TODO/Qs

We don’t have to block messages because of commits. Just deliver with total order, and delay until we can deliver it. Trick is just to fill in majority resilience ourselves. This is tricky. How to do this?

Does majority resilience work correctly in the face of reforms?

Transaction Model for RMP

Introduction

	The transaction model for RMP exists as part of the replicated objects module. The replicated objects model creates pools of objects, with one pool for each RMP group. Objects in this pool are replicated to each full (server) member of this group. Clients can use MultiRPC to get information about an object in the pool, and listeners can receive best effort updates on the objects in the pool. A listener copy of an object can not be part of a transaction. Only weak consistency can be provided for listeners.

	Each member of an object pool maintains a lock table, which lists the read and write locks currently held by members of the group. This table must be updated in the face of member failures or partitions, to remove locks that are held by defunct members. A new member must also receive a consistent copy of this table. The lock table is itself a replicated object, kept consistent through the use of totally ordered messages. The transaction manager does not need to block for these messages, however. Instead, it writes the operations to a log and assumes that there will be no conflicts.

	A RMP transaction uses two phase locking to guarantee the serializability of operations, and uses a special RMP commit algorithm to commit a transaction. From an API standpoint, a transaction has the following operations:

	BeginTransaction()	Start a transaction

	Write()			Write a single field of an object

	Read()			Read a single field of an object

	ReadWriteList()	Read and write multiple fields, all at the same time

	EndTransaction()	Attempt to commit a transaction

While the transaction is going on, all of the operations are written to a local log at the server performing the operation. Note that this server can be performing the operations on behalf of a client. On an EndTransaction, the transaction will either be committed or rolled back. If a server crashes or a lock is held for a very long time, the client may have to abort a transaction in the middle of an operation. In addition, if the server blocks on a lock it wishes to acquire for an extended period of time, it should assume that it is deadlocked, and abort the transaction.

API Operations

TODO: Flush these out

BeginTransaction()

	Marker for rest of transaction

Write()

	Acquire a write lock on an object. Write that update to the local log.

Read()

	Acquire a read lock on an object. Get the most recent value for that object, as determined by the local log.

EndTransaction()

	This performs the RMP Commit algorithm.

RMP Guarantees

	The RMP Commit protocol is based on the atomicity and ordering guarantees that RMP provides.

	- Total ordering and virtual synchrony

	- Majority Resilience

	- Total Resilience / Stability

	- Reformation -> Synchronization of sites

		- No site can join

		- All sites must have the same set of packets

		- Only one partition can continue

	- Majority function

	- OrderingQ

	

Background RMP Function -- Majority()

	The majority function returns trunc(Size)+1, where Size is the largest group size that has existed for any packet that has not yet become stable. Agreed messages are received by at least Majority() members before they are delivered. If each partition after a failure must have at least Majority() members in it in order to continue operation, then at least one of them will always have any message delivered in Majority() order. In other words, the message will always eventually be delivered to all members of the primary partition if one is able to continue functioning.

Two Phase Locking

TODO: Fill this in

RMP Commit

	A transaction algorithm must provide the four ACID properties—atomicity, consistency, isolation, and durability. The Two Phase Locking algorithm, described above, provides the isolation needed by transactions. The other properties—atomicity, persistence, and

	The AllowedACKs() function is part of RMP. It is an option that can be added to a data packet. When a packet is recieved with an AllowedACKs field, RMP keeps track of this. When the ACK for this packet is received, and the appropriate CommitReceived() callback to the transaction layer has been registered, RMP will call the transaction with a notification of this. As every ACK or NewList comes in, RMP will also call the transaction layer with a notification of this, if the ACKReceived callback has been registered. These CommitReceived() and ACKReceived() callbacks are only called as ACKs and NewList are received in order. In this way, the transaction layer simply has to keep track of each CommitReceived(K), and block all OKToSendACK() requests after K ACKReceived calls have been received. the right number of ACKReceived() calls come in

RMP will allow a callback to be registered, called OKToSendACK(). Once registered, this will be called each time RMP wants to send out an ACK. If false is returned, RMP will delay before sending that ACK. This allows the transaction mechanism to allow a set number of messages to be acknowledged after it has received a prepare message, but then block any further acknowledgements until it has flushed the prepare message to disk.

