
Revised5 Report on the Algorithmic LanguageSchemeRICHARD KELSEY, WILLIAM CLINGER, AND JONATHAN REES (Editors)H. ABELSON R. K. DYBVIG C. T. HAYNES G. J. ROZASN. I. ADAMS IV D. P. FRIEDMAN E. KOHLBECKER G. L. STEELE JR.D. H. BARTLEY R. HALSTEAD D. OXLEY G. J. SUSSMANG. BROOKS C. HANSON K. M. PITMAN M. WANDDedicated to the Memory of Robert Hieb20 February 1998SUMMARYThe report gives a de�ning description of the program-ming language Scheme. Scheme is a statically scoped andproperly tail-recursive dialect of the Lisp programminglanguage invented by Guy Lewis Steele Jr. and GeraldJay Sussman. It was designed to have an exceptionallyclear and simple semantics and few di�erent ways to formexpressions. A wide variety of programming paradigms, in-cluding imperative, functional, and message passing styles,�nd convenient expression in Scheme.The introduction o�ers a brief history of the language andof the report.The �rst three chapters present the fundamental ideas ofthe language and describe the notational conventions usedfor describing the language and for writing programs in thelanguage.Chapters 4 and 5 describe the syntax and semantics ofexpressions, programs, and de�nitions.Chapter 6 describes Scheme's built-in procedures, whichinclude all of the language's data manipulation and in-put/output primitives.Chapter 7 provides a formal syntax for Scheme written inextended BNF, along with a formal denotational semantics.An example of the use of the language follows the formalsyntax and semantics.The report concludes with a list of references and an al-phabetic index.

CONTENTSIntroduction . 21 Overview of Scheme . 31.1 Semantics . 31.2 Syntax . 31.3 Notation and terminology 32 Lexical conventions . 52.1 Identi�ers . 52.2 Whitespace and comments 52.3 Other notations . 53 Basic concepts . 63.1 Variables, syntactic keywords, and regions 63.2 Disjointness of types 63.3 External representations 63.4 Storage model . 73.5 Proper tail recursion 74 Expressions . 84.1 Primitive expression types 84.2 Derived expression types 104.3 Macros . 135 Program structure . 165.1 Programs . 165.2 De�nitions . 165.3 Syntax de�nitions . 176 Standard procedures . 176.1 Equivalence predicates 176.2 Numbers . 196.3 Other data types . 256.4 Control features . 316.5 Eval . 356.6 Input and output . 357 Formal syntax and semantics 387.1 Formal syntax . 387.2 Formal semantics . 407.3 Derived expression types 43Notes . 45Additional material . 45Example . 45References . 46Alphabetic index of de�nitions of concepts,keywords, and procedures 48

2 Revised5 Scheme INTRODUCTIONProgramming languages should be designed not by pilingfeature on top of feature, but by removing the weaknessesand restrictions that make additional features appear nec-essary. Scheme demonstrates that a very small number ofrules for forming expressions, with no restrictions on howthey are composed, su�ce to form a practical and e�cientprogramming language that is exible enough to supportmost of the major programming paradigms in use today.Scheme was one of the �rst programming languages to in-corporate �rst class procedures as in the lambda calculus,thereby proving the usefulness of static scope rules andblock structure in a dynamically typed language. Schemewas the �rst major dialect of Lisp to distinguish proceduresfrom lambda expressions and symbols, to use a single lex-ical environment for all variables, and to evaluate the op-erator position of a procedure call in the same way as anoperand position. By relying entirely on procedure callsto express iteration, Scheme emphasized the fact that tail-recursive procedure calls are essentially goto's that passarguments. Scheme was the �rst widely used program-ming language to embrace �rst class escape procedures,from which all previously known sequential control struc-tures can be synthesized. A subsequent version of Schemeintroduced the concept of exact and inexact numbers, anextension of Common Lisp's generic arithmetic. More re-cently, Scheme became the �rst programming language tosupport hygienic macros, which permit the syntax of ablock-structured language to be extended in a consistentand reliable manner.BackgroundThe �rst description of Scheme was written in 1975 [28]. Arevised report [25] appeared in 1978, which described theevolution of the language as its MIT implementation wasupgraded to support an innovative compiler [26]. Threedistinct projects began in 1981 and 1982 to use variantsof Scheme for courses at MIT, Yale, and Indiana Univer-sity [21, 17, 10]. An introductory computer science text-book using Scheme was published in 1984 [1].As Scheme became more widespread, local dialects be-gan to diverge until students and researchers occasion-ally found it di�cult to understand code written at othersites. Fifteen representatives of the major implementationsof Scheme therefore met in October 1984 to work towarda better and more widely accepted standard for Scheme.Their report [4] was published at MIT and Indiana Univer-sity in the summer of 1985. Further revision took place inthe spring of 1986 [23], and in the spring of 1988 [6]. Thepresent report reects further revisions agreed upon in ameeting at Xerox PARC in June 1992.We intend this report to belong to the entire Scheme com-

munity, and so we grant permission to copy it in whole or inpart without fee. In particular, we encourage implementorsof Scheme to use this report as a starting point for manualsand other documentation, modifying it as necessary.AcknowledgementsWe would like to thank the following people for theirhelp: Alan Bawden, Michael Blair, George Carrette, AndyCromarty, Pavel Curtis, Je� Dalton, Olivier Danvy, KenDickey, Bruce Duba, Marc Feeley, Andy Freeman, RichardGabriel, Yekta G�ursel, Ken Haase, Robert Hieb, PaulHudak, Morry Katz, Chris Lindblad, Mark Meyer, JimMiller, Jim Philbin, John Ramsdell, Mike Sha�, JonathanShapiro, Julie Sussman, Perry Wagle, Daniel Weise, HenryWu, and Ozan Yigit. We thank Carol Fessenden, DanielFriedman, and Christopher Haynes for permission to usetext from the Scheme 311 version 4 reference manual.We thank Texas Instruments, Inc. for permission to usetext from the TI Scheme Language Reference Manual[30].We gladly acknowledge the inuence of manuals for MITScheme[17], T[22], Scheme 84[11],Common Lisp[27], andAlgol 60[18].We also thank Betty Dexter for the extreme e�ort she putinto setting this report in TEX, and Donald Knuth for de-signing the program that caused her troubles.The Arti�cial Intelligence Laboratory of the MassachusettsInstitute of Technology, the Computer Science Departmentof Indiana University, the Computer and Information Sci-ences Department of the University of Oregon, and theNEC Research Institute supported the preparation of thisreport. Support for the MIT work was provided in part bythe Advanced Research Projects Agency of the Departmentof Defense under O�ce of Naval Research contract N00014-80-C-0505. Support for the Indiana University work wasprovided by NSF grants NCS 83-04567 and NCS 83-03325.

