
UNIVERSITY OF CALIFORNIADepartment of Electrical Engineeringand Computer SciencesComputer Science DivisionCS61A P. N. Hil�ngerHighlights of GNU EmacsThis document describes the major features of GNU Emacs (called \Emacs" hereafter), acustomizable, self-documenting text editor. In the interests of truth, beauty, and justice|andto undo, in some small part, the damage Berkeley has done by foisting vi on an already-unhappy world|Emacs will be the o�cial CS61A text editor this semester.Emacs carries with it on-line documentation of most of its commands, along with a tutorialfor �rst-time users (see x7). Because this documentation is available, I have not attemptedto present a complete Emacs reference manual here.To run Emacs, simply enter the command emacs to the shell. Within Emacs, as describedbelow, you can edit any number of �les simultaneously, run UNIX shells, read and send mail,and run the Scheme interpreter to execute your programs. As a result, it should seldom benecessary to leave Emacs before you are ready to logout and seldom necessary to create newwindows.1 Basic ConceptsWe'll begin with some fundamental de�nitions and notational conventions.1.1 Bu�ers, windows, and what's in themAt any given time, Emacs maintains one or more bu�ers containing text. Each bu�er may,but need not, be associated with a �le. A bu�er may be associated with a UNIX process, inwhich case the bu�er generally contains input and output produced by that process (see, forexample, sections 8 and 10). Within each bu�er, there is a position called the point, wheremost of the action takes place.Emacs displays one or more windows into its bu�ers, each showing some portion of the textof some bu�er. A bu�er's text is retained even when no window displays it; it can be displayedat any time by giving it a window. Each window has its own point (as just described); whenonly one window displays a bu�er, its point is the same as the bu�er's point. Two windowscan simultaneously display text (not necessarily the same text) from the same bu�er with1

2 P. N. Hil�ngera di�erent point in each window, although it is most often useful to use multiple windowsto display multiple �les. At the bottom of each window, Emacs displays a mode line, whichgenerally identi�es the bu�er being displayed and (if applicable) the �le associated with it.At any given time, the cursor, which generally marks the point of text insertion, is in one ofthe windows (called the current window) at that window's point.1.2 CommandsAt the bottom of Emacs' display is a single echo area, displaying the contents of theminibu�er.This is a one-line bu�er in which one types commands. It is, for many purposes, an ordinaryEmacs bu�er; standard Emacs text-editing commands for moving left or right and for insertingor deleting characters generally work in it. To issue a command by name, one types M-x(\meta-x"; this notation is described below) followed by the name of the command and RET(the return key); the echo area displays the command as it is typed. It is only necessaryto type as much of the command name as su�ces to identify it uniquely. For example, torun the command for looking at a UNIX manual entry|for which the full command is M-xmanual-entry|it su�ces to type M-x man, followed by a RET.All Emacs commands have names, and you can issue them with M-x. You'll invoke mostcommands, however, by using control characters and escape sequences to which these com-mands are bound. Almost every character typed to Emacs actually executes a command. Bydefault, typing any of the printable characters executes a command that inserts that characterat the cursor. Many of the control characters are bound to commonly-used commands (seethe quick-reference guide at the end for a summary of particularly important ones). At anytime, it is possible to bind an arbitrary key or sequence of keys to an arbitrary command,thus customizing Emacs to your own tastes. Hence, all descriptions of key bindings in thisdocument are actually descriptions of standard or default bindings.1.3 Notations for special keysIn referring to non-graphic keys (control characters and the like), we'll use the followingnotations.ESC denotes the escape character.DEL denotes the delete character. On HP workstations, as we've set them up for this class,the `Backspace' key has the same e�ect.SPC denotes the space character.RET denotes the result of pressing the `Return' key. (Confusingly, the result of typing this intoa �le is not a return character (ASCII code 13), but rather a linefeed character (ASCIIcode 10). Nevertheless, Emacs distinguishes the two keys.) On the HP workstations,this is the wide key labelled \Enter" in the main section of the keyboard.