	The commit function has to handle two cases. The first case occurs if any of the sites continue processing, and the second case is if all of the sites stop functioning. For the sites which continue processing, either all of them have to receive the commit message or none of them will. In all sites stop functioning, at least one of the sites has to have flushed the commit message to disk so that it can be recovered. The recovery resiliency constant, R, is a constant between 1 and Majority()-1, which specifies the minimum number of sites that must have flushed a commit to disk before the commit is delivered.

	In order to handle both of these requirements, the transaction algorithm will not allow a commit message to be delivered at any site until that site knows that the Commit message has been flushed to stable stoe at a minimum of R sites, and has been received at the Majority() number of sites in the group. When the first step is met, we say that it has been made R-Persistent. The second requrirement is met when the packet would be delivered with RMP’s majority resilience. However, because the Commit message must fulfill both requirements, it can not use majority resilience. Instead, we re-implement this at the transaction layer. Each time that RMP gets an ACK or a NewList which does not have any holes preceding it in the OrderingQ, RMP notifies the transaction layer of this. The transaction layer can use this information to keep track of majority resilience.

	To provide R-Persistence, the transaction layer uses the AllowedACKs option of RMP. When a packet P is sent with AllowedACKs set to K, this feature prevents more than K ACK or NewList packets from being issued by RMP after the ACK A ordering P is sent. This restriction holds until the transaction layer allows RMP to proceed past this point. The transaction layer will block RMP from sending out ACKs or New List packets until P has been flushed to stable store. In this way, when a site receives K+R ACK and New List packets with timestamps greater than A, it knows that R sites have flushed P to stable store.

	The problem with this feature is that it may take a long time to flush a packet to stable store, and this could interfere with RMP’s operation. So, instead of preventing RMP from sending ACKs and NewLists, the transaction layer instead causes RMP to insert an option into the header of these ACK and NewList packets, notifying the recipient that these packets do not count as persistence notifications.

	The transaction layer keeps track of the commit messages that are in progress through the use of a CommitQ. The CommitQ holds a spot for each Commit message that the transaction layer knows about which has not yet been delivered. Each slot in the CommitQ goes through the following states, in order.

State

DATA_RECEIVED	The data for the Commit message has been received

ACK_RECEIVED	The ACK for the Commit message has been received, as well as all 					other packets in the OrderingQ which proceed it

BLOCKING		The K allowed ACK and NewList packets have been received

FLUSHED		The Commit message has been flushed to disk at this site

NOTIFIED		This site has notified the other sites that it has flushed the Commit 					to stable store, by allowing this site to send the 						corresponding ACK or New List

The following invariants must always hold true for the CommitQ.

Each slot must go through the states, in order.

No slot S can be in a higher state than any slot which is closer to the head of the Q than is S.

No notification of an ACK or NewList packet will be made to the transaction layer until all of the packets that precede it in the OrderingQ have been received.

The transaction layer will always receive the notification for an ACK for a Commit message after it has received the notification for the Commit message.

Each slot in the queue is arranged in order of its timestamp, if it has one.

Each slot in the queue has the same value R for its R-Persistence level.

No site will issue more than one flush notification that applies to any given packet.

The transaction layer holds a CommitQ, which holds the Commit messages which have not yet been flushed to disk. It holds structures of the form:

struct {RMPid Source,		//

	unsigned int SeqNum,	//

	int AllowedACKs,		//

	msg_pointer *Msg,		//

	int RequiredResiliency,	//

	int AchievedResiliency,	//

	int Flushed,		//

	int RequiredPersistence,//

	int AchievedPersistence,//

	int State};			//

RMP Modifications

The RMP transaction model requires three callbacks from RMP to the transaction layer, as well as two options in the headers of packets.

Header Options

The first option is AllowedACKs. This is set on Commit data packets. A single two-byte argument is passed as the payload of this option, corresponding to the number of ACKs and NewLists that may be generated (after the one ordering this packet) before this data is flushed to disk.

The second option is BlockedACK. This is set on NewList and ACK packets, if the sender of the ACK or NewList was not cleared to send it by the transaction layer. This allows NewList and ACK packets to be generated when they would otherwise be blocked by the AllowedACKs field of a previous Commit packet. An ACKReceived callback is not made for packets received with this option set. This allows the transaction layer to avoid blocking the progress of the rest of the messages sent to the group. Only messages to the replicated objects layer need be held up.

