qi’{a}’Gi’O’Fj) where Qi = {0,1,...,i-1},

Fj = {0,1,...,3-1} and for a1l 0 <k < i, 6i(k,a) = k+1modi.
It is not hard to see that for every & and m such that 0 <& < i




and m > 0, 6(0,a2+m1) = 2. Hence T(Ai J.) = {ath;iG(O,at) <j}

bl

2m1|O<SL<J,m>O}=L1.J..

To see that A. . is reduced we will show that for each two

b

states k], k2, 0 < k1,k2 i, there exists a‘string ak, k>0

that distinguishes k] from k2. Without loss of generality assume

k] < k2. We consider three cases.

Case 1. 0 < k] < k2 <Jj. Let k=j-k,. Then 0 =10+0

2

< k1'¥(J-k2) = k1-+k = j +(k]—k2) < j+0 = and k2~+k = k2-+J —k2
=j < i. Thus di(k],ak) € F but & 2,a ¢ F

Case 2. O j_k] < J §_k2 <i. Let k=0, Then 0 < k]+-k
= k] <Jj and 5_k2-+k = k2 < 1. Thus states k] and k2 are
distinguished.

Case 3. 5_k] < k2 <i. Let k=1- k2. Then j = j+0
< k1-+(1—k2) = k]-+k = i +(k]-k2) < i and k2-+k =i, imodi =10 < j.
Thus o, ],a $F, while 6, (kya®) = 06 i

We conc1ude that for each Ky and k2, 0 g_k],k2 < 1 there

exists some k > 0 such that exactly one of Si(k],ak) and Gi(kz,ak)

is in Fj' So k] and k2 are indeed distinguishable.
This completes the proof of the lemma. O

We will be interested in a restriction of the hierarchy described

by Lemma 4.2.4. We define families of languages as follows.

Definition 4.2.5. Let I be a finite alphabet. For each j > 1

define L = {L_C_Z*lrk(Rl'_)f_J}'

The main result of the section can now be stated.
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Theorem 4.2.1.
(1) ”“1%%%'”

(ii) For each j > 1 there exists a fegu]ar language L which

is in L.

5+1 but not in LJ..

Proof. (ii) follows from Lenma 4.2.4 using L = Lj+2,j+1'
(Recall that L. j s defined for > j >1.) (i) is a direct

consequence of (ii). O
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Section 4.3 - Restriction to Deterministic Lanquages

Section 4.2 established a hierarchy of lanquages defined by the
number of final states in a U-automaton accepting them. In this
section we obtain a hierarchy of deterministic languages defined by
the number of accepting configurations in a DPDA accepting them.

First we define families of deterministic languages.

Definition 4.3.1. Let I be a finite alphabet. For j > 1

define Dj = LijA where A, 1is the family of all deterministic

0’ 0

languages.

Next a hierarchy is obtained as in Section 4.2.

Lemma 4.3.1. @ # D] g_pz % e

Proof. The lemma is a direct result of Theorem 4.2.1, Definition

4.3.17 and the fact that all the regular languages are contained in

AO. ‘ O

The families Dj are defined in terms of rk(RL). e would
1ike to have a characterization that will more closely reflect the
way DPDAs accept these languages.

As a first step we want to show that A] is exactly the family
of languages that are in Dj for some j > 1. This is essentially
the result of Theorem 4.2 of Geller and Harrison [1977]. Ue will
prove it here using a modified version of Valiant's regularity test.

Familiarity with Valiant [1975] is required since we use many

of the concepts from that paper. We repeat here only the most rele-

vant definitions.
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Valiant's choice of symbols is different from ours. Since our
presentation closely follows his, we try to transliterate the names
in a consistent fashion. The following table provides the correspon-

dence between the two systems of notation.