Highlights of GNU Emacs 3LFD denotes the result of typing the linefeed key. On the HP workstations, this is the tallkey labelled \Enter" in the numeric keypad at the far right of the keyboard.TAB denotes the tab (also C-i) key.C-� denotes \control-�"|the result of holding down the Control (or Ctrl) key while typing�.M-� denotes \meta-�," which one gets either by typing the two-character sequence ESC fol-lowed by �, or (on our HP workstations when running the X window system) holdingdown either Alt key while typing �.C-M-� denotes the result of typing the two-character sequence ESC C-�, or (on HP worksta-tions when running X) holding down both Control and Alt simultaneously with typing�).1.4 Command argumentsCertain commands take arguments, and take these arguments from a variety of sources. Anycommand may be given a numeric argument. To enter the number comprising the digitsd0d1 � � �dn as a numeric argument (d0 may also be a minus sign), type either `M-d0d1 � � �dn' or`C-ud0d1 � � �dn' before the command. When using C-u, the digits may be omitted, in whichcase `4' is assumed. The most common use for numeric arguments is as repetition counts.Thus, M-4 C-n moves down four lines and M-72 * inserts a line of 72 asterisks in the �le.Other commands give other interpretations, as described below. In describing commands, wewill use the notation ARG to refer to the value of the numeric argument, if present.When commands prompt for arguments, Emacs will often allow provide a completionfacility. When entering a �le name on the echo line, you can usually save time by typing TAB,which �lls in as much of the �le name as possible, or SPC which �lls in as much as possibleup to a punctuation mark in the �le name. Here, \as much as possible" means as much asis possible without having to guess which of several possible names you must have meant. Asimilar facility will attempt to complete the names of functions or bu�ers that are promptedfor in the echo line.1.5 ModesThe binding of keys to commands depends on the bu�er that currently contains the cursor.This allows di�erent bu�ers to respond to characters in di�erent ways. In this document, wewill refer to the set of key bindings in e�ect within a given bu�er as the (major) mode of thatbu�er (the term \mode" is actually somewhat ill-de�ned in Emacs). A set of key bindingsthat simply modi�es a few characteristics is called a minor mode.Emacs will automatically establish a mode for bu�ers containing certain �les dependingon the name of their associated �le. Thus, bu�ers start out in `C' mode for �les whose namesend in `.c' or `.h'; `C++' mode for .cc or .C; or `Scheme' mode (see x9) for .scm. Thesemodes a�ect the behavior of the TAB key, for example, causing program text to be indented

4 P. N. Hil�ngeraccording to the conventions for a particular programming language. The shell bu�er runs inShell mode, which (among many other things) causes the RET key to send the last line typedto the shell. Files with unclassi�able names generally start in Fundamental mode.There is one useful minor mode that's worth knowing about.M-x auto-fill-mode toggles (reverses the setting) of auto-�ll mode, which by default isusually o�. In auto-�ll mode, lines get broken automatically as they are being typedwhen they get too long. When you are typing comments in C programs, auto-�ll modewill automatically start a new comment on the next line when the current line gets nearto �lling up.2 Important special-purpose commandsC-g quits the current command. Generally useful for cancelling a M-x-style command or othermulti-character command that you have started entering. When in doubt, use it.C-x C-c exits from Emacs. It prompts (in the echo area) if there are any bu�ers that havenot been properly saved.C-x u undoes the e�ects of the last editing command. If repeated, it undoes each of thepreceding commands in reverse order (there is a limit). This is an extremely importantcommand; be sure to master it. This does not undo other kinds of commands; thecursor may end up at some rather odd places.C-l redraws the screen, and positions the current line to the center of the current window.3 Basic EditingThe simple commands in this section will enable you to do most of the text entering andediting that you'll ordinarily need. Periodic browsing through the on-line documentation (seesection 7.3) will uncover many more.3.1 Simple text.To enter text, simply position the cursor to the desired bu�er and character position (usingthe commands to be described) and type the desired text. Carriage return behaves as youwould expect. To enter control characters and other special characters as if they were ordinarycharacters, precede them with a C-q.3.2 Navigation within a bu�er.The following commands move the cursor within a given bu�er. Later sections describe howto move around between bu�ers.C-f moves forward one character (at the end of a line, this goes to the next).

Highlights of GNU Emacs 5C-b moves backward one character.M-f moves forward one \word."M-b moves backward one word.C-e moves to the end of the current line.C-a moves to the beginning of the current line.C-M-f moves forward one Lisp (Scheme) S-expression.C-M-b moves backward one Lisp (Scheme) S-expression.M-a moves backward to next beginning-of-sentence. The precise meaning of \sentence" de-pends on the mode.M-f moves backward to next beginning-of-paragraph. The precise meaning of \paragraph"depends on the mode.M-e moves to the next end-of-sentence.M-g moves to the next end-of-paragraph.C-n moves down to the next line (at roughly the same horizontal position, if possible).C-p moves up to the previous line.C-v scrolls the text of the current window up roughly one window-full (i.e., exposes text laterin the bu�er). If ARG is supplied, it scrolls up ARG lines.M-v scrolls the text of the current window down roughly one window-full (i.e., exposes textearlier in the bu�er). If ARG is supplied, it scrolls down ARG lines.C-M-v scrolls up the text in another window (if any) roughly one window-full. If ARG issupplied, it scrolls up ARG lines.M-< moves to the beginning of the current bu�er, after setting the mark (see x3.3) to thecurrent point. If ARG is supplied, it moves to a point ARG=10 of the way through thebu�er, instead of the beginning.M-> moves to the end of the current bu�er. If ARG is supplied, it moves to a point ARG=10of the way back from the end of the bu�er, instead of the end.M-g goes to the line number given by the argument (prompts for a number in the echo line,if you haven't supplied an argument).M-x what-line displays the number of the current line in the current bu�er.