1. Overview of Scheme 3DESCRIPTION OF THE LANGUAGE1. Overview of Scheme1.1. SemanticsThis section gives an overview of Scheme's semantics. Adetailed informal semantics is the subject of chapters 3through 6. For reference purposes, section 7.2 provides aformal semantics of Scheme.Following Algol, Scheme is a statically scoped program-ming language. Each use of a variable is associated with alexically apparent binding of that variable.Scheme has latent as opposed to manifest types. Typesare associated with values (also called objects) rather thanwith variables. (Some authors refer to languages withlatent types as weakly typed or dynamically typed lan-guages.) Other languages with latent types are APL,Snobol, and other dialects of Lisp. Languages with mani-fest types (sometimes referred to as strongly typed or stat-ically typed languages) include Algol 60, Pascal, and C.All objects created in the course of a Scheme computation,including procedures and continuations, have unlimited ex-tent. No Scheme object is ever destroyed. The reason thatimplementations of Scheme do not (usually!) run out ofstorage is that they are permitted to reclaim the storageoccupied by an object if they can prove that the objectcannot possibly matter to any future computation. Otherlanguages in which most objects have unlimited extent in-clude APL and other Lisp dialects.Implementations of Scheme are required to be properlytail-recursive. This allows the execution of an iterativecomputation in constant space, even if the iterative compu-tation is described by a syntactically recursive procedure.Thus with a properly tail-recursive implementation, iter-ation can be expressed using the ordinary procedure-callmechanics, so that special iteration constructs are usefulonly as syntactic sugar. See section 3.5.Scheme procedures are objects in their own right. Pro-cedures can be created dynamically, stored in data struc-tures, returned as results of procedures, and so on. Otherlanguages with these properties include Common Lisp andML.One distinguishing feature of Scheme is that continuations,which in most other languages only operate behind thescenes, also have \�rst-class" status. Continuations areuseful for implementing a wide variety of advanced controlconstructs, including non-local exits, backtracking, andcoroutines. See section 6.4.Arguments to Scheme procedures are always passed byvalue, which means that the actual argument expressionsare evaluated before the procedure gains control, whetherthe procedure needs the result of the evaluation or not.

ML, C, and APL are three other languages that alwayspass arguments by value. This is distinct from the lazy-evaluation semantics of Haskell, or the call-by-name se-mantics of Algol 60, where an argument expression is notevaluated unless its value is needed by the procedure.Scheme's model of arithmetic is designed to remain as in-dependent as possible of the particular ways in which num-bers are represented within a computer. In Scheme, everyinteger is a rational number, every rational is a real, andevery real is a complex number. Thus the distinction be-tween integer and real arithmetic, so important to manyprogramming languages, does not appear in Scheme. In itsplace is a distinction between exact arithmetic, which cor-responds to the mathematical ideal, and inexact arithmeticon approximations. As in Common Lisp, exact arithmeticis not limited to integers.1.2. SyntaxScheme, like most dialects of Lisp, employs a fully paren-thesized pre�x notation for programs and (other) data; thegrammar of Scheme generates a sublanguage of the lan-guage used for data. An important consequence of this sim-ple, uniform representation is the susceptibility of Schemeprograms and data to uniform treatment by other Schemeprograms. For example, the eval procedure evaluates aScheme program expressed as data.The read procedure performs syntactic as well as lexicaldecomposition of the data it reads. The read procedureparses its input as data (section 7.1.2), not as program.The formal syntax of Scheme is described in section 7.1.1.3. Notation and terminology1.3.1. Primitive, library, and optional featuresIt is required that every implementation of Scheme supportall features that are not marked as being optional. Imple-mentations are free to omit optional features of Schemeor to add extensions, provided the extensions are not inconict with the language reported here. In particular,implementations must support portable code by providinga syntactic mode that preempts no lexical conventions ofthis report.To aid in understanding and implementing Scheme, somefeatures are marked as library. These can be easily imple-mented in terms of the other, primitive, features. They areredundant in the strict sense of the word, but they capturecommon patterns of usage, and are therefore provided asconvenient abbreviations.

4 Revised5 Scheme1.3.2. Error situations and unspeci�ed behaviorWhen speaking of an error situation, this report uses thephrase \an error is signalled" to indicate that implemen-tations must detect and report the error. If such wordingdoes not appear in the discussion of an error, then imple-mentations are not required to detect or report the error,though they are encouraged to do so. An error situationthat implementations are not required to detect is usuallyreferred to simply as \an error."For example, it is an error for a procedure to be passed anargument that the procedure is not explicitly speci�ed tohandle, even though such domain errors are seldom men-tioned in this report. Implementations may extend a pro-cedure's domain of de�nition to include such arguments.This report uses the phrase \may report a violation of animplementation restriction" to indicate circumstances un-der which an implementation is permitted to report thatit is unable to continue execution of a correct program be-cause of some restriction imposed by the implementation.Implementation restrictions are of course discouraged, butimplementations are encouraged to report violations of im-plementation restrictions.For example, an implementation may report a violation ofan implementation restriction if it does not have enoughstorage to run a program.If the value of an expression is said to be \unspeci�ed,"then the expression must evaluate to some object withoutsignalling an error, but the value depends on the imple-mentation; this report explicitly does not say what valueshould be returned.1.3.3. Entry formatChapters 4 and 6 are organized into entries. Each entry de-scribes one language feature or a group of related features,where a feature is either a syntactic construct or a built-inprocedure. An entry begins with one or more header linesof the formtemplate categoryfor required, primitive features, ortemplate quali�er categorywhere quali�er is either \library" or \optional" as de�nedin section 1.3.1.If category is \syntax", the entry describes an expressiontype, and the template gives the syntax of the expressiontype. Components of expressions are designated by syn-tactic variables, which are written using angle brackets,for example, hexpressioni, hvariablei. Syntactic variablesshould be understood to denote segments of program text;for example, hexpressioni stands for any string of charac-ters which is a syntactically valid expression. The notation

