
Sample midterm 2 #2

Problem 1 (What will Scheme print?)

What will Scheme print in response to the following expressions? If an expression produces
an error message, you may just write “error”; you don’t have to provide the exact text of
the message. Also, draw a box and pointer diagram for the value produced by
each expression.

(list (cons 2 3) 4)

(append (cons ’(a) ’(b)) ’(c))

(cdadar ’((e (f) g) h))

Problem 2 (Backwards what-will-Scheme-print.)

Fill in the blank in this expression:

(’(G (H I) J))

so that the value of the expression is the letter I.

159

Problem 3 (Project 2 data abstraction)

This question concerns the picture project. The midpoint of a segment is the point halfway
between its two ends. The midpoint of a frame is the point in that frame corresponding
to the point (0.5, 0.5) in the unit square:

We want a procedure named midpoint that takes either a segment or a frame as argument,
and returns the vector from the origin to the midpoint of the argument. We’ll accomplish
this in stages.

(a) Write new versions of the constructor make-segment and the selectors start-segment
and end-segment that include the word segment as a type tag in the internal representa-
tion.

(b) We’ll assume that the constructor and selectors for frames have been modified similarly
so that the word frame is included as a type tag in frames; you need not write these
procedures. Now write the procedure midpoint that takes either a segment or a frame
as its argument, and returns the vector from the origin to the midpoint of the argument.
Respect all relevant data abstractions. If the argument is neither a segment nor a
frame, your procedure should return #f.

160

Problem 4 (Tree recursion)

This question concerns Trees, using the constructor make-tree and the selectors datum

and children as discussed in lecture.

Suppose we are dealing with Trees in which the datum at every node is a number. Write a
procedure maxpath that takes such a Tree as its argument, and returns the largest possible
sum of numbers along a path from the root node to some leaf node. For example, in the
Tree

the largest such sum is 5 + 2 + 9, so the procedure should return 16.

Respect the data abstraction!

You may use, without defining it, the procedure biggest that takes a nonempty list of
numbers as its argument and returns the largest number in the list:

> (biggest ’(10 23 7 5))
23

161

Problem 5 (Scheme-1 interpreter)

For reference, here are the central procedures of scheme-1, with the lines numbered:

1 (define (eval-1 exp)
2 (cond ((constant? exp) exp)
3 ((symbol? exp) (eval exp))
4 ((quote-exp? exp) (cadr exp))
5 ((if-exp? exp)
6 (if (eval-1 (cadr exp))
7 (eval-1 (caddr exp))
8 (eval-1 (cadddr exp))))
9 ((lambda-exp? exp) exp)
10 ((pair? exp) (apply-1 (eval-1 (car exp))
11 (map eval-1 (cdr exp))))
12 (else (error "bad expr: " exp))))

13 (define (apply-1 proc args)
14 (cond ((procedure? proc)
15 (apply proc args))
16 ((lambda-exp? proc)
17 (eval-1 (substitute (caddr proc)
18 (cadr proc)
19 args
20 ’())))
21 (else (error "bad proc: " proc))))

A student tries to type this into his computer, but makes one mistake. Here is a transcript
of some of his test cases:

Scheme-1: (+ 2 3)
5

Scheme-1: (+ (* 2 2) 3)
ERROR

Scheme-1: ((lambda (x) (* x x)) 2)
4

Scheme-1: ((lambda (x) (* x x)) (+ 1 1))
ERROR

Scheme-1: (if #t 2 3)
2

Scheme-1: (if (> 3 0) (+ 2 1) (+ 3 1))
3

Based on the test cases, what is wrong with his version of scheme-1? Indicate the line
number with the problem, and what the student typed on that line.

162

Problem 6 (Data directed programming)

This two-part question is about data-directed programming. We are going to use a list to
represent a finite state machine (FSM) like this:

The numbered circles represent the states of the machine. At any moment the machine is
in a particular state. The machine reads words, one letter at a time. If the machine is in
some state, and sees a certain letter, it follows the arrow from its state with that letter as
its label, and ends up in a new state. For example, if the machine above is in state 1 and
it sees the letter B, it goes into state 3.

We’ll represent a FSM by a list of all its transition arrows. The machine above has six
such arrows:

((1 A 2) (1 B 3) (1 C 4) (2 A 1) (3 B 1) (4 C 1))

If the machine reads a letter for which there is no applicable arrow, it should enter state
number 0. In effect, there are “invisible” arrows like (2 C 0) that needn’t be represented
explicitly in the list.

(a) Write a function transition that takes three arguments: a FSM list, a current state
number, and a letter. The function should return the new state. For example, if fsm

represents the list above, we should be able to do this:

> (transition fsm 1 ’C) > (transition fsm 2 ’C)
4 0

(b) We want an FSM to process words, not just single letters. The machine “reads” the
word one letter at a time. Our sample FSM, starting in state 1, should process the word
AACCAAB by going through states 2, 1, 4, 1, 2, 1, and 3. The final state, 3, is the result
of processing the word.

Write a function process that takes as its arguments a FSM, a starting state number, and
a word. It should return the ending state:

> (process fsm 1 ’AACCAAB) > (process fsm 1 ’AAAC)
3 0

163

Problem 7 (Object oriented programming)

(a) Check the cases in which the first class shown should be the PARENT of the other
class:

cell phone / keypad

building / office building

stapler / staple

arm / arm bone

bone / arm bone

person / arm bone

(b) For each of the following indicate CLASS VARIABLE or INSTANCE VARIABLE:

CLASS INSTANCE taxi / number of taxis in city

CLASS INSTANCE fridge / number of milk cartons in fridge

164