6 P. N. Hil�nger3.3 RegionsIn addition to a point (marked by the cursor in the current window), each bu�er may containa mark. Everything between the point and mark is called the current region. The currentregion typically delimits text to be manipulated by certain commands.C-@ sets the mark at the current point, and pushes the previous mark on a ring of marks. IfARG is present, it instead puts the point at the current mark and pops a new mark o�this ring.C-SPC is the same as C-@.C-x C-x exchanges the point and the mark.M-@ sets the mark after the end of the next word.M-h sets the region (point and mark) around the current paragraph.C-x h sets the region (point and mark) around the entire current bu�er.3.4 DeletionDEL deletes the character preceding the cursor. At the beginning of a line, it deletes thepreceding end-of-line character, thus joining the current and preceding lines.M-DEL deletes the word preceding the cursor. The deleted word moves to the kill bu�er,described later.C-d deletes the character under the cursor (which can be the end-of-line).M-d deletes the word following the cursor.C-k deletes the rest of the line following the cursor. If the cursor is on the end-of-line, deletethe end-of-line. The deleted line moves to the kill bu�er.M-n deletes all horizontal blank space on either side of the cursor.M-SPC deletes all but one horizontal blank space surrounding the cursor.C-x C-o on non-blank line, deletes all immediately following blank lines; on isolated blankline, deletes the line; on other blank lines, deletes all but one.C-w deletes everything between the point and the mark, moving the deleted text to the killbu�er.M-w copies everything between point and mark to the kill bu�er, without actually deleting it.

Highlights of GNU Emacs 73.5 Insertion and the kill bu�erSeveral of the preceding commands mention the kill bu�er. Text that is deleted is appendedto the end of the current kill bu�er, and can later be retrieved and inserted (\pasted" or\yanked") elsewhere in the text (even in another bu�er di�erent from its original source).Normally, each time a command that does not append to the kill bu�er is executed, thecurrent kill bu�er is saved in a ring of kill bu�ers, and the next deletion command starts withan empty kill bu�er. Hence, to move a sequence of lines, one can issue a sequence of C-kcommands, with no intervening commands, move to the desired destination, and yank themback (with C-y).C-y inserts the contents of the current kill bu�er at the cursor, and moves cursor to end ofinserted text. If a numeric value of ARG is supplied, inserts the ARGth most recent killbu�er in the ring.C-u C-y inserts current kill bu�er, as for C-y, but leaves point unchanged.M-y when issued immediately after a C-y or M-y, deletes the text inserted by the C-y or M-yand substitutes the text from the next kill bu�er in sequence in the kill ring.C-M-w causes the next command, if a kill command, to append to the end of previous killbu�er, rather than starting with a new one. This allows you, for example, to deletelines from several di�erent places and then yank them back into one place.3.6 IndentationIndentation generally depends on the mode of the bu�er. When a bu�er is associated with a`.scm' �le, in particular, it is by default in Scheme mode, in which the standard indentationreferred to below is appropriate for Scheme source programs.TAB indents as appropriate for the current mode. In text �les, this is just an ordinarytypewriter-style tab command. In Scheme source �les, it indents to the appropriatepoint for a standard set of indentation conventions.LFD is the same as RET TAB. Thus, if in typing in a Scheme program, you end each line withLFD instead of RET, your program will be indented as you enter it.M-; indents for a comment according to the current mode. In Scheme mode, this inserts ;.M-LFD when used inside a comment, will close the comment, if necessary, go to a new line,and start a properly-indented comment on that line.C-x TAB indents the current region \rigidly" by ARG spaces to the right (default 4). Negativearguments indent to the left. Tabs are correctly counted as the appropriate number ofblanks.C-M-n indents the current region according to the current mode. For an improperly-indentedScheme program, for example, this will correct all the indentation within the region.

8 P. N. Hil�nger3.7 Miscellaneous manipulationsC-o inserts a newline after the cursor. This has the same e�ect as RET C-b (return and thenback up one character).C-t transposes the character under the cursor with the preceding character. If an end-of-lineis under the cursor, transposes the preceding two characters.M-t transposes the next word that begins left of the cursor with the word following.C-x C-t transposes the current and preceding lines.M-c capitalizes the next word (making all characters other than the �rst lower case).M-u converts the next word to all upper case.M-l converts the next word to all lower case.3.8 Using the mouseWhen you are using Emacs with the X window system, you may use the mouse for simplepositioning, text deletion, and text insertion. The three mouse buttons indicate the operationto be performed, and the mouse pointer (the slanting arrow, which we'll usually just call thepointer) usually indicates the position at which to perform it. In the following, the mousebuttons are called `LB', `MB', and `RB', for left button, middle button, and right button.We'll use C-B to indicate the result of holding down \Control" while pushing button B.LB places the point and mark at the position (and in the bu�er) indicated by the pointer.You may then drag the mouse with LB depressed; this leaves the mark at the point youpressed LB and moves the point (and cursor) to the point at which you release LB, thusde�ning a new current region.RB �rst extends the current region to include all the text between the existing current region(or the point, if there is no current region) and the pointer. Next, it copies the textin the current region into the kill bu�er, as for M-w above. When clicked twice for thesame text, it also deletes the text. Finally, it also copies the text into something calledthe window-system cut bu�er. Text in the window-system cut bu�er may be \pasted"(inserted) by MB, as described below, not only into Emacs bu�ers, but also into anyother X-windows bu�er.MB pastes (inserts) text from the window system cut bu�er at the point indicated by themouse, and puts the cursor at the beginning and the mark at the end of the insertedtext. This is somewhat like a mouse version of C-y. However, since it takes its textfrom the window system cut bu�er (common to all windows on the screen), it allowsthe insertion of text from or to a window other than the one running Emacs.