hthing1i : : :indicates zero or more occurrences of a hthingi, andhthing1i hthing2i : : :indicates one or more occurrences of a hthingi.If category is \procedure", then the entry describes a pro-cedure, and the header line gives a template for a call to theprocedure. Argument names in the template are italicized .Thus the header line(vector-ref vector k) procedureindicates that the built-in procedure vector-ref takes twoarguments, a vector vector and an exact non-negative in-teger k (see below). The header lines(make-vector k) procedure(make-vector k �ll) procedureindicate that the make-vector procedure must be de�nedto take either one or two arguments.It is an error for an operation to be presented with an ar-gument that it is not speci�ed to handle. For succinctness,we follow the convention that if an argument name is alsothe name of a type listed in section 3.2, then that argu-ment must be of the named type. For example, the headerline for vector-ref given above dictates that the �rst ar-gument to vector-ref must be a vector. The followingnaming conventions also imply type restrictions:obj any objectlist, list1, : : : listj , : : : list (see section 6.3.2)z, z1, : : : zj , : : : complex numberx, x1, : : : xj , : : : real numbery, y1, : : : yj , : : : real numberq, q1, : : : qj , : : : rational numbern, n1, : : : nj , : : : integerk, k1, : : : kj , : : : exact non-negative integer1.3.4. Evaluation examplesThe symbol \=)" used in program examples should beread \evaluates to." For example,(* 5 8) =) 40means that the expression (* 5 8) evaluates to the ob-ject 40. Or, more precisely: the expression given by thesequence of characters \(* 5 8)" evaluates, in the initialenvironment, to an object that may be represented exter-nally by the sequence of characters \40". See section 3.3for a discussion of external representations of objects.1.3.5. Naming conventionsBy convention, the names of procedures that always returna boolean value usually end in \?". Such procedures arecalled predicates.

2. Lexical conventions 5By convention, the names of procedures that store valuesinto previously allocated locations (see section 3.4) usuallyend in \!". Such procedures are called mutation proce-dures. By convention, the value returned by a mutationprocedure is unspeci�ed.By convention, \->" appears within the names of proce-dures that take an object of one type and return an anal-ogous object of another type. For example, list->vectortakes a list and returns a vector whose elements are thesame as those of the list.2. Lexical conventionsThis section gives an informal account of some of the lexicalconventions used in writing Scheme programs. For a formalsyntax of Scheme, see section 7.1.Upper and lower case forms of a letter are never distin-guished except within character and string constants. Forexample, Foo is the same identi�er as FOO, and #x1AB isthe same number as #X1ab.2.1. Identi�ersMost identi�ers allowed by other programming languagesare also acceptable to Scheme. The precise rules for form-ing identi�ers vary among implementations of Scheme, butin all implementations a sequence of letters, digits, and \ex-tended alphabetic characters" that begins with a characterthat cannot begin a number is an identi�er. In addition,+, -, and ... are identi�ers. Here are some examples ofidenti�ers:lambda qlist->vector soup+ V17a<=? a34kTMNsthe-word-recursion-has-many-meaningsExtended alphabetic characters may be used within iden-ti�ers as if they were letters. The following are extendedalphabetic characters:! $ % & * + - . / : < = > ? @ ^ _ ~See section 7.1.1 for a formal syntax of identi�ers.Identi�ers have two uses within Scheme programs:� Any identi�er may be used as a variable or as a syn-tactic keyword (see sections 3.1 and 4.3).� When an identi�er appears as a literal or within aliteral (see section 4.1.2), it is being used to denote asymbol (see section 6.3.3).

2.2. Whitespace and commentsWhitespace characters are spaces and newlines. (Imple-mentations typically provide additional whitespace char-acters such as tab or page break.) Whitespace is used forimproved readability and as necessary to separate tokensfrom each other, a token being an indivisible lexical unitsuch as an identi�er or number, but is otherwise insigni�-cant. Whitespace may occur between any two tokens, butnot within a token. Whitespace may also occur inside astring, where it is signi�cant.A semicolon (;) indicates the start of a comment. Thecomment continues to the end of the line on which thesemicolon appears. Comments are invisible to Scheme, butthe end of the line is visible as whitespace. This prevents acomment from appearing in the middle of an identi�er ornumber.;;; The FACT procedure computes the factorial;;; of a non-negative integer.(define fact(lambda (n)(if (= n 0)1 ;Base case: return 1(* n (fact (- n 1))))))2.3. Other notationsFor a description of the notations used for numbers, seesection 6.2.. + - These are used in numbers, and may also occuranywhere in an identi�er except as the �rst charac-ter. A delimited plus or minus sign by itself is also anidenti�er. A delimited period (not occurring within anumber or identi�er) is used in the notation for pairs(section 6.3.2), and to indicate a rest-parameter in aformal parameter list (section 4.1.4). A delimited se-quence of three successive periods is also an identi�er.() Parentheses are used for grouping and to notate lists(section 6.3.2).' The single quote character is used to indicate literal data(section 4.1.2).� The backquote character is used to indicate almost-constant data (section 4.2.6)., ,@ The character comma and the sequence comma at-sign are used in conjunction with backquote (sec-tion 4.2.6)." The double quote character is used to delimit strings(section 6.3.5).

