
Sample final exam #2

Problem 1 (Higher order procedures).

In the twenty-one project, which of the following are higher-order procedures? Check all
correct answers.

(best-value hand)
(stop-at-17 my-hand dealer-card)
(play-n strategy n)
(stop-at n)
(majority strat1 strat2 strat3)

Problem 2 (Scheme syntax).

(define (foo x)
(if x (foo #f) 5))

(define (baz x)
(and x (baz #f) 5))

What is the value of (foo 3)?

What is the value of (baz 3)?

Problem 3 (Recursive and iterative processes).

In question 2 above, one of the procedures foo and baz generates a recursive process; the
other generates an iterative process. Which is which, and in one English sentence,
explain why.

224



Problem 4 (Mutation).

Here is a transcript of a Scheme session. Fill in the blanks. (It will help if you draw a box
and pointer diagram first.)

> a
(1 2 (3 4 5) 6)
> b
(1 2 3 4 5)
> c
(1 2 (3 4 5) 6)
> (eq? (cddr b) (caddr a))
#T
> (eq? (caddr c) (caddr a))
#F
> (eq? (cdaddr c) (cdddr b))
#T
> (set-car! (caddr a) 7)
okay
> (set-car! (cdaddr a) 8)
okay
> b

> c

225



Problem 5 (Object oriented programming).

Here is a class definition in OOP language:

(define-class (echo saved)
(instance-vars (count 0))
(default-method
(set! count (+ count 1))
(let ((result saved))

(set! saved message)
result)))

Write an equivalent program in ordinary Scheme. Don’t forget to include methods for the
messages saved and count! Here’s an example of how your program will be used:

> (define my-echo (make-echo ’hello))
MY-ECHO
> (my-echo ’foo)
HELLO
> (my-echo ’baz)
FOO
> (my-echo ’saved)
BAZ
> (my-echo ’garply)
BAZ
> (my-echo ’count)
3

We’ve given you the first line of the program; continue from there:

(define (make-echo saved)

Problem 6 (Streams).

What are the first 20 elements of the stream mystery defined as follows:

(define mystery (cons-stream 1 (interleave integers mystery)))

Assume that integers is the stream of integers starting with 1.

226



Problem 7 (Metacircular evaluator).

Rewrite one procedure in the metacircular evaluator so that it will understand infix arith-
metic operators. That is, if a compound expression has three subexpressions, of which the
second is a procedure but the first isn’t, then the procedure should be called with the first
and third subexpressions as arguments:

> (2 + 3)
5
> (+ 2 3)
5

You may write new helper procedures if needed.

Problem 8 (Logic programming).

Last year’s final asked students to invent a logic program that would multiply two non-
negative integers, with integers represented as lists of the appropriate length, so (a a a)

represents 3. We’re going to continue inventing arithmetic operations.

Don’t use lisp-value in your solutions.

(a) Write a rule or rules to determine if one integer is less than another. For example, the
query

(less ?x (a a a))

should give the results

(less () (a a a))
(less (a) (a a a))
(less (a a) (a a a))

(b) Suppose you are given logic rules for plus and times, so the query

(times (a a) ?what (a a a a a a))

gives the result

(times (a a) (a a a) (a a a a a a))

Your job is to write a divide logic rule or rules with places for the dividend, the divisor,
the quotient, and the remainder:

(divide (a a a a a a a) (a a a) ?quo ?rem)

should give the result

(divide (a a a a a a a) (a a a) (a a) (a))

indicating that 7 divided by 3 gives a quotient of 2 with remainder 1.

Note: Don’t write rules for plus or times; assume you are given those!

Hint: Part (a) will be useful.

227



Problem 9 (Environment diagrams).

(a) Draw the environment diagram that will result from the following sequence of Scheme
expressions:

(define x 3)
(define y 4)
(define foo ((lambda (x) (lambda (y) (+ x y))) (+ x y)))
(foo 10)

(b) What is the value of the expression (foo 10) above?

Problem 10 (Deep lists).

Write a function named locate that takes two arguments: a value and a list structure
containing that value. It should find the position of the value in the structure (e.g., the
car of the cdr of the cdr) and should return a selector function to extract that position
from any similarly-shaped structure. For example:

> (define baz (locate 5 ’(1 2 (3 4 5) 6 7)))
BAZ

> (baz ’(a b (c d e) f g))
E

If the value is not found in the structure, locate should return #F. You may assume that
the value will not be found more than once in the structure.

228