Highlights of GNU Emacs 9C-LB Displays a menu of bu�ers to move to and allows you to select one (a mouse version ofC-x b, described later).You may also use the mouse to select from menus that sprout from the menu bar at thetop of your Emacs screen. The content of these menus depends on the kind of bu�er you arein.4 Context searchesThe search commands provide a convenient way to position the cursor quickly over longdistances. One can search either for speci�c strings or for patterns speci�ed by regular ex-pressions. Both kinds of searches are carried out incrementally ; that is, as you type in thetarget string or pattern, the cursor's position is continually changed to point to the �rst pointin the bu�er (if any) that matches what you have typed so far.C-s searches forward incrementally.C-s C-s is as for C-s, but initialize the search string to the one used in the last string search.C-M-s is as for C-s, but searches for a regular expression.C-M-s C-s As for C-M-s, but initialize the search pattern to the last pattern used.C-r Search backward incrementally.C-r C-r As for C-r, but initialize the search string as for C-s C-s.M-x occur prompts for a regular expression and lists each line that follows the point andcontains a match for the expression in a bu�er. If you give an ARG, it will list thatnumber of lines of context around each match.M-x count-matches prompts for a regular expression and displays in the echo area the num-ber of lines following the point that contain a match for it.M-x grep prompts for arguments to the UNIX grep utility (which searches �les for linesmatching a given regular expression) and runs it asynchronously, allowing other editingwhile the search continues. See the command C-x ` in x10.1 for a description of howto look at each of the lines found in turn.M-x kill-grep stops a grep that was started by M-x grep.As you type the search string or pattern, the cursor moves in the appropriate directionto the �rst matching string, if any (speci�cally, to the right end of that string for a forwardsearch and to the left end for a reverse search). By default, the case (upper or lower) ofcharacters is ignored as long as the pattern you type contains no upper-case characters; `a'will each match either `a' or `A'. When the pattern contains at least one upper-case character,the search becomes case-sensitive; `a' will not match `A', nor will `A' match `a'. If matching

10 P. N. Hil�ngerfails at any point, you will receive a message to that e�ect in the echo area. While enteringa search string or pattern, certain command characters have altered e�ects, as follows.RET ends the search, leaving the point at the string found, and setting the mark at the originalposition of the point.DEL undoes the e�ect of the last character typed (and not previously DELed), moving thesearch back to wherever it was previously.C-g aborts the search and returns the cursor to where it was at the beginning of the search.C-q quotes the next character. That is, it causes the next character to be added to the searchstring or pattern as an ordinary character, ignoring any control action it might normallyhave. Use this, for example to search for a C-g character or, in a regular-expressionsearch, to search for a `.'.C-s begins searching forward at the point of the cursor for the next string satisfying thesearch string or pattern. If used in a reverse search, therefore, this reverses the senseof the search. If used at the point of a failing search, this starts the search over at thebeginning of the bu�er (\wraps around").C-r is like C-s, but searches in the reverse direction, and can reverse the direction of a forwardsearch.C-w adds the next word beginning at the cursor to the end of the search string or pattern. Itfollows that this has the e�ect of moving the cursor forward over that word.LFD adds the rest of the line to the end of the current search string or pattern.Other control characters terminate the search, and then have their ordinary e�ect.Ordinary searches (C-s and C-r) treat all ordinary characters as search characters. Forregular-expression searches, several of these characters have special signi�cance. See also theon-line documentation.. matches any character, except end-of-line.^ matches the beginning of a line (that is, it matches the empty string, and only at thebeginning of a line.)$ matches the end of a line.[� � �] matches any of the characters between the square brackets. A range of characters maybe denoted using `-', as in [a-z0-9], which denotes any digit or letter. To include `]'as one of the characters, put it �rst. To include `-', use `---'. To include `^', do notmake it the �rst character.[^� � �] matches any of the characters not included in the `� � �'. Thus, if end-of-line is not oneof the characters, this will match it.