Valiant's Notation | Our Notation

S q

W o

q |}

o X

€ A (in 2%)
Q A (in T¥)
Y t

Y y

Let M = (Q,Z,F,é,qO,ZO,F) be a DPDA. Ve use C, to denote

the initial configuration (qO,Z ). For two configurations ¢ and
c' wewrite c = c¢' if they are equiva]ent+and c ¥ ¢' otherwise.
If ¢ = (q,0) for some qeQ and o e TI'* then |a| is the

height of ¢, denoted |c].

Definition 4.3.2. All the following definitions are assumed to

be with respect. to some particular derivation ¢ X . c is a

stacking (s-) configuration in the derivation if and only if it is not

followed subsequently by any configuration of height f_lc][. It is a

popping (p-) configuration if and only if it is not preceded by any

configuration of height f_lc1|. A derivation is a stacking derivation

(c 4 (x) c') if and only if ¢ 1is an s-configuration in .it, a popping
derivation (c + (x) c¢') if and only if ¢' 1is a p-configuration in it.

An index set N is an ordered sequence of nonnegative integers. It

Tef. Definition 1.2.8.
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induces segments uij in a stack a, where aij is the substring
of o from the (i+1)-st letter to the j-th inclusive, andi,j eN., N also
induces s- or p-configurations in a derivation, namely those of
heights i+1, and 1 respectively, if defined, for each 1 € N.
See Figures 4.3.1 and 4.3.2.

By definition, in any derivation there can be at most one
s-configuration, and one p-configuration, of any given height. If
i < j then the string. xij' will denote that substring of x read
in the part of the derivation from the s-configuration of height i+]
to the one of height j+1. Notice that if these two have the same
state and top of stack symbol, then by iterating the substring x}.‘j
in the input k times, we obtain configurations Tike c',. but with
the stack segment .uij' iterated k times in the stack. If 1 <
then in' will denote that substring of x read from the p-configu-
ration of height j to the one of height 1. Ulhere defined, it will
be ;onvenient to say that in the x derivation "the string in
pops the segment aij'“ (q,a) = ¢ + (x) ¢' dis a j-derivation with
respect to N if and only if fewer than j segments of o induced

by pairs of integers consecutive in N, are poppéd by nonnull
substrings of x.

The segment o' is #-invisible in (q,oa'a") with respect to
N if and only if for any q' and any 2-derivation (q,aa'a") + (x)
(q',aa'), it is the case that (q',00') + (A) (q',a). If o' s
%-invisible then the configurations (g,ac'a") and (qg,aa") may only
be distinguished (i.e. the existence of «' on the stack may only be

. detected) by derivations that are not g&-derivations. In other words,




members
of an
index set
J
ok
a.
jn
aij
“mi
B
X X, . X. input read

mi 1 Jn

c 4 (Xmi) ¢yt (Xij) cy (Xjn) c
¢y = (q1’8am1) is an s-configuration
c, = (qZ’Bamiaij) is an s-configuration
c = (q,B)
If g, = q, then c¢ 4 (x xk x. )(q",Ra ak a. )
1 2 mi~ij"jn *PmitijTin

Figure 4.3.1 - Stacking derivations

g
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index
set N

C
- g A input read
X' ‘
e —
X
c ¥+ (x) ¢
x' pops a

If fewer than j segments of x are nonnu

then this is a j-derivation.

Figure 4.3.2 - Popping derivations

1
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only derivations that pop at least & disjoint segments of a" by

nonnull input strings may distinguish (q,aa'a") and (g,0a").

o is nullt-transparent if and only if for all q, q' e Q,

(g,0) + (A) (q',A) = (q'.a) + (A) (q',A) .

If o is null-transparent then if (q,a) + (A) {(q',A) then for
all m>1, (q,am) + (A) (q',A). Thus if one copy of o in a.stack
(a]am) is popped by A then so are all the rest, and the state that
is finally reached will be independent of m.

For a discussion of &-invisible and null transparent segments

see Valiant [1975].