6 Revised5 Scheme\ Backslash is used in the syntax for character constants(section 6.3.4) and as an escape character within stringconstants (section 6.3.5).[] { } | Left and right square brackets and curly bracesand vertical bar are reserved for possible future exten-sions to the language.# Sharp sign is used for a variety of purposes dependingon the character that immediately follows it:#t #f These are the boolean constants (section 6.3.1).#\ This introduces a character constant (section 6.3.4).#(This introduces a vector constant (section 6.3.6). Vec-tor constants are terminated by) .#e #i #b #o #d #x These are used in the notation fornumbers (section 6.2.4).3. Basic concepts3.1. Variables, syntactic keywords, and re-gionsAn identi�er may name a type of syntax, or it may namea location where a value can be stored. An identi�er thatnames a type of syntax is called a syntactic keyword and issaid to be bound to that syntax. An identi�er that namesa location is called a variable and is said to be bound tothat location. The set of all visible bindings in e�ect atsome point in a program is known as the environment ine�ect at that point. The value stored in the location towhich a variable is bound is called the variable's value.By abuse of terminology, the variable is sometimes saidto name the value or to be bound to the value. This isnot quite accurate, but confusion rarely results from thispractice.Certain expression types are used to create new kinds ofsyntax and bind syntactic keywords to those new syntaxes,while other expression types create new locations and bindvariables to those locations. These expression types arecalled binding constructs. Those that bind syntactic key-words are listed in section 4.3. The most fundamental ofthe variable binding constructs is the lambda expression,because all other variable binding constructs can be ex-plained in terms of lambda expressions. The other variablebinding constructs are let, let*, letrec, and do expres-sions (see sections 4.1.4, 4.2.2, and 4.2.4).Like Algol and Pascal, and unlike most other dialects ofLisp except for Common Lisp, Scheme is a statically scopedlanguage with block structure. To each place where anidenti�er is bound in a program there corresponds a regionof the program text within which the binding is visible.

The region is determined by the particular binding con-struct that establishes the binding; if the binding is estab-lished by a lambda expression, for example, then its regionis the entire lambda expression. Every mention of an iden-ti�er refers to the binding of the identi�er that establishedthe innermost of the regions containing the use. If there isno binding of the identi�er whose region contains the use,then the use refers to the binding for the variable in thetop level environment, if any (chapters 4 and 6); if there isno binding for the identi�er, it is said to be unbound.3.2. Disjointness of typesNo object satis�es more than one of the following predi-cates:boolean? pair?symbol? number?char? string?vector? port?procedure?These predicates de�ne the types boolean, pair, symbol,number, char (or character), string, vector, port, and pro-cedure. The empty list is a special object of its own type;it satis�es none of the above predicates.Although there is a separate boolean type, any Schemevalue can be used as a boolean value for the purpose of aconditional test. As explained in section 6.3.1, all valuescount as true in such a test except for #f. This report usesthe word \true" to refer to any Scheme value except #f,and the word \false" to refer to #f.3.3. External representationsAn important concept in Scheme (and Lisp) is that of theexternal representation of an object as a sequence of char-acters. For example, an external representation of the inte-ger 28 is the sequence of characters \28", and an externalrepresentation of a list consisting of the integers 8 and 13is the sequence of characters \(8 13)".The external representation of an object is not neces-sarily unique. The integer 28 also has representations\#e28.000" and \#x1c", and the list in the previous para-graph also has the representations \(08 13)" and \(8. (13 . ()))" (see section 6.3.2).Many objects have standard external representations, butsome, such as procedures, do not have standard represen-tations (although particular implementations may de�nerepresentations for them).An external representation may be written in a program toobtain the corresponding object (see quote, section 4.1.2).

3. Basic concepts 7External representations can also be used for input andoutput. The procedure read (section 6.6.2) parses externalrepresentations, and the procedure write (section 6.6.3)generates them. Together, they provide an elegant andpowerful input/output facility.Note that the sequence of characters \(+ 2 6)" is not anexternal representation of the integer 8, even though it is anexpression evaluating to the integer 8; rather, it is an exter-nal representation of a three-element list, the elements ofwhich are the symbol + and the integers 2 and 6. Scheme'ssyntax has the property that any sequence of charactersthat is an expression is also the external representation ofsome object. This can lead to confusion, since it may notbe obvious out of context whether a given sequence of char-acters is intended to denote data or program, but it is alsoa source of power, since it facilitates writing programs suchas interpreters and compilers that treat programs as data(or vice versa).The syntax of external representations of various kinds ofobjects accompanies the description of the primitives formanipulating the objects in the appropriate sections ofchapter 6.3.4. Storage modelVariables and objects such as pairs, vectors, and stringsimplicitly denote locations or sequences of locations. Astring, for example, denotes as many locations as thereare characters in the string. (These locations need notcorrespond to a full machine word.) A new value may bestored into one of these locations using the string-set!procedure, but the string continues to denote the samelocations as before.An object fetched from a location, by a variable reference orby a procedure such as car, vector-ref, or string-ref,is equivalent in the sense of eqv? (section 6.1) to the objectlast stored in the location before the fetch.Every location is marked to show whether it is in use. Novariable or object ever refers to a location that is not in use.Whenever this report speaks of storage being allocated fora variable or object, what is meant is that an appropriatenumber of locations are chosen from the set of locationsthat are not in use, and the chosen locations are markedto indicate that they are now in use before the variable orobject is made to denote them.In many systems it is desirable for constants (i.e. the val-ues of literal expressions) to reside in read-only-memory.To express this, it is convenient to imagine that everyobject that denotes locations is associated with a agtelling whether that object is mutable or immutable. Insuch systems literal constants and the strings returned bysymbol->string are immutable objects, while all objects

created by the other procedures listed in this report aremutable. It is an error to attempt to store a new valueinto a location that is denoted by an immutable object.3.5. Proper tail recursionImplementations of Scheme are required to be properly tail-recursive. Procedure calls that occur in certain syntacticcontexts de�ned below are `tail calls'. A Scheme imple-mentation is properly tail-recursive if it supports an un-bounded number of active tail calls. A call is active ifthe called procedure may still return. Note that this in-cludes calls that may be returned from either by the cur-rent continuation or by continuations captured earlier bycall-with-current-continuation that are later invoked.In the absence of captured continuations, calls could returnat most once and the active calls would be those that hadnot yet returned. A formal de�nition of proper tail recur-sion can be found in [8].Rationale:Intuitively, no space is needed for an active tail call because thecontinuation that is used in the tail call has the same semanticsas the continuation passed to the procedure containing the call.Although an improper implementation might use a new con-tinuation in the call, a return to this new continuation wouldbe followed immediately by a return to the continuation passedto the procedure. A properly tail-recursive implementation re-turns to that continuation directly.Proper tail recursion was one of the central ideas in Steele andSussman's original version of Scheme. Their �rst Scheme in-terpreter implemented both functions and actors. Control owwas expressed using actors, which di�ered from functions inthat they passed their results on to another actor instead ofreturning to a caller. In the terminology of this section, eachactor �nished with a tail call to another actor.Steele and Sussman later observed that in their interpreter thecode for dealing with actors was identical to that for functionsand thus there was no need to include both in the language.A tail call is a procedure call that occurs in a tail con-text. Tail contexts are de�ned inductively. Note that a tailcontext is always determined with respect to a particularlambda expression.� The last expression within the body of a lambda ex-pression, shown as htail expressioni below, occurs in atail context.(lambda hformalsihde�nitioni* hexpressioni* htail expressioni)� If one of the following expressions is in a tail context,then the subexpressions shown as htail expressioni arein a tail context. These were derived from rules in