Highlights of GNU Emacs 11* when following another regular expression, denotes zero or more occurrences of that reg-ular expression|in other words, an optional occurrence. This character applies to theimmediately preceding regular expression; it has \highest precedence." There are spe-cial parentheses (see below) for cases where this is not what you want. Hence, thepattern `.*' denotes any number of characters, other than end-of-line. The pattern`[a-z][a-z0-9]*' denotes a letter optionally followed by string of letters, digits, andunderscores.+ is like `*', but denotes at least one occurrence. Thus, `[0-9]+' denotes an integer literal.? is like `*', but denotes zero or one occurrence. Hence, the pattern `[0-9]+,?' denotes aninteger literal optionally followed by a comma.n(� � �n) groups the items `� � �'. Hence, `n([0-9]+,n)?' denotes an optional string consistingof an integer literal followed by a comma. The pattern `n(01n)* denotes zero or moreoccurrences of the two-character string `01'.nb matches the empty string at the beginning or end of a word. Hence, `nbringnb' matches\ring" standing alone, but not \string" or \rings".nB matches the empty string, provided that it is not at the beginning or end of a word.nj matches a string matching either the regular expression to its left or to its right. Use `n(n)'to limit what regular expressions it applies to. Thus, `nbf[a-z]+nj[0-9]+' matches anyinteger literal or any word that begins with `f', while `nbfn([a-z]+nj[0-9]+n)' matchesany \word" that begins with `f' and continues with either all letters or with all digits.nn where n is any digit, denotes the string that matched the pattern within the nth set of`n(n)' brackets in the current regular expression. Thus, `nbn([0-9]+n), *n1' matchesany integer literal that is followed by a comma, an optional space, and a repetition ofthe same literal; it matches \23, 23" and \10,10", but not \23, 24".5 ReplacementThe following commands allow you to do systematic replacement of one string or pattern withanother within a given bu�er.M-% performs a query-replace operation. It prompts for a search string and a replacementstring. Terminate each of the two with a RET. The command will then display each in-stance of the search string found, and prompt for its disposal. The options are describedbelow. If ARG is supplied, it will only match things surrounded by word boundaries, sothat if the search string is \top", there will be no replacement inside the string \stop"or \topping".M-X query-replace-regexp is the same as M-%, but replaces patterns designated by regularexpressions, rather than just simple strings. The replacement string may contain in-stances of `nn', for n a digit, which, as described in the section on regular expressions,

12 P. N. Hil�ngerdenotes the string matched by the nth regular expression in `n(n)' braces in the searchstring. Thus, for example, the search pattern `(n([a-z][a-z0-9]+n))' with the re-placement pattern `[n1]' will replace each C identi�er surrounded by parentheses bythe same identi�er surrounded by square brackets.By default, the replacement will preserve the case of the letters replaced if the search string orpattern has no upper-case letters, and otherwise will use the case supplied in the replacementstring.At each instance of the search string or pattern, you are prompted for an action. Hereare some common ones.SPC replaces the indicated occurrence and goes to the next.DEL keeps the indicated occurrence unchanged and go to the next.RET exits with no further replacements., makes one replacement, but waits for another SPC or DEL before moving to the next match.. makes one replacement and then exits.! replaces all remaining occurrences without prompting again.? prints a help message.C-r enters a recursive edit level. That is, you are put back in ordinary Emacs at the pointof the current occurrence and can edit in the usual manner. Typing C-M-c then goesback to the query-replace command.y same as SPC.n same as DEL.q same as RET.In addition to replacement, there are two often-useful commands for deleting selectedlines.M-x delete-matching-lines prompts for a regular expression and deletes (without prompt-ing) each line after the point that contains a match for it.M-x delete-non-matching-lines prompts for a regular expression and deletes each lineafter the point that does not contain a match for it.6 Files, bu�ers, and windowsEach bu�er has a name. By default, bu�ers that are associated with particular �les have thename of that �le (not including the name of the directory containing it), possibly followed bya number in angle brackets to distinguish multiple �les (from di�erent directories with thesame name.

Highlights of GNU Emacs 136.1 Loading into and storing from bu�ersC-x C-f prompts for a �le name and sets the current window to displaying that �le in a bu�erhaving the same name. If a bu�er displaying that �le already exists, this commandmerely switches the window to that bu�er. If the �le does not exist, the bu�er isinitially empty. The bu�er is subsequently associated with the �le. This process iscalled �nding the �le.C-x 4 C-f prompts for a �le name, goes to the next window on the screen (creating a newone, if there is only one), and then acts like C-x C-f.C-x C-s saves the current bu�er in its associated �le, if the bu�er has been modi�ed. Ifthe �le being saved exists, then the old version is �rst renamed to have a tilde (~)appended to its name, if no such �le yet exists.C-x C-w prompts for a �le name and saves the current bu�er into that �le. Generally, it ispreferable and safer to use C-x C-f or C-x 4 C-f and then use C-x C-s, but sometimesthis command is handy.C-x i prompts for a �le name and inserts that �le at the point. It does not associate theinserted �le with the current bu�er.M-x revert-buffer throws away the contents of the current bu�er and restores the contentsof the associated �le. It will ask you to con�rm these actions before taking them.6.2 Manipulating bu�ers and windowsC-x o makes another window on the screen (if any) the current window.C-x 0 deletes the current window, expanding another window to take its place. The bu�erbeing displayed in the current window is not a�ected.C-x 1 makes the current window the only window on the screen, deleting all others. Thebu�ers being displayed in the deleted windows are not a�ected.C-x 2 splits the current window into two vertically (one on top of the other), both displayingthe same bu�er.C-x 3 splits the current window into two horizontally (beside each other), each displayingthe same bu�er.C-x b prompts for a bu�er name and switches the current window to that bu�er. Whentrying to move to a bu�er associated with a �le, it is better to use the �le �ndingcommands.C-x C-b lists the active bu�ers in a window.