MNext we prove a lemma that will enable us to obtain the result
about A]. The Temma essentially strengthens the main claim of
Theorem 4 in Valiant [1975]. Valiant shows that if ¢ = (q,a) 1is a
reachable configuration with a large height then either there exists
an equivalent shorter configuration or there is an infinite set of
pairwise inequivalent configurations. We include the requirement that

all the configurations in that infinite set have the state q.

Lemma 4.3.2. Let M be a DPNDA. There exists a number t
(depending upon VM) such that for each reachable configuration c¢ of
M with height greater than t |
either (i) there exists a reachable configuration c¢' with smaller

‘height so that c¢' s equivalent to ¢
or (ii) there is an infinite collection of pairwise disjoint

reachable configurations all having the same state as c.
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Proof. Ve follow the proof of Theorem 4 of Valiant [1975] very
closely.

Suppose ¢ = (q,d), |a] =n > t, C, X ¢. Vvaliant constructs

) + _
= (q’aOiajn) where o 0% {%5n and Q4 5

19| |Q]!-invisible in c. Assuming c # ¢', Valiant produces configu-

configuration «c' is

rations Cys Cos ci and cé such that it is impossible that both
¢, =6 and ci =z cé. Without loss of generality it is assumed that

¢4 £ Co- Valiant also presents the strings Xok> *km® Xan’ Ynm and

. * Tt o .
Yo 1M I such that x = X0k ki It is shown that c ¢ (y_ ) C, F

and Cy ¥ (ymk) SR and Cy have the same state, say q, € Q.

nm

Then ¢y = (q],aok) and c, = (q1’a0kukm)’ c = (q,aOkakmamn), o)

) (q],A). We define, for

_ r _ roy ttt
each r >0, co(r) = (q’aOkakmamn) and» c](r) = (q1’a0kakm)'

(gpa ) ¥ () (ap.4)  and (aysey ) ¥+ (¥

nm mk

XOkXEmX n
Then, for each r > 0, Cs =K X mn, co(r), CO(Y) v (y
for all 2 > 0, c](2+r) + (yé

nm) c](r) and

k) c](r). Note that ¢y = c](O) and
Claim 1. For all r > 0, c](r) ¥ c](r+1).

. r _
Proof of Claim 1. Let r > 0. c](r) ) (ymk) c](O) = c and

c](r) ) (ymk) c](]) = Cy. Since c, £ C, We must conclude that

c](r) i c](r+1).

Let 20 be the length of a shortest string distinguishing

c](O) = ¢ and c1(1) = Cy.

.1..

In Valiant [1975], ¢ = (s,w) and c' = (S’wOiwjn)'

t ; .
Called %k e’ %’ Yom and Yook respectively by Valiant.

1LJﬁLNew configurations not discussed by Valiant.
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Claim 2. For all ¢ > %> c1(1) f c](2+]).

Proof of Claim 2. Suppose that for some & > % c](1) = c1(£+1).

c](1) } (ymk) c1(0) and c](£+1) } (ymk) c](z) so it follows that

that distinguishes

(@]
—
T~
=
S
i

c](O). Let z be any string of length %

c](O) and c](1). z nmust distinguish c](z) and c](2+1) but

|z| = 2, < min(2,2+1) and by Lemma 2 of Valiant [1975] and the fact

0

that is null transparent, z cannot distinguish them. The

o
km
contradiction proves the claim.

r-1

. ynmymk
From Claim 2 and the fact that co(r) e c](1) and

r-1
Yo mk .
co(2+r) —————-—+~c](2+1) it follows that co(r) £ c0(2+r) for all
r>1 and 2> Lo
Finally we conclude that {co(d(20+1)+1)|d3_0} is an infinite
family of pairwise disjoint reachable configurations whose state is
the same as that of c.

lle have shown that if (i) of the lemma does not hold, then (ii)

must be true. O

We will need the following result about 2-invisible segments.
It essentially shows that 2-invisible segments depend only on the top

portion of the stack and the state.
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Lemma 4.3.3. Let & > 0. Suppose c = (q,aa'a"),

c, = (q,a]a'a") and let N and N] be two index sets with the

1
property that when N and N] are applied to ¢ and c, respec-
tively they induce the same segments in a'a'.