8 Revised5 Schemethe grammar given in chapter 7 by replacing some oc-currences of hexpressioni with htail expressioni. Onlythose rules that contain tail contexts are shown here.(if hexpressioni htail expressioni htail expressioni)(if hexpressioni htail expressioni)(cond hcond clausei+)(cond hcond clausei* (else htail sequencei))(case hexpressionihcase clausei+)(case hexpressionihcase clausei*(else htail sequencei))(and hexpressioni* htail expressioni)(or hexpressioni* htail expressioni)(let (hbinding speci*) htail bodyi)(let hvariablei (hbinding speci*) htail bodyi)(let* (hbinding speci*) htail bodyi)(letrec (hbinding speci*) htail bodyi)(let-syntax (hsyntax speci*) htail bodyi)(letrec-syntax (hsyntax speci*) htail bodyi)(begin htail sequencei)(do (hiteration speci*)(htesti htail sequencei)hexpressioni*)wherehcond clausei �! (htesti htail sequencei)hcase clausei �! ((hdatumi*) htail sequencei)htail bodyi �! hde�nitioni* htail sequenceihtail sequencei �! hexpressioni* htail expressioni� If a cond expression is in a tail context, and has aclause of the form (hexpression1i => hexpression2i)then the (implied) call to the procedure that resultsfrom the evaluation of hexpression2i is in a tail context.hexpression2i itself is not in a tail context.Certain built-in procedures are also required to performtail calls. The �rst argument passed to apply and tocall-with-current-continuation, and the second argu-ment passed to call-with-values, must be called via atail call. Similarly, eval must evaluate its argument as ifit were in tail position within the eval procedure.

In the following example the only tail call is the call to f.None of the calls to g or h are tail calls. The reference tox is in a tail context, but it is not a call and thus is not atail call.(lambda ()(if (g)(let ((x (h)))x)(and (g) (f))))Note: Implementations are allowed, but not required, to recog-nize that some non-tail calls, such as the call to h above, can beevaluated as though they were tail calls. In the example above,the let expression could be compiled as a tail call to h. (Thepossibility of h returning an unexpected number of values canbe ignored, because in that case the e�ect of the let is explicitlyunspeci�ed and implementation-dependent.)4. ExpressionsExpression types are categorized as primitive or derived.Primitive expression types include variables and procedurecalls. Derived expression types are not semantically prim-itive, but can instead be de�ned as macros. With the ex-ception of quasiquote, whose macro de�nition is complex,the derived expressions are classi�ed as library features.Suitable de�nitions are given in section 7.3.4.1. Primitive expression types4.1.1. Variable referenceshvariablei syntaxAn expression consisting of a variable (section 3.1) is avariable reference. The value of the variable reference isthe value stored in the location to which the variable isbound. It is an error to reference an unbound variable.(define x 28)x =) 284.1.2. Literal expressions(quote hdatumi) syntax'hdatumi syntaxhconstanti syntax(quote hdatumi) evaluates to hdatumi. hDatumi may beany external representation of a Scheme object (see sec-tion 3.3). This notation is used to include literal constantsin Scheme code.(quote a) =) a(quote #(a b c)) =) #(a b c)(quote (+ 1 2)) =) (+ 1 2)

4. Expressions 9(quote hdatumi) may be abbreviated as 'hdatumi. Thetwo notations are equivalent in all respects.'a =) a'#(a b c) =) #(a b c)'() =) ()'(+ 1 2) =) (+ 1 2)'(quote a) =) (quote a)''a =) (quote a)Numerical constants, string constants, character constants,and boolean constants evaluate \to themselves"; they neednot be quoted.'"abc" =) "abc""abc" =) "abc"'145932 =) 145932145932 =) 145932'#t =) #t#t =) #tAs noted in section 3.4, it is an error to alter a constant(i.e. the value of a literal expression) using a mutation pro-cedure like set-car! or string-set!.4.1.3. Procedure calls(hoperatori hoperand1i : : :) syntaxA procedure call is written by simply enclosing in paren-theses expressions for the procedure to be called and thearguments to be passed to it. The operator and operandexpressions are evaluated (in an unspeci�ed order) and theresulting procedure is passed the resulting arguments.(+ 3 4) =) 7((if #f + *) 3 4) =) 12A number of procedures are available as the values of vari-ables in the initial environment; for example, the additionand multiplication procedures in the above examples arethe values of the variables + and *. New procedures are cre-ated by evaluating lambda expressions (see section 4.1.4).Procedure calls may return any number of values (seevalues in section 6.4). With the exception of values theprocedures available in the initial environment return onevalue or, for procedures such as apply, pass on the valuesreturned by a call to one of their arguments.Procedure calls are also called combinations.Note: In contrast to other dialects of Lisp, the order ofevaluation is unspeci�ed, and the operator expression and theoperand expressions are always evaluated with the same evalu-ation rules.Note: Although the order of evaluation is otherwise unspeci-�ed, the e�ect of any concurrent evaluation of the operator andoperand expressions is constrained to be consistent with somesequential order of evaluation. The order of evaluation may bechosen di�erently for each procedure call.

