
Sample midterm 2 #3

Problem 1 (What will Scheme print?)

What will Scheme print in response to the following expressions? If an expression produces
an error message, you may just write “error”; you don’t have to provide the exact text of
the message. Also, draw a box and pointer diagram for the value produced by
each expression.

(append (list ’a ’b) ’(c d))

(cons (list ’a ’b) (cons ’c ’d))

(list (list ’a ’b) (append ’(c) ’(d)))

(cdar ’((1 2) (3 4)))

Problem 2 (Tree recursion)

The following definition comes from page 116 of SICP :

(define (accumulate op initial sequence)
(if (null? sequence)

initial
(op (car sequence)

(accumulate op initial (cdr sequence)))))

In this problem you’re going to extend the idea of accumulation from sequences to “deep
lists”: lists of lists of lists to arbitrary depth. Write deep-accumulate, a function of three
arguments: a two-argument function, an initial value, and a list structure. It should work
like this:

> (deep-accumulate + 0 ’(3 (4 (5) ((6) 7) 8) (9 10)))
52

170



Problem 3 (Tree recursion)

Write the function datum-filter which, given a predicate and a Tree, returns a list of
all the datums in the Tree that satisfy the predicate (in any order). We are using general
Trees (trees that can have any number of children) as defined in lecture. We are not using
binary trees. The function should return the empty list for any Tree in which no datums
satisfy the predicate. You may use helper procedures.

For example:

(datum-filter even? ( 5 ) )
/ \

( 12 ) ( 19 )
/ | \
/ | \

( 4 ) ( 22 ) ( 27 )

returns the list (12 4 22) in any order.

171



Problem 4 (Message passing)

Consider the following message-passing implementation of rational numbers:

(define (make-rat num den)
(define (dispatch msg)
(cond ((eq? msg ’numer) num)

((eq? msg ’denom) den)
(else (error "Unknown op -- MAKE-RAT" msg)) ))

dispatch)

Compare this with the complex number implementation on page 186 of the text. Suppose
we are given analogous procedures make-integer and make-real. You are going to modify
make-rat, and write some auxiliary procedures, to achieve three goals:

(a) In the conventional and data-directed styles of programming, we could take an arbitrary
number and find out what type it is, by using the type-tag function. This function would
return a symbol such as rational or complex to identify the type of its argument. In the
message-passing implementation, a number is no longer a pair whose car is the type name.
We want a type function that will allow us to find out the type of a message-passing-style
number.

(b) For homework you created a raise operation that could be applied to a number to
convert it to the next higher type in the tower of types. You did this in the context of
data-directed programming, using a table. We want to implement this raise operation in
message-passing style. In particular, we want to allow a rational number to be raised to
type real.

(c) Once we have the idea of raising numbers, it makes sense that we should be able to
ask the same questions about a given number that we could ask about higher types. For
example, we’d like

(real-part (make-rat 3 4)) =⇒ 0.75
(imag-part (make-rat 3 4)) =⇒ 0

But we don’t want to have to re-implement all the messages for real numbers and complex
numbers within make-rat. Instead, if make-rat doesn’t recognize a message, it should
raise the number and send the message to the raised number.

Rewrite make-rat to meet these three goals, and write the procedures type (for
goal a) and raise (for goal b).

172



Problem 5 (Object oriented programming)

We are going to prepare a simulation of an FM car radio. To simplify the problem we’ll
restrict our attention to tuning, not to volume or balance or anything else a radio does.
This radio features digital tuning. There are six buttons that can be preset to particular
stations; for manual tuning, there are up and down buttons that move to the next higher
or lower frequency. (FM frequencies are measured in megahertz and have values separated
by 0.2: 88.1, 88.3, 88.5, 88.7, 88.9, 90.1, etc.) To simplify the problem further, we’ll ignore
the boundary problem of what to do when you’re at the lowest assigned FM frequency and
try to go down below that frequency. Just pretend you can keep going up or down forever.

Use the OOP language (define-class and so on).

(a) Create a button object class that accepts these messages:

set-freq! 93.3 sets the button’s remembered frequency
freq returns the remembered frequency

The initial frequency should be zero (because the buttons don’t have settings initially).

(b) Create a radio object class that has six buttons, numbered 0 through 5, and accepts
these messages:

set-button! 3 sets button 3 to the radio’s current frequency
push 3 sets the radio to button 3’s frequency
up sets the radio to the next higher frequency
down sets the radio to the next lower frequency
freq returns the radio’s current frequency

The radio’s initial frequency should be 90.7 MHz. Points to remember: Your radio has
to use six of your button objects; you needn’t check for invalid argument values in the
methods. Hint: Give your radio a list of six buttons, and use list-ref to get the one
you want.

173