14 P. N. Hil�ngerC-x k prompts for a bu�er name and deletes that bu�er, displaying some other bu�er in thecurrent window. You will be warned if the contents of the bu�er have been modi�edand not yet saved.6.3 Auto-saving and recoveryBu�ers that are associated with �les are periodically saved (\auto-saved") in �les whose namesbegin and end with `#'. After a crash, you can return yourself to the point at which the lastauto-save of a given �le took place by using the following command in place of C-x C-f orC-x 4 C-f.M-x recover-file prompts for a �le name, F . It then tries to recover the contents of that�le from an auto-save �le (named #F#) in the same directory, if such a �le exists andis younger than the any �le named F in the directory. After completing this command,C-x C-s will save the recovered �le to F .7 On-line documentation7.1 UNIX documentationEmacs has a simple interface to the standard UNIX `man' command, which provides docu-mentation to UNIX commands:M-x manual-entry prompts for a topic (a UNIX command or subprogram name, usually),and displays the man page for it, if any, in a bu�er. The bu�er is a perfectly ordinarybu�er; you may put the cursor in it and move around using ordinary Emacs navigationalcommands.7.2 Basic Emacs helpThe help command, C-h, provides a variety of useful documentation. The character followingC-h indicates the speci�c kind of service desired; the descriptions of several of these follow.C-h a prompts for a pattern (regular expression) and displays a bu�er containing all com-mands whose name contains a match to that pattern, together with a short descriptionand the key sequence to which the command is bound, if any.C-h b displays a bu�er containing all bindings of commands to keys. The display is in twoparts: the global bindings that apply by default in any bu�er, and the local bindingsthat apply only when one is in the current bu�er, and override any global binding inthat bu�er.C-h f prompts for a function name and then displays its full documentation in a bu�er.C-h C-h documents the help command itself.C-h i runs the `info' documentation reader (see below).

Highlights of GNU Emacs 15C-h k prompts for a command key sequence and describes the function invoked by thatsequence.C-h m prints documentation about the mode of the current bu�er.C-h t puts you into an Emacs tutorial.C-h w prompts for a function name and tells what key, if any, invokes it.7.3 The info browserThe key sequence C-h i invokes the documentation browsing system, info. Actually, thisis little more than a bu�er with some special bindings to the keys. Aside from the specialbindings, the ordinary Emacs commands will work while inside the info bu�er. At anytime, the info bu�er, whose name is *info*, contains a node, a section of text documentingsomething. These nodes are connected to each other in such a way that one can move quicklyfrom one node to another that covers a related topic. Some nodes contain menus, indicatedby lines that begin* Menu:The lines after this give the names of other nodes, and descriptions of their contents. Onesuch entry reads as follows.* Commands:: Named functions run by key sequences to do editing.The word(s) between the asterisk and the double-colon name another node. The followingkey commands, de�ned only when in the bu�er *info*, allow one to move through thedocumentation. They are only a few of the ones provided.m prompts for the name of a node from the menu in the current bu�er and displays thatnode. You need only enter enough to identify the desired entry unambiguously; case isignored.f follows a cross-reference. Cross references are indicated in the text of a node by a phraseof the form * Note foo::". One follows them by typing `f' followed by the name (foo)of the referenced node, as for the `m' command.l goes back to the last-visited node.u goes up to the parent of this node. The de�nition of parent is actually arbitrary, but isusually a node that contains the current one in its menu.d returns to the top (initial) node of the Info system.q suspends the browser and goes back to where you were when you issued C-h i.. returns to the beginning of the text of the current node.? furnishes help about the browser commands.