Note: In many dialects of Lisp, the empty combination, (),is a legitimate expression. In Scheme, combinations must haveat least one subexpression, so () is not a syntactically validexpression.4.1.4. Procedures(lambda hformalsi hbodyi) syntaxSyntax: hFormalsi should be a formal arguments list asdescribed below, and hbodyi should be a sequence of oneor more expressions.Semantics: A lambda expression evaluates to a procedure.The environment in e�ect when the lambda expression wasevaluated is remembered as part of the procedure. Whenthe procedure is later called with some actual arguments,the environment in which the lambda expression was evalu-ated will be extended by binding the variables in the formalargument list to fresh locations, the corresponding actualargument values will be stored in those locations, and theexpressions in the body of the lambda expression will beevaluated sequentially in the extended environment. Theresult(s) of the last expression in the body will be returnedas the result(s) of the procedure call.(lambda (x) (+ x x)) =) a procedure((lambda (x) (+ x x)) 4) =) 8(define reverse-subtract(lambda (x y) (- y x)))(reverse-subtract 7 10) =) 3(define add4(let ((x 4))(lambda (y) (+ x y))))(add4 6) =) 10hFormalsi should have one of the following forms:� (hvariable1i : : :): The procedure takes a �xed num-ber of arguments; when the procedure is called, thearguments will be stored in the bindings of the corre-sponding variables.� hvariablei: The procedure takes any number of ar-guments; when the procedure is called, the sequenceof actual arguments is converted into a newly allo-cated list, and the list is stored in the binding of thehvariablei.� (hvariable1i : : : hvariableni . hvariablen+1i): If aspace-delimited period precedes the last variable, thenthe procedure takes n or more arguments, where nis the number of formal arguments before the period(there must be at least one). The value stored in thebinding of the last variable will be a newly allocatedlist of the actual arguments left over after all the otheractual arguments have been matched up against theother formal arguments.

10 Revised5 SchemeIt is an error for a hvariablei to appear more than once inhformalsi.((lambda x x) 3 4 5 6) =) (3 4 5 6)((lambda (x y . z) z)3 4 5 6) =) (5 6)Each procedure created as the result of evaluating a lambdaexpression is (conceptually) tagged with a storage location,in order to make eqv? and eq? work on procedures (seesection 6.1).4.1.5. Conditionals(if htesti hconsequenti halternatei) syntax(if htesti hconsequenti) syntaxSyntax: hTesti, hconsequenti, and halternatei may be arbi-trary expressions.Semantics: An if expression is evaluated as follows: �rst,htesti is evaluated. If it yields a true value (see sec-tion 6.3.1), then hconsequenti is evaluated and its value(s)is(are) returned. Otherwise halternatei is evaluated and itsvalue(s) is(are) returned. If htesti yields a false value andno halternatei is speci�ed, then the result of the expressionis unspeci�ed.(if (> 3 2) 'yes 'no) =) yes(if (> 2 3) 'yes 'no) =) no(if (> 3 2)(- 3 2)(+ 3 2)) =) 14.1.6. Assignments(set! hvariablei hexpressioni) syntaxhExpressioni is evaluated, and the resulting value is storedin the location to which hvariablei is bound. hVariableimust be bound either in some region enclosing the set!expression or at top level. The result of the set! expressionis unspeci�ed.(define x 2)(+ x 1) =) 3(set! x 4) =) unspeci�ed(+ x 1) =) 54.2. Derived expression typesThe constructs in this section are hygienic, as discussedin section 4.3. For reference purposes, section 7.3 givesmacro de�nitions that will convert most of the constructsdescribed in this section into the primitive constructs de-scribed in the previous section.

4.2.1. Conditionals(cond hclause1i hclause2i : : :) library syntaxSyntax: Each hclausei should be of the form(htesti hexpression1i : : :)where htesti is any expression. Alternatively, a hclauseimay be of the form(htesti => hexpressioni)The last hclausei may be an \else clause," which has theform(else hexpression1i hexpression2i : : :).Semantics: A cond expression is evaluated by evaluatingthe htesti expressions of successive hclauseis in order untilone of them evaluates to a true value (see section 6.3.1).When a htesti evaluates to a true value, then the remain-ing hexpressionis in its hclausei are evaluated in order,and the result(s) of the last hexpressioni in the hclauseiis(are) returned as the result(s) of the entire cond expres-sion. If the selected hclausei contains only the htesti and nohexpressionis, then the value of the htesti is returned as theresult. If the selected hclausei uses the => alternate form,then the hexpressioni is evaluated. Its value must be a pro-cedure that accepts one argument; this procedure is thencalled on the value of the htesti and the value(s) returnedby this procedure is(are) returned by the cond expression.If all htestis evaluate to false values, and there is no elseclause, then the result of the conditional expression is un-speci�ed; if there is an else clause, then its hexpressionis areevaluated, and the value(s) of the last one is(are) returned.(cond ((> 3 2) 'greater)((< 3 2) 'less)) =) greater(cond ((> 3 3) 'greater)((< 3 3) 'less)(else 'equal)) =) equal(cond ((assv 'b '((a 1) (b 2))) => cadr)(else #f)) =) 2(case hkeyi hclause1i hclause2i : : :) library syntaxSyntax: hKeyi may be any expression. Each hclauseishould have the form((hdatum1i : : :) hexpression1i hexpression2i : : :),where each hdatumi is an external representation of someobject. All the hdatumis must be distinct. The lasthclausei may be an \else clause," which has the form(else hexpression1i hexpression2i : : :).Semantics: A case expression is evaluated as follows.hKeyi is evaluated and its result is compared against eachhdatumi. If the result of evaluating hkeyi is equivalent(in the sense of eqv?; see section 6.1) to a hdatumi, thenthe expressions in the corresponding hclausei are evaluatedfrom left to right and the result(s) of the last expression in

