
Sample midterm 1 #3

Problem 1 (What will Scheme print?).

What will Scheme print in response to the following expressions? If an expression produces
an error message, you may just say “error”; you don’t have to provide the exact text of
the message. If the value of an expression is a procedure, just say “procedure”; you don’t
have to show the form in which Scheme prints procedures.

(first ’(help!))

((word ’but ’first) ’plop)

(let ((+ -)
(- +))

(- 8 2))

What will Scheme print in response to the following expressions? If an expression produces
an error message, you may just write “error”; you don’t have to provide the exact text of
the message. Also, draw a box and pointer diagram for the value produced by
each expression.

(list (append ’(a b) ’()) (cons ’(a b) ’(c)))

(filter (lambda (x) (if (list? x) (pair? x) (number? x)))
’(1 () (2 3) (so) what))

(cddadr ’((a b c d e) (f g h i j) (l m n o p) (q r s t u)))

Problem 2 (Orders of growth).

Suppose that you have a procedure (f n) that requires time Θ(n), and a procedure (g n)

that requires time Θ(n2). What is the order of growth required for a program to compute
(* (f n) (g n))? There may be more than one correct answer; check all that
are correct.

A. Θ(n) B. Θ(n2)

C. Θ(n + n2) D. Θ(n3)

141



Problem 3 (Iterative/recursive processes).

Consider the function defined as follows:

lg(1) = 0

lg(n) = lg(⌊n/2⌋) + 1, n > 1

In this problem you will write two Scheme procedures to compute this function. Use the
algorithm shown above; do not use mathematical functions not shown here, such as
expt or sqrt. You may use (floor x) to compute ⌊x⌋.

(a) Write a procedure that computes this function using a recursive process.

(b) Write a procedure that computes this function using an iterative process.

Problem 4 (Normal/applicative order).

Given the primitive procedure random discussed in lecture, and the procedure square

defined as follows:

(define (square x)
(* x x))

Which of the following expresions may have a different value depending on whether applica-
tive order or normal order is used? There may be more than one correct answer;
check all that are correct.

A. (random 10)

B. (* (random 10) (random 10))

C. (square (random 10))

D. (random (square 10))

142



Problem 5 (Recursive procedures).

Mad LibsTM is a campfire game in which players fill in blank places in a story, thereby
creating a hilarious new story. We wish to implement this in Scheme.

Mad-libs is a procedure that takes a sentence story as its argument. Some of the words
in story begin with ‘*’, meaning they are to be replaced. Mad-libs returns a procedure
that takes two sentences, nouns and adjectives, and replaces, in order, words from story

beginning with ‘*’ with words from nouns if the word is *NOUN or from adjectives if the
word is *ADJECTIVE. For example, an infamous author once wrote:

It was a dark and stormy night... and the rain fell in torrents – except at occasional
intervals, when it was checked by a violent gust of wind which swept up the streets (for it
is in London that our scene lies), rattling along the housetops, and fiercely agitating the
scanty flame of the lamps that struggled against the darkness. —Paul Clifford (1830)

(define my-story
(mad-libs ’(It was a *ADJECTIVE and *ADJECTIVE *NOUN)))

> (my-story ’(night) ’(dark stormy))
(It was a dark and stormy night)

> (my-story ’(midterm) ’(fun easy))
(It was a fun and easy midterm)

Write mad-libs. You may assume that the lengths of nouns and of adjectives are exactly
the same as the number of words of that category in story.

143



Problem 6 (Higher order procedures).

We are going to generalize the idea of

(define (plural wd)
(word wd ’s))

by allowing any prefix and/or suffix to be added to a word. Here are some examples:

> (define plural (word-maker ’(* s)))
> (plural ’book)
books

> (define past (word-maker ’(* ed)))
> (past ’walk)
walked

> ((word-maker ’(re *)) ’write)
rewrite

> ((word-maker ’(de * ing)) ’construct)
deconstructing

> ((word-maker ’(* -vs- *)) ’spy)
spy-vs-spy

Word-maker takes a sentence, called a template, as its argument. It returns a function that
takes a word as argument and returns another word based on the template, but with any
* in the template replaced with the argument word, and the result scrunched into a word.
Write word-maker.

Don’t use recursion; use higher-order functions. Here’s a helper function for you:

(define (scrunch sent)
(if (empty? sent)

""
(word (first sent) (scrunch (butfirst sent)))))

> (scrunch ’(here there and everywhere))
herethereandeverywhere

144



Problem 7 (Data abstraction).

An association list is a list of pairs, each of which associates a name (the key) with a value.
For example, the association list

((a . 3) (b . 7) (c . foo))

associates the key A with the value 3, the key B with the value 7, and the key C with the
value FOO.

Here are a constructor and two selectors for an association abstract data type:

(define make-association cons)
(define association-key car)
(define association-value cdr)

Note that this is an ADT for an association, not for an association list, which
is just a sequence of associations.

(a) Scheme provides the procedure assoc for looking up a key in an association list. It
returns the entire association, not just the value. Here is an implementation of assoc:

(define (assoc key a-list)
(cond ((null? a-list) #f)

((equal? key (caar a-list)) (car a-list))
(else (assoc key (cdr a-list)))))

(Both caar and car in the next-to-last line above are correct!)

Rewrite assoc to use the association ADT defined above. Don’t make any unnecessary
changes; your program should look much like the one above, but with some procedure calls
renamed.

(Problem continues on the next page.)

145



(b) We are given an association list in which the keys are names of musical groups and the
values are sentences of names of the group members, like this:

((Beatles . (John Paul George Ringo))
((Buffalo Springfield) . (Steve Neil Ritchie Dewey Bruce))
(Who . (Pete Alec Roger Keith))

What follows is a procedure to make a “backwards” association list in which the keys are
the musicians and the values are their groups, like this example:

((John . Beatles) (Paul . Beatles) (George . Beatles) (Ringo . Beatles)
(Steve . (Buffalo Springfield)) (Neil . (Buffalo Springfield))
(Richie . (Buffalo Springfield)) (Dewey . (Buffalo Springfield))
(Bruce . (Buffalo Springfield)) (Pete . Who) (Alec . Who)
(Roger . Who) (Keith . Who))

(Note to ’60s rock fans: I’ve listed John Alec Entwistle by his middle name so that there
won’t be two people named John in this example. You can ignore the possibility of people
with the same name; assume that won’t happen.)

Here is the program:

(define (index groups)
(if (null? groups)

’()
(append (index-one (car groups)) (index (cdr groups)))))

(define (index-one group)
(define (help groupname people)
(if (null? people)

’()
(cons (cons (car people) groupname)

(help groupname (cdr people)))))
(help (car group) (cdr group)))

Rewrite index and index-one to respect both the association ADT and the sentence ADT.
Don’t make any unnecessary changes.

146