Callbacks

BOOL OKToSendACK(

	unsigned int Timestamp);		// Timestamp of ACK

Returns:	0 = Block (set the BlockedACK option)

		1 = Acknowledge

Once this callback has been registered, this is called each time a server wishes to send an ACK. This function queries the transaction layer to see if there are any waiting packets, with their AllowedACKs fields set, that should prevent this packet from being acknowledged. If the function returns 0, then RMP can only send out a New List or an ACK packet which has its BlockedACK field set. Otherwise, this packet may be acknowledged. RMP allows more than one data packet to be ordered in an ACK, subject to its flow control constraints. With the transaction mechanism, RMP must call OKToSendACK for each of the packets it wishes to include in the ACK.

void CommitReceived(

	RMPid Source, 				// Source of data packet

	unsigned int SequenceNumber,		// SeqNum of data packet

	msg_pointer *Msg,				// Actual commit data packet

	short int AllowedACKs);			// Value of option

Once registered, this notifies the Transaction layer when a packet is received with the AllowedACKs field set. This must happen synchronously upon the receipt of the packet in order to correctly block ACKs when necessary.

void ACKReceived(

	RMPid Source, 				// Source of ACKed packet

	unsigned int SequenceNumber,		// SeqNum of ACKed packet

	unsigned int Resiliency,		// Required resiliency

	BOOL BlockedACK,				// Was this option set?

	BOOL LastPacketInACK)			// More ordered packets?

Once registered, RMP will use this callback to notify the Transaction layer of each ACK and NewList packet received. NewList packets are signaled with a call of (0, 0, BlockedACK, TRUE). When an ACK is received which orders multiple packets, one ACKReceived call is made for each one. The LastPacketInACK flag is used to signal which one is the last packet for that ACK.

RMP Algorithms

When a data packet arrives

	If the packet P has the AllowedACKs option set

		If the CommitReceived() callback is not null

			Call CommitReceived(P->Source, P->SeqNum, P->AllowedACKs)

When a NewList is received in order

(i.e. there are no empty slots preceding it in the OrderingQ)

	If the ACKReceived callback is not null

		If the BlockedACK option is not set	// Blocked NewLists are ignored

			Call ACKReceived(0, 0, FALSE, TRUE)

When an ACK A is received in order

(i.e. there are no empty slots preceding it in the OrderingQ)

	If the ACKReceived callback is not null

		Call ACKReceived(P->Source, P->SeqNum, A->BlockedACK, FALSE) 				for each packet P up to (but not including) the last one ordered by 				this ACK

		Call ACKReceived(P->Source, P->SeqNum, A->BlockedACK, TRUE) 				for the last packet ordered by this ACK

When this site wishes to send an ACK or NewList out

	If the OKToSendACK() callback is not null

		If OKToSendACK() returns FALSE

			Set the BlockedACK option in the packet and send it

		Else

			Send the packet

Example

Example: Prepare is sent out, and gets timestamp of 9. R is set to 2, and the size of the group is 9, so Majority() is 5, and AllowedACKs() is 3. This means that only 3 ACKs and NewLists can be generated before the transaction layer has flushed the Prepare to disk at a minimum of one site. The Commit message is sent out and gets timestamp 10. Majority is still set to 5(), so it will be delivered after a site sees the ACK for timestamp 10 as well as four more ACKs and NewLists. Assume that the sequence of ACKs and NewLists are as follows. ACK(9), ACK(10, 11), NewList, NewList ACK(12), ACK(13, 14, 15), NewList, ACK(16). The transaction layer will block the sending of the ACK(12) packet until after the Prepare has been flushed to disk at that site. Because R is set to 2, it will also block the sending of the ACK(13, 14, 15) packet until the Prepare has been flushed to disk at that (different) site. This ACK(13, 14, 15) packet also satisfies majority resilience for the Commit message, so the Commit will be delivered at each site after it receives this ACK. In this way, both conditions are satisfied, and the permanence and atomicity of the transaction can be guaranteed.

Commit Algorithm

Initialization

Register the RMP OKToSendACK(), ACKReceived() and CommitReceived() callbacks.