Then o' 1is &-invisible in ¢ with respect to N 1if and only

if o' dis &-invisible in o with respect to N].

Proof. Follows from the definition of 2-invisible segments and
the fact that (g,aa'a") ¢ (x) (q',aa') if and only if

(q,a]a'a“) + (%) (q',a]a'). O

Another result we will need relates the relation RL and

configurations in a DPDA accepting L.

Lemma 4.3.4. Let M= (Q,I,T,6,9~,Z~,F) and L = T(M). Suppose
Lemma %.9.% 0°%0

M has J pairwise inequivalent reachable accepting configurations.

Then rk(RL) > .

Proof. Let c],cz,...,cj be pairwise inequivalent reachable

accepting configurations. Then there exist x1,x2,...,xj e L so

X .
that (qO,ZO) __L'Ci for all i, 1 <1 < j. Also, for each

: iri
1 <d,,1, <J, there exists y. ; e £* such that if . 12, .
Yiyi 12 1
and c. LR ¢' then exactly one of ¢, ¢' 1is an accepting

2
configuration (i.e. Yy
1

is a string distinguishing c. and ¢, ).
2
It follows that for all 1 < 4,1, <3, (Xi

1 2
,xiz) ¢ RL S0

5

1
rk(R') > j. a

We now restate Theorem 4.2 of Geller and Harrison [1977] which

characterizes A] by the rank of the relative right congruence relation.
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Theorem 4.3.1. A1 = jg]Dj, i.e, A] is exactly the family of
all deterministic languages L for which rk(Ri) is finite.

Proof. Geller and Harrison [1977] prove that if L e A] then
RL is finite.

For the converse let L e Dj for some j > 1. Then rk(RL) =
and L is accepted by a DPDA M = (Q,Z,F,G,qO,ZO,F). Let Y be
the bound from Lemma 4.3.2, and suppose (q,a) is a reachable accept-
ing configuration with Ja] = n > t. Let c¢' be the configuration
obtained from c by removinga [Q||Q|!-invisible segment, Suppose |
c ¥c'. Then, by Lemmal4.3.2, there exists an infinite set of pair- |
wise inequivalent reachable accepting configurations. But by |
Lemma 4.3.4 this implies that RL has infinite rank. The contradic-
tion establishes that ¢ = c'.

By Lemma 4.3.3 the computation of the [Q]|Q|!-invisible segment,
needed to obtain c¢', depends only on the top t symbols of « (and,
of course, g). So we can precompute all the relevant |Q||Q|!-invisible
segments and store them.

We now construct a DPDA M', M' simulates M, remembering
whether or not the stack is of height less than t. Whenever M
enters a final state and the stack has more than t symbols M’
pops the top t symbols. Using a precomputed table M' eliminates
the qq!-invisible segment and pushes the resulting string back on the

stack. This process is repeated if the stack is still of height

greater than t.

In order to keep track of the stack height M' uses a two-track

stack. The second track contains a number between 1 and t (the




height of the stack up to that point) or a special symbol for stack
height greater than t.

M' accepts only when the stack is of height at most t. By

Lemma 4.3.2 and this construction M' accepts the same language as M.

Finally, a DPDA M" that accepts with a single symbol on its
stack may be constructed to simulate M'. It encodes t stack

symbols of M' by one symbol. : O

Theorem 4.3.1 gives a "collective" characterization of all lan-
guages that are in Dj for some j > 1. Ve would Tike to sharpen
this result by giving a precise characterization of Dj for any
j> T

First we need a technical lemma about DPDAs.

