
Sample midterm 3 #2

Problem 1 (box and pointer).

What will the Scheme interpreter print in response to the last expression in each of the
following sequences of expressions? Also, draw a “box and pointer” diagram for the result
of each printed expression. If any expression results in an error, circle the expression
that gives the error message. Hint: It’ll be a lot easier if you draw the box and pointer
diagram first !

(let ((x (list 1 2 3)))
(set-cdr! (car x) 4)
x)

(let ((x (list 1 2 3)))
(set-cdr! x 4)
x)

(let ((x (list 1 2 3)))
(set-car! (cdr x) x)
x)

(define a ((lambda (z) (cons z z)) (list ’a)))
(set-cdr! (car a) ’(b))
a

189



Problem 2 (Assignment, State, and Environments).

In this problem you’re going to write a piece of a simplified Adventure game, not using our
OOP notation, just in regular Scheme. We are concentrating on the behavior of people,
so a place will just be represented as a room number. You are given a function next-room

that takes as arguments a room number and a direction; its result is the room where you
end up if you move in the given direction from the given room:

==> (next-room 14 ’South)
9

means that room 9 is south of room 14. You are to write a procedure make-player that
creates a player object. This object (i.e., a procedure) should accept messages like South

and should move from its current position in the indicated direction. It should remember
the new location as local state, and should also return the new location as its result. The
argument to make-player is the initial room:

==> (define Frodo (make-player 14))
FRODO
==> (Frodo ’South)
9
==> (Frodo ’South)
26

You must make each move relative to the result of the previous move, not starting from
the initial room each time!

Problem 3 (Drawing environment diagrams).

Draw the environment diagram resulting from evaluating the following expressions, and
show the result printed by the last expression where indicated.

> (define foo
(lambda (x f)

(if f
(f 7)
(foo 5 (lambda (y) (+ x y))))))

> (foo 3 #f)

190



Problem 4 (List mutation).

Write merge!, a procedure that takes two arguments, each of which is a list of numbers in
increasing order. It returns a combined, ordered list of all the numbers:

> (merge! (list 3 5 22 26) (list 2 7 10 30))
(2 3 5 7 10 22 26 30)

Your procedure must do its work by mutation, changing the pointers between pairs to
create the new combined list. The original lists will no longer exist after your procedure
is finished.

Note: Do not allocate any new pairs in your solution. Rearrange the existing pairs.

Problem 5 (Vectors).

Write a program rotate! that rotates the elements of a vector by one position. The
function should alter the existing vector, not create a new one. It should return the
vector. For example:

> (define v (make-vector 4))
> (vector-set! v 0 ’a)
okay
> (vector-set! v 1 ’b)
okay
> (vector-set! v 2 ’c)
okay
> (vector-set! v 3 ’d)
okay
> v
#(a b c d)
> (rotate! v)
#(d a b c)

191



Problem 6 (Concurrency).

(a) Suppose we say

> (define baz 10)
> (define s (make-serializer))

> (parallel-execute (s (lambda () (set! baz (/ baz 2))))
(s (lambda () (set! baz (+ baz baz)))))

What are the possible values of baz after this finishes?

(b) Now suppose that we change the example to leave out the serializer, as follows:

> (define baz 10)

> (parallel-execute (lambda () (set! baz (/ baz 2)))
(lambda () (set! baz (+ baz baz))))

What are all of the possible values of baz this time?

Problem 7 (Streams).

We want to change the stream abstraction so that an ordinary list can be used as a stream.
That is, we want the selectors stream-car and stream-cdr to accept either an ordinary
list or a stream as argument. Write the new versions of stream-car and stream-cdr.

192