16 P. N. Hil�nger8 The shellIt is possible to run a UNIX shell under Emacs, and this allows any number of useful e�ects.The command M-x shell moves to a bu�er named *shell* that is running a UNIX shell(creating it if necessary). Anything typed into this bu�er is sent to the shell, just it wouldbe outside of Emacs. Any output produced as a result of the commands sent to the shell isplaced at the end of the shell bu�er. Because the shell is running in an Emacs window, thecontents of the shell can be edited and navigated freely, and the entire record of the inputand output to the shell is available at all times. A few keys have slightly di�erent-from-usualmeanings in the shell bu�er.RET sends whatever line the cursor is on to the shell and moves to the end of the shell bu�er.Hence, one can repeat a command by placing the cursor anywhere in it and typing RET.TAB attempts to complete the immediately preceding �le name.C-c C-c is the same as a single C-c outside Emacs.C-c C-d is the same as C-d (end-of-�le) outside Emacs.C-c C-z is the same as C-z outside Emacs.C-c C-u kills the current line of input to the shell.It is sometimes useful to run a single shell command over a region of text in a bu�er.M-j prompts for a shell command and executes it, giving the current region as the standardinput. If the M-j is preceded by C-u, the output of the command replaces the region.Otherwise, the output goes to a separate bu�er. For example, to sort the lines in thecurrent region, enter the command C-u M-j sort.9 Running Scheme under EmacsThe best way to run Scheme from a workstation is to do so through Emacs. Just as youcan create an Emacs bu�er for communicating with a UNIX shell (x8), you can also do so tocommunicate with a Scheme interpreter. Not only can you interact with the interpreter, butyou can also feed �les or de�nitions that you are editing to a running interpreter convenientlywithout having to load them explicitly.The command M-x run-scheme moves to a bu�er named *scheme* that is running theScheme interpreter, creating this bu�er if necessary. Each line that you type into this bu�ergets sent to the interpreter, just as if you had typed it in while running the interpreteroutside of Emacs. Any output from the interpreter in response to your input is appended tothe *scheme* bu�er.The usual way to create and execute a Scheme program is as follows.

Highlights of GNU Emacs 17� Using Emacs, create a �le to contain your program (or load one that you've alreadystarted) using C-x C-f or C-x 4 C-f; let's suppose the �le is named something.scm (sothat within Emacs, it lives in a bu�er of the same name). We have con�gured Emacs sothat any �le ending in .scm gets edited in Scheme mode, which gives a special meaningto the keys TAB, LFD, and others described below.� Edit or add to your �le as needed. When typing de�nitions into the Emacs bu�erfor something.scm, using the TAB key at the beginning of each line will automaticallyindent that line properly. Alternatively, you can end each line by typing LFD instead ofRET; in Scheme mode, LFD is short for RET TAB. If in the process of editing the bu�er,you mess up the indentation of a de�nition, place the cursor at the beginning of thede�nition (on or before the opening `(') and type M-C-q, which will correctly indent theentire de�nition.� Make sure you have a Scheme bu�er (named *scheme*) running under Emacs (M-xrun-scheme) will create one if you don't).� In the bu�er for something.scm, type C-c M-l to load your program into the runningScheme interpreter. Emacs will ask you for a �le name; just type RET, which willuse something.scm. If you haven't saved your changes to something.scm, Emacs willask if it should do it for you. The e�ect of C-c M-l is to send the command (load"something.scm") to the Scheme interpreter and also to put the cursor in the *scheme*bu�er, ready to enter Scheme expressions. You'll see the usual response to the loadcommand in the *scheme* bu�er.� Sometimes|especially when you are correcting a �le whose contents you've alreadyloaded into Scheme|it is convenient to send just a single revised de�nition to theScheme interpreter. To so do, place the cursor at the beginning of the de�nition (on orbefore the opening `(') and type C-c M-e. This also puts you into the Scheme bu�er.Here is a concise summary of the Scheme-related commands. These commands are alsoavailable from the menu bar. With the exception of M-x commands, all of these commandsare in e�ect only in bu�ers that are in Scheme mode (normally, those containing �les whosename ends in .scm).M-x run-scheme when used for the �rst time, creates a bu�er named *scheme* and runs theScheme interpreter in it, displaying input from you and output from the interpreter. Ifthe bu�er already exists, this command simply moves to that bu�er.C-c C-z puts the cursor in the *scheme* bu�er.C-c M-e sends the de�nition after the cursor to Scheme (that is, it copies it the *scheme*bu�er and then sends it to the Scheme interpreter that attached to that bu�er). Thecommand also places the cursor at the end of the *scheme* bu�er.C-c C-e is the same as C-c M-e, but leaves the cursor where it is.

