Deterministic Delay Bounds for VBR Video in Packet-Switching Networks: Fundamental Limits and Practical Tradeoffs D. Wrege Department of Computer Science, U. of Virginia E. Knightly EECS Department, UC Berkeley H. Zhang Carnegie Mellon University J. Liebeherr Department of Computer Science, U. of Virginia Compressed digital video is one of the most important traffic types in future integrated services networks. However, a network service that supports delay-sensitive video imposes many problems since compressed video sources are variable bit rate (VBR) with a high degree of burstiness. In this paper, we consider a network service that can provide deterministic guarantees on the minimum throughput and the maximum delay of VBR video traffic. A common belief is that due to the burstiness of VBR traffic, such a service will not be efficient and will necessarily result in low network utilization. We investigate the fundamental limits and tradeoffs in providing deterministic performance guarantees to video and use a set of 10 to 30 minute long MPEG-compressed video traces for evaluation. Contrary to conventional wisdom, we are able to show that, in many cases, a deterministic service can be provided to video traffic while maintaining a reasonable level of network utilization. We first consider an ideal network environment that employs the most accurate deterministic, time-invariant video traffic characterizations, the optimal Earliest-Deadline-First packet schedulers, and exact admission control conditions. The utilization achievable in this situation provides the fundamental limits of a deterministic service. We then investigate the utilization limits in a network environment that takes into account practical constraints, such as the need for simple and efficient policing mechanisms, packet scheduling algorithms, and admission control tests.