Sample midterm 2 #1

Problem 1 (What will Scheme print?)

What will Scheme print in response to the following expressions? If an expression produces
an error message, you may just write “error”; you don’t have to provide the exact text of

the message. Also, draw a box and pointer diagram for the value produced by
each expression.

(map caddr ’((2 3 5) (7 11 13) (17 19)))

(l1ist (cons 2 (comns 3 5)))

(append (1list ’(2) ’(3)) (cons ’(4) ’(5)))

(list (cons ’(0) ’(1)) (append ’(2) ’(3)))

151



Problem 2 (Tree recursion)

(a) Using the binary tree abstract data type as defined on page 115 of the text (with
selectors entry, left-branch, and right-branch and constructor make-tree), write the
predicate all-smaller? that takes two arguments, a binary tree of numbers and a single
number, and returns #t if every number in the tree is smaller than the second argument.
Examples:

> (define my-tree (make-tree 8 (make-tree 5 () ’())
(make-tree 12 ’() >())))

> (all-smaller? my-tree 15)

#T

> (all-smaller? my-tree 10)

#F

(b) Using all-smaller? and, if you wish, a similar all-larger? (which you don’t have
to write), write a predicate bst? that takes a binary tree of numbers as its argument,
returning #t if and only if the tree is a binary search tree. (That is, your procedure should
return true only if, at every node, all of the numbers in that node’s left branch are smaller
than the entry at the node, and all of the numbers in the node’s right branch are larger
than the entry.)

Problem 3 (Tree recursion)

This question concerns the Trees with constructor make-tree and selectors datum and
children as discussed in lecture.

Every node of a Tree has some number of children, possibly zero. We’ll call that number the
fanout of the node. (We are talking about the node’s own children, not its grandchildren
or more remote descendants.) For a given Tree, there is some node with a fanout larger or
equal to the fanout of any other node. Write the procedure max-fanout that takes a Tree
as its argument, and returns the largest fanout of any node in the Tree.

152



Problem 4 (Data-directed programming)

You are implementing a calculator for physicists, in which arithmetic is performed on
numbers with units attached, e.g., 3 dynes times 4 centimeters equals 12 ergs. There are
two kinds of operations relevant to the project. (You are only required to implement one
of these for the exam!) Two numbers with units can be multiplied, as above, if there is an
appropriate unit for the answer. Two numbers with units can be added if their units are
identical or if one is a multiple of the other.

To make this work, you are using attach-tag to attach a unit to a number. You plan to
use data-directed programming, with entries like

(put ’dyne ’cm ’erg)

to tell the program about the conversion mentioned above. You also have conversions for
units of the same kind:

(put ’ft ’in 12)
This indicates that a foot equals 12 inches.

Write the procedure (plus x y) that adds two typed quantities. If the two arguments are
of the same type, just add the contents and preserve the type. If the two arguments are
of different types, look them up with get. (Don’t forget that the two arguments may not
be in the same order as the types in the table entry. That is,

(plus (attach-tag ’ft 2) (attach-tag ’in 6))
(plus (attach-tag ’in 6) (attach-tag ’ft 2))

should both work with the foot-to-inch table entry above.) If you find a number, do the
appropriate conversion and give a result like

(attach-tag ’in 30)

for the problem above. If you find another unit, as in the erg example, or you find no entry
at all, then give the error message “you can’t add apples and oranges.”

153



Problem 5 (Object-Oriented Programming)

(define-class (scoop flavor)
; maybe (parent (cone)) -- see part (A) below

)

(define-class (vanilla)
(parent (scoop ’vanilla)))

(define-class (chocolate)
(parent (scoop ’chocolate))

(define-class (cone)
; maybe (parent (scoop)) -- see part (A) below
(instance-vars (scoops ’()))
(method (add-scoop new)
(set! scoops (cons new scoops)))
(method (flavors)
(map see (B) below scoops)))

(A) Which of the parent clauses shown above should be used?
The scoop class should have (parent (cone)).
The cone class should have (parent (scoop)).
Both.

Neither.

(B) What is the missing expression in the flavors method?

(C) Which of the following is the correct way to add a scoop of vanilla ice cream to a cone
named my-cone?

(ask my-cone ’add-scoop ’vanilla)
(ask my-cone ’add-scoop vanilla)
(ask my-cone ’add-scoop (instantiate ’vanilla))

(ask my-cone ’add-scoop (instantiate vanilla))

154