4. Expressions 11the hclausei is(are) returned as the result(s) of the case ex-pression. If the result of evaluating hkeyi is di�erent fromevery hdatumi, then if there is an else clause its expres-sions are evaluated and the result(s) of the last is(are) theresult(s) of the case expression; otherwise the result of thecase expression is unspeci�ed.(case (* 2 3)((2 3 5 7) 'prime)((1 4 6 8 9) 'composite)) =) composite(case (car '(c d))((a) 'a)((b) 'b)) =) unspeci�ed(case (car '(c d))((a e i o u) 'vowel)((w y) 'semivowel)(else 'consonant)) =) consonant(and htest1i : : :) library syntaxThe htesti expressions are evaluated from left to right, andthe value of the �rst expression that evaluates to a falsevalue (see section 6.3.1) is returned. Any remaining ex-pressions are not evaluated. If all the expressions evaluateto true values, the value of the last expression is returned.If there are no expressions then #t is returned.(and (= 2 2) (> 2 1)) =) #t(and (= 2 2) (< 2 1)) =) #f(and 1 2 'c '(f g)) =) (f g)(and) =) #t(or htest1i : : :) library syntaxThe htesti expressions are evaluated from left to right, andthe value of the �rst expression that evaluates to a truevalue (see section 6.3.1) is returned. Any remaining ex-pressions are not evaluated. If all expressions evaluate tofalse values, the value of the last expression is returned. Ifthere are no expressions then #f is returned.(or (= 2 2) (> 2 1)) =) #t(or (= 2 2) (< 2 1)) =) #t(or #f #f #f) =) #f(or (memq 'b '(a b c))(/ 3 0)) =) (b c)4.2.2. Binding constructsThe three binding constructs let, let*, and letrec giveScheme a block structure, like Algol 60. The syntax of thethree constructs is identical, but they di�er in the regionsthey establish for their variable bindings. In a let ex-pression, the initial values are computed before any of thevariables become bound; in a let* expression, the bind-ings and evaluations are performed sequentially; while in aletrec expression, all the bindings are in e�ect while their

initial values are being computed, thus allowing mutuallyrecursive de�nitions.(let hbindingsi hbodyi) library syntaxSyntax: hBindingsi should have the form((hvariable1i hinit1i) : : :),where each hiniti is an expression, and hbodyi should be asequence of one or more expressions. It is an error for ahvariablei to appear more than once in the list of variablesbeing bound.Semantics: The hinitis are evaluated in the current envi-ronment (in some unspeci�ed order), the hvariableis arebound to fresh locations holding the results, the hbodyi isevaluated in the extended environment, and the value(s) ofthe last expression of hbodyi is(are) returned. Each bind-ing of a hvariablei has hbodyi as its region.(let ((x 2) (y 3))(* x y)) =) 6(let ((x 2) (y 3))(let ((x 7)(z (+ x y)))(* z x))) =) 35See also named let, section 4.2.4.(let* hbindingsi hbodyi) library syntaxSyntax: hBindingsi should have the form((hvariable1i hinit1i) : : :),and hbodyi should be a sequence of one or more expres-sions.Semantics: Let* is similar to let, but the bindings areperformed sequentially from left to right, and the region ofa binding indicated by (hvariablei hiniti) is that part ofthe let* expression to the right of the binding. Thus thesecond binding is done in an environment in which the �rstbinding is visible, and so on.(let ((x 2) (y 3))(let* ((x 7)(z (+ x y)))(* z x))) =) 70(letrec hbindingsi hbodyi) library syntaxSyntax: hBindingsi should have the form((hvariable1i hinit1i) : : :),and hbodyi should be a sequence of one or more expres-sions. It is an error for a hvariablei to appear more thanonce in the list of variables being bound.Semantics: The hvariableis are bound to fresh locationsholding unde�ned values, the hinitis are evaluated in the

12 Revised5 Schemeresulting environment (in some unspeci�ed order), eachhvariablei is assigned to the result of the correspondinghiniti, the hbodyi is evaluated in the resulting environment,and the value(s) of the last expression in hbodyi is(are) re-turned. Each binding of a hvariablei has the entire letrecexpression as its region, making it possible to de�ne mutu-ally recursive procedures.(letrec ((even?(lambda (n)(if (zero? n)#t(odd? (- n 1)))))(odd?(lambda (n)(if (zero? n)#f(even? (- n 1))))))(even? 88)) =) #tOne restriction on letrec is very important: it must bepossible to evaluate each hiniti without assigning or refer-ring to the value of any hvariablei. If this restriction isviolated, then it is an error. The restriction is necessarybecause Scheme passes arguments by value rather than byname. In the most common uses of letrec, all the hinitisare lambda expressions and the restriction is satis�ed au-tomatically.4.2.3. Sequencing(begin hexpression1i hexpression2i : : :) library syntaxThe hexpressionis are evaluated sequentially from left toright, and the value(s) of the last hexpressioni is(are) re-turned. This expression type is used to sequence side ef-fects such as input and output.(define x 0)(begin (set! x 5)(+ x 1)) =) 6(begin (display "4 plus 1 equals ")(display (+ 4 1))) =) unspeci�edand prints 4 plus 1 equals 54.2.4. Iteration(do ((hvariable1i hinit1i hstep1i) library syntax: : :)(htesti hexpressioni : : :)hcommandi : : :)Do is an iteration construct. It speci�es a set of variablesto be bound, how they are to be initialized at the start,and how they are to be updated on each iteration. When a

termination condition is met, the loop exits after evaluatingthe hexpressionis.Do expressions are evaluated as follows: The hiniti ex-pressions are evaluated (in some unspeci�ed order), thehvariableis are bound to fresh locations, the results ofthe hiniti expressions are stored in the bindings of thehvariableis, and then the iteration phase begins.Each iteration begins by evaluating htesti; if the result isfalse (see section 6.3.1), then the hcommandi expressionsare evaluated in order for e�ect, the hstepi expressionsare evaluated in some unspeci�ed order, the hvariableisare bound to fresh locations, the results of the hstepis arestored in the bindings of the hvariableis, and the next iter-ation begins.If htesti evaluates to a true value, then the hexpressionisare evaluated from left to right and the value(s) of thelast hexpressioni is(are) returned. If no hexpressionis arepresent, then the value of the do expression is unspeci�ed.The region of the binding of a hvariablei consists of theentire do expression except for the hinitis. It is an errorfor a hvariablei to appear more than once in the list of dovariables.A hstepi may be omitted, in which case the e�ect is thesame as if (hvariablei hiniti hvariablei) had been writteninstead of (hvariablei hiniti).(do ((vec (make-vector 5))(i 0 (+ i 1)))((= i 5) vec)(vector-set! vec i i)) =) #(0 1 2 3 4)(let ((x '(1 3 5 7 9)))(do ((x x (cdr x))(sum 0 (+ sum (car x))))((null? x) sum))) =) 25(let hvariablei hbindingsi hbodyi) library syntax\Named let" is a variant on the syntax of let which pro-vides a more general looping construct than do and mayalso be used to express recursions. It has the same syn-tax and semantics as ordinary let except that hvariableiis bound within hbodyi to a procedure whose formal argu-ments are the bound variables and whose body is hbodyi.Thus the execution of hbodyi may be repeated by invokingthe procedure named by hvariablei.(let loop ((numbers '(3 -2 1 6 -5))(nonneg '())(neg '()))(cond ((null? numbers) (list nonneg neg))((>= (car numbers) 0)(loop (cdr numbers)(cons (car numbers) nonneg)neg))((< (car numbers) 0)