18 P. N. Hil�ngerC-c M-l loads an entire �le into Scheme Prompts for a �le name; the default is the currentbu�er's �le. Puts the cursor at the end of the *scheme* bu�er.C-c C-l is the same as C-c M-l, but leaves the cursor where it is.C-c M-r sends all the text in the current region to Scheme and puts the cursor at the end ofthe *scheme* bu�er.C-c C-r is the same as C-c M-r, but leaves the cursor where it is.M-C-q indents the de�nition after the cursor according to the usual rules for indenting Schemeexpressions.M-C-n indents all Scheme expressions in the current region.TAB indents the current line of Scheme code as appropriate for the surrounding context.LFD is the same as RET TAB.10 Compiling, debugging, and tags[This section is not relevant to CS61A.] Emacs provides rather nice ways of compiling pro-grams, correcting any compilation errors, and debugging the results. It is so much moreconvenient than entering compilation commands directly from a shell that there is no excusenot to use it.10.1 CompilationM-x compile prompts for a shell command, and then executes that command in a specialbu�er, named *compilation*. The current �le at the time the M-x compile is issueddetermines the directory in which the shell command executes. The default commandis simply make -k. Assuming you follow the convention of putting an appropriate makeinput �le named makefile or Makefile in each source directory, this command willgenerally do the right thing. While the compilation proceeds, you are free to edit or usethe *shell* bu�er.C-x ` �nds the next error message in the bu�er *compilation* (if any), �nds the source �lesand line referred to by the error message, and displays the error message in one windowand the source �le in another. Thus, after a compilation is complete (actually, even whileit proceeds), you can step through the error messages produced, going automaticallyto the o�ending points in the source �le so that they can be corrected. The bu�er*compilation* also contains the output from the M-x grep command described in x4.M-x kill-compiler cancels a compilation started by M-x compile, if any.

Highlights of GNU Emacs 1910.2 Using GDB under Emacs[This section is not relevant to CS61A.] The GNU debugger, GDB, is an interactive source-level debugger for C and several other languages. It can be run under Emacs, which providesa few rather nifty additional features. Full on-line documentation of gdb is available usingthe C-h i command in Emacs. The command M-x gdb will prompt for an executable �lename, and then run GDB on that �le, displaying the interaction in a bu�er that acts muchlike a shell bu�er described previously. Within that bu�er, however, several commands havea slightly di�erent meaning. In addition, whenever GDB displays the current position in theprogram (for example, after a step, at a breakpoint, or after an interrupt), Emacs will try todisplay the indicated source �le and line in another window, with an arrow (`=>') pointing atthe corresponding line in the source text (this arrow is not actually in the �le being displayed).The following commands are peculiar to GDB bu�ers.C-c C-n performs a GDB `next' command (step to next line in the source program).C-c C-s performs a GDB `step' command (step to next line in the source program to beexecuted, stopping at the beginning of any procedure that gets called.)C-c C-i performs a GDB `stepi' command (step to next machine-language instruction|notusually used unless you are programming in assembly language.C-c < performs a GDB `up' command (go up to procedure that called current one).C-c > performs a GDB `down' command (opposite of `up').C-c C-r performs a GDB `�nish' command (continues from last breakpoint).C-c C-b set a breakpoint at the current position in the program (as indicated by the positionof the `=>' arrow).C-c C-d delete a breakpoint (if any) at the current position in the program (as indicated bythe position of the `=>' arrow).In addition, within any source �le bu�er, there is the following command.C-x SPC puts a break point at the point in the program indicated by the cursor.10.3 TagsIn UNIX terminology, a tag table is an index that tells how to �nd the de�nition of anycertain identi�ers (`tags') de�ned in some collection of source �les. In e�ect, it provides asmart, multi-�le search that is particularly useful when navigating in non-trivial directoriesof source �les. Typically, you set things up by going into the directory containing the sourcetext to be indexed and issuing the UNIX commandetags options �les

20 P. N. Hil�ngerwhere �les is a list of all the source �les that need to be indexed. This creates a �le named`TAGS' containing the tag table. For C programs, the tags are the names of functions de�nedin the named source �les. The -t option causes etags to record typedef declarations as well.The tag table produced is organized in such a way that simple edits to a source �le will notinvalidate it. The following Emacs commands deal with tag tables.M-x visit-tags-table prompts for the name of a tags table �le, and uses its contents infuture tag-related searches.M-. prompts for a tag and then positions the current window in the �le containing its �rstde�nition and puts the cursor on that de�nition. You may also give a null response(just RET), in which case the word before or around the point is used as the tag.C-u M-. �nds the next alternate de�nition of the last tag speci�ed.C-x 4 . is the same as M-., but displays the text containing the tag in the other windowinstead of the current one.M-x tags-search prompts and searches for a regular expression as for C-M-s, but is does anon-incremental search through all the �les given in the currently-visited tag table.M-x tags-query-replace acts like M-Q, but looks through all the �les given in the currently-visited tag table.M-, restarts the last tags-search or tags-query-replace from the current location of thepoint.M-x tags-apropos prompts for a regular expression and displays a list of all tags in thecurrently-visited table that match it.11 But wait; there's more!As indicated at the beginning, this is not a complete reference manual. It has not coveredscrolling sideways, tab setting, the mail system, the Emacs internal Lisp dialect, automaticabbreviation, the spelling checker, the directory editor, the change-log editor, or how toreplace all groups of lines of your program that are indented more than ARG spaces by`: : :'1. You can learn about these and other topics by using C-h i. You might also try typingC-h f SPC C-x o, which creates a bu�er containing the names of all Emacs functions andthen puts the cursor there so that you can scroll through and look for likely-sounding names.Just use it. Every session is an adventure.1You probably think I'm kidding, don't you? Guess again.