Lemma 4,3.5. Let L e A]. Then L = T](M) = T(M,{Zf}) for

some DPDA M = (Q,2,7,8,94,20,F) where ZgeT (i.e, L =T, (M)
and for all qe F and we 1, (qO,ZO) X, (q,7) implies 7 = Zf).
Moreover all the configurations of the form (q,Zf) for qgeF are

reachable.

Proof. Let L € Ay. Then L = T](M') = T(M',T'} for some DPDA

MY o= (Q',Z,T',é',qé,Zé,F'). First we construct an equivalent DPDA
M" whose stack alphabet is composed of symbols that are allowed only
on the bottom of the stack and symbols that are allowed only elsewhere,
- Formally let M" = (Q',Z,F'LJF',&”,qé,Zé,F) where T' = {Z|ZeT'}

is a set of new symbols, and for all qe Q', ace ZA and Z e T

if 6'(q,a,Z) = (p,y) for some peQ', yeTl'* then
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§"(q,a,Z) = (p,y) and &"(q,a,Z) = (p,y) where ¥ is defined as

_ A if oy = A '
{ with Y eT.

VY] if y= YY]

It is easy to verify that (qO,Zé) T%} (g,Z2a) if and only if
(q0,26) T%ﬁ (q,Z0)., Hence L = T1(M”,f') and for each reachable
configuration (q,a), a e I''T'*. It follows that the stack is of
height one if and only if the top of the stack is a symbol in T'.
This helps M" "know" when it is in an accepting confiquration.

Next we construct another equivalent DPDA M = (Q,Z,F,é,qé,i',F)
where Q = Q'UF, F = {(q,2)eF'xF'|(q,Z) is machab]e},“‘h
r = F'LJF'LJ{Zf}, Zg s a new symbol, and & is defined as follows.

(i) ¢(qg,a,z) = 8"(q,a,Z) for all a e Ly and qe Q',

Z eTr'Ul" such that (q,Z) ¢ F
(ii) 6&(q,A,Z) = ((q,Z),Zf) for all (q,Z) e F
(ii4) 6((q,2),a,2f) = 6"(q,a,7) for all (q,7) e F and a e Ly

M simulates M" wusing moves of type (i). Whenever M" enters
a (reachable) accepting configuration (q,Z) M makes. a A-move (of
type (ii)) to the corresponding final state (q,Z) (which encodes
both the state and stack of M") and places Zf as the only symbol
in the stack. If the input has not been consumed, computation may
continue using a type (iii) move to simulate the next step, followed
by moves of type (i).

It can be shown that for each qe F', Ze ' and we z*
(qb,zé) %% ((q,Z),Zf) if and only if (qé,ié) T%ﬁ (q,Z), and that
M may be in a state (q,Z) e F only when its stack contains Zf

alone. Hence L = T](M) = T(M,{Zf}).

+Note that it is decidable whether or not (q,Z) is reachable. Simply
construct a DPDA identical to M but with only one accepting configura-
tion (q,Z) and check for emptiness.
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By definition of F and the way M simulates M" it is clear

that ((q,i),Zf) is reachable for each (q,Z) e F. 0

Note that we could construct a DPDA that accepts L with only
one final staté using k special acceptingstack symbols. Inthis case
the symbol on the stack encodes the state and stack of M".

The next result sharpens that of Theorem 4.3;1. It will not be
necessary to use results from Valiant [1975] to prove this next

theorem, We will onlyneed Theorem 4.3.1 itself.

Theorem 4.3.2. For each J > 1, Dj is the family of languages

accepted by a DPDA with at most j reachable accepting configurations.

Proof. Suppose L is accepted by a DPDA M = (Q,Z,F,é,qO,ZO,F),
j.e. L= TO(M), and suppose there are exactly Jj' < J accepting
configurations that are reachable. Denote them by (qi’di) for
1<i<J' where g, eF and ociel“* for all i, 1<i<j'.