Register the internal StartFlushToDisk() and FlushedNotification() callbacks.

EndTransaction()

// Send a Commit packet

Call the RMP send function with the AllowedACKs argument set to Majority()-R, and an 	internal resiliency field set to Majority()

CommitQ Transitions

DATA_RECEIVED: On a CommitReceived callback

ACK_RECIEVED: On an ACKReceived callback for this packet

BLOCKING: When the allowed number of ACKs have been received

NOTIFIED: This site sends out an ACK while this commit is in the FLUSHED state

(Delivered): State is at least BLOCKING, and AchievedResilience>=RequiredResilience

CommitReceived(Source, SeqNum, Msg, AllowedACKs)

Assertion: This will always occur before the ACKReceived() callback that has the timestamp for this commit data packet.

	Create a new entry QEntry on the end of the CommitQ

	QEntry->Source = Source

	QEntry->SeqNum = SeqNum

	QEntry->AllowedACKs = AllowedACKs

	QEntry->Msg = Msg

	QEntry->RequiredResiliency = MAX_INT

	QEntry->AchievedResiliency = 0

	QEntry->Flushed = 0

	QEntry->State = DATA_RECEIVED

	QEntry->RequiredPersistence = Msg->Persistence

	QEntry->AchievedPersistence = 0

	StartFlushToDisk(Msg)

ACKReceived(Source, SeqNum, Resilience, BlockedACK, LastPacketInACK)

	// Advance the state of the commit packet associated with this ACK

	// 	Transition to ACK_RECEIVED

	For the Q entry C with C->SeqNum==SeqNum && C->Souce==Source

		C->State=ACK_RECEIVED

		C->RequiredResilience=Resilience

	// If this is the last Data Packet ordered by this ACK, then process it

	// 	Increment Resilience Level for packets (Blocking flag doesn’t matter)

	If LastPacketInACK==TRUE

		For each entry P in the CommitQ

			If P->State>=ACK_RECEIVED

				P->AchievedResilience++

	// If BlockedACK is FALSE, then this is a persistence notification

	// 	Increment Persistence Level

	//	Check for Transition to BLOCKING

	If LastPacketInACK==TRUE && BlockedACK==FALSE

		For each entry P in the CommitQ

			If P->State==ACK_RECEIVED

				If P->AllowedACKs>0

					P->AllowedACKs--

				If P->AllowedACKs==0

					P->State=BLOCKING

	// If packet is already into BLOCKING state, then this ACK counts towards K

			Else If P->State>ACK_RECEIVED

				P->AchievedPersistence++

	// Check to see if any packets can be delivered

	// Necessary conditions are:

	//	Persistence level met

	//	State in BLOCKING or higher

	//	Resilience level met

	Repeat

		For the head entry H in the Q

			If H->State>=BLOCKING &&

			 H->AchievedResilience>=H->RequiredResilience &&

			 H->AchievedPersistence>=H->RequiredPersistence

				Deliver H

// TODO: Check this line out.

				Remove H from Q

	While H was delivered

void FlushedNotification(Msg)

	For the entry P in the Q with P->Msg==Msg

		P->Flushed=TRUE

BOOL OKToSendACK()

	// Note: This check should be stored as a variable, rather than being checked 		//	each time an OKToSendACK() callback occurs

	// Return FALSE if any entry is in BLOCKING and not flushed to disk yet

If any Q entry P has P->State==BLOCKING && P->Flushed==FALSE

		Return FALSE

	// Return FALSE if any entry has already been used as a notification

	Else if any Q entry P has P->State==NOTIFIED

		Return FALSE

	Else

		Return TRUE

TODO: Key problem. What happens in the face of a reform. Can only allow each site to notify once for a given packet. But does this allow for deadlock? Reform can change the order of ring members. Reform will synch up all members, so that resilience is automatically met. However, it doesn’t do anything for flushing to disk.

TODO: When can we pop a message off the Q? Do we need to wait until it is stable? Or can we do it immediately upon delivering it? At this point, global persistence is met, so we are safe. We no longer need to worry about flushing it to disk.

TODO: Think about this...can we put in a hint to the persistence engine, which lets it know which transactions it needs to urgently flush to disk? I.e. if our position in the ring dictates that our persistence n