Define a U-automaton A as follows: A = (Q],Z,61,q01,F1)
where Q, = Qxr*, 97 = (qO,ZO), F, o= {(qi’ai)l]-ii~ij‘} and for
all geQ, vyerl* and aez, 6]((q,y),a) = (q',y') 1if and only
if (q,v) 2 (q',y') for some q' €Q, y' eTl* where no move can
be made from ({(q",y'). A is well defined (i,e. 5 is a function)
since M is deterministic. It is not hard to show that
M) = L and since |[Fy] = J' < j we can use Lemma 4.2.3 to
see that L e Lj' But L s known to be a deterministic Tanquage so
L e Dj.

Conversely suppose L € Dj' We want to prove that L s accepted

by a DPDA with at most Jj reachable accepting configurations. By
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Theorem 4.3.1 L € Ays SO by Lemma 4.3.5 L = T](M) = T(M,{Zf}) for
some DPDA M = (Q,Z,F,S,qO,ZO,F) such that ZTC eI and (q,Zf) is
reachable for each q e F. Assume that among all DPDAs satisfying
these conditions M has a smallest set of final states F. Let
|F| = k and suppose F = SETS PPRRR P |

Define a relation R' CLxL as follows: (x,y) e R'" if and
only if (qO,ZO) X (fi,Zf) and (qO,ZO) 5, (fi’zf) for some i,
1<i<k (i.e. both x and y take M to the same accepting
configuration (fi,Zf)).

We can show that R' CR/. Let (x,y) e R'. Then there exists
i, 1 <1 <k such that for all ze:*, geQ and y e I'*,
(qO,ZO) X (fj,Zf) 2 (q,y) if and only if (qO,ZO) DA (fi,Zf) 2
(g,v). It follows that for each z e &%, xz e L if and only if
yz € L. Hence (x,y) e R' and indeed R' C Ri.

L

We proceed to prove that in fact R' = RL. Assume, for the sake

of contradiction, that R' g RL. Then there exist x, y e L such
1 . ' ._>£>

that (x,y) e R but  (x,y) ¢ R'. Then (qo,zo) (fi,Zf) and
(qO,ZO) A (fi,,Zf) where 1 # i'. But on the other hand for all
zes* xzel if and only if yz ¢ L. Hence M operates the same
way (with respect to acceptance) whether started in -(fi’zf) or
(F,0,2,).
be merged.

So these are equivalent accepting configurations and may

Formally we define a DPDA M' = (Q,Z,F,é',qO,ZO,F') where
F' = F-{qi.} and for all qeQ, aex, and ZerT fif
(9,a,2) # (a;,,0,Z;) then 6&'(a,a,Z) = 6(q,a,2), &'(q.,0,Z)

= (qi,Zf). It is easy to verify that L = T](M‘) = T(M',{Zf}) for
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some Z. €T and for all qe F', (q,Zf) is reachable. But

|F'| = |F] -1, contradicting the minimality of [F],

We have proven that R' = RL. Hence k = rk(R') = rk(RL).
Le DJ - Lj SO rk(Rt) < j. Hence M has k <Jj reachable accept-
ing configurations. O

The proof of Theorem 4.3.2 provides yet another result,

Corollary. Let L CI* and j>T1. Le Dj if and only if
L = T(M,{Zf}) = T](M) for some DPDA M = (Q,Z,F,S,qO,ZO,F) for

which Z.eT and |F| < 3.
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Section 4.4 - Some Consequences of the Hierarchy

In this section we use the results of previous sections to prove
certain properties of the families A] and LR(0),

We show that the family of LR(0) 1is precisely 01. We then
prove a "conditional" closure result for both A, and LR(0) under
intersection. The intersection of languages in these families remains
in that family provided it is deterministic. We show a connection
between A], and regular sets. Finally we discuss a certain decida-
bility question regarding A].

First, we note the connectién between LR(0) Tanguages, as

discussed by Geller and Harrison [1977], and our hierarchy.

Theorem 4.4.1. The family of LR(0Q) languages is exactly D].

Proof. Theorem 3.1 of Geller and Harrison [1977] shows that the
LR(0) family is exactly the family of all languages L such that
L = T(M,{Zf}) = T(M,T) for some DPDA M = (Q,Z,F,é,qO,ZO,F) for
which Z.e T and |F| = 1. By the Corollary to Theorem 4.3.2 this

f
is precisely D]. O

The next Temma will lead to a "conditional" closure result on

.various families of languages.,

*
Lemma 4.4.1. Suppose L], L2 Cz®. Let L] € Dj], L2 € Dj

- A Co s
and let L L] L2. If L e AO then L € Dj where j 3132.

2

Proof. Let L] € Dj], L2 € Djz. Then L] € LJ.1 and L \2.
Hence there exist two U-automata Ai = (Qi,z,ﬁi,qu,Fi), i=1,2

where Li = T(Ai)' Construct a U-automata A = (Q,Z,é,qO,F) where




Q=10Qy;x0Qy, qy= (q01’q02)’ F = F, xF, and for all

(47,9,) € Q;%Q,, a €I, 8((qy,q,),a) = (8(qy,a),6(gy,a)). A simple
induction shows that 6((q01,q02),w) = (é(qo],w),d(qoz,w)) for all
we ¥, It follows that we T(A) if and only if w e T(A])VWT(AZ).
Hence L = T(A), and since A has |F]><F2| = |F]][F2| = Jqd, final
states L e Lj for j = j]jz. By the hypothesis of the Temma

L e AO so we conclude that L e Dj’ J =‘3132. a
Lemma 4.4.1 may be used for the families A] and LR(0).

Theorem 4.4.2. Suppose L1, L2 are both in A] (respectively

is a deterministic Tanguage, it must

LR(0)). Then, if L = L]r\LZ

also be in A (respectively LR(0)).

‘ 1° L2 1° L=L]nL2€AO.
NEERP > 1, L] € DJ.1 and L2 € Djz. Using Lemma 4.4,1 L € Dj for
J = j]jz so L e A].

Proof. Let L e A Then, for some

Let .L], L2_e LR(O), L = L]ﬂL2 € Ay Then L1, L2 € D] and

hence, by that lemma, L € Dy = LR(0). O

Note how the use of U-automata simplified the proof of

Lemma 4.4.1.

Next we establish an interesting connection between A] and the

regular sets.

Theorem 4.4.3. Let L e *, L and L =1:*-L are both in

Ay if and only if L 1is regular.

1
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Proof. Suppose L 1is regular. Then rk(RL) is finite. By the

L) = rk(RL)+‘rk(Rt). So both rk(RL)

and rk(Rt) are finité. It is also clear that both L and [ may

be accepted by a DPDA. Hence, by definition of Dj and Theovrem 4.3.1,

Corollary to Lemma 4.2.2 rk(R

L, Le A1.

Conversely suppose L, L e Ay Then by Theorem 4.3.1 rk(RL)

and rk(Rt) are finite. So rk(RL) = rk(RL

L is regular. 0

)-+rk(Rt) is finite and

If we denote by A, the family of languages L whose complement

1

L=z5*-L is in A], ~and if we let Reg denote the regular sets,

we can rewrite this last result as follows.

Corollary. Ay N 51 = Reg

An interesting decidabi1ity question is whether or not one can
determine, for a given language L € A], the minimum J such that
L e Dj' The following theorem shows that this is 1likely to be very
hard. In fact even when we know that L € 02 it may be hard to

decide whether or not L € D].

Theorem 4.4.4. There is an algorithm to decide if a 02

language is in 01 if and only if there is an algorithm to decide if

two deterministic languages are equal.

Proof. This is a restatement of Corollary 1 to Theorem 5.3 in

Geller and Harrison [1977]. O
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