4. Expressions 13(loop (cdr numbers)nonneg(cons (car numbers) neg)))))=) ((6 1 3) (-5 -2))4.2.5. Delayed evaluation(delay hexpressioni) library syntaxThe delay construct is used together with the proce-dure force to implement lazy evaluation or call by need.(delay hexpressioni) returns an object called a promisewhich at some point in the future may be asked (by theforce procedure) to evaluate hexpressioni, and deliver theresulting value. The e�ect of hexpressioni returning multi-ple values is unspeci�ed.See the description of force (section 6.4) for a more com-plete description of delay.4.2.6. Quasiquotation(quasiquote hqq templatei) syntax�hqq templatei syntax\Backquote" or \quasiquote" expressions are useful forconstructing a list or vector structure when most but notall of the desired structure is known in advance. If nocommas appear within the hqq templatei, the result ofevaluating �hqq templatei is equivalent to the result ofevaluating 'hqq templatei. If a comma appears withinthe hqq templatei, however, the expression following thecomma is evaluated (\unquoted") and its result is insertedinto the structure instead of the comma and the expres-sion. If a comma appears followed immediately by an at-sign (@), then the following expression must evaluate toa list; the opening and closing parentheses of the list arethen \stripped away" and the elements of the list are in-serted in place of the comma at-sign expression sequence.A comma at-sign should only appear within a list or vectorhqq templatei.�(list ,(+ 1 2) 4) =) (list 3 4)(let ((name 'a)) �(list ,name ',name))=) (list a (quote a))�(a ,(+ 1 2) ,@(map abs '(4 -5 6)) b)=) (a 3 4 5 6 b)�((foo ,(- 10 3)) ,@(cdr '(c)) . ,(car '(cons)))=) ((foo 7) . cons)�#(10 5 ,(sqrt 4) ,@(map sqrt '(16 9)) 8)=) #(10 5 2 4 3 8)Quasiquote forms may be nested. Substitutions are madeonly for unquoted components appearing at the same nest-ing level as the outermost backquote. The nesting level in-creases by one inside each successive quasiquotation, anddecreases by one inside each unquotation.

�(a �(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)=) (a �(b ,(+ 1 2) ,(foo 4 d) e) f)(let ((name1 'x)(name2 'y))�(a �(b ,,name1 ,',name2 d) e))=) (a �(b ,x ,'y d) e)The two notations �hqq templatei and (quasiquotehqq templatei) are identical in all respects. ,hexpressioniis identical to (unquote hexpressioni), and ,@hexpressioniis identical to (unquote-splicing hexpressioni). The ex-ternal syntax generated by write for two-element listswhose car is one of these symbols may vary between im-plementations.(quasiquote (list (unquote (+ 1 2)) 4))=) (list 3 4)'(quasiquote (list (unquote (+ 1 2)) 4))=) �(list ,(+ 1 2) 4)i.e., (quasiquote (list (unquote (+ 1 2)) 4))Unpredictable behavior can result if any of the symbolsquasiquote, unquote, or unquote-splicing appear in po-sitions within a hqq templatei otherwise than as describedabove.4.3. MacrosScheme programs can de�ne and use new derived expres-sion types, called macros. Program-de�ned expressiontypes have the syntax(hkeywordi hdatumi ...)where hkeywordi is an identi�er that uniquely determinesthe expression type. This identi�er is called the syntactickeyword, or simply keyword, of the macro. The number ofthe hdatumis, and their syntax, depends on the expressiontype.Each instance of a macro is called a use of the macro. Theset of rules that speci�es how a use of a macro is transcribedinto a more primitive expression is called the transformerof the macro.The macro de�nition facility consists of two parts:� A set of expressions used to establish that certain iden-ti�ers are macro keywords, associate them with macrotransformers, and control the scope within which amacro is de�ned, and� a pattern language for specifying macro transformers.The syntactic keyword of a macro may shadow variablebindings, and local variable bindings may shadow keywordbindings. All macros de�ned using the pattern languageare \hygienic" and \referentially transparent" and thuspreserve Scheme's lexical scoping [14, 15, 2, 7, 9]:

14 Revised5 Scheme� If a macro transformer inserts a binding for an identi-�er (variable or keyword), the identi�er will in e�ect berenamed throughout its scope to avoid conicts withother identi�ers. Note that a define at top level mayor may not introduce a binding; see section 5.2.� If a macro transformer inserts a free reference to anidenti�er, the reference refers to the binding that wasvisible where the transformer was speci�ed, regardlessof any local bindings that may surround the use of themacro.4.3.1. Binding constructs for syntactic keywordsLet-syntax and letrec-syntax are analogous to let andletrec, but they bind syntactic keywords to macro trans-formers instead of binding variables to locations that con-tain values. Syntactic keywords may also be bound at toplevel; see section 5.3.(let-syntax hbindingsi hbodyi) syntaxSyntax: hBindingsi should have the form((hkeywordi htransformer speci) : : :)Each hkeywordi is an identi�er, each htransformer speciis an instance of syntax-rules, and hbodyi should be asequence of one or more expressions. It is an error for ahkeywordi to appear more than once in the list of keywordsbeing bound.Semantics: The hbodyi is expanded in the syntactic envi-ronment obtained by extending the syntactic environmentof the let-syntax expression with macros whose keywordsare the hkeywordis, bound to the speci�ed transformers.Each binding of a hkeywordi has hbodyi as its region.(let-syntax ((when (syntax-rules ()((when test stmt1 stmt2 ...)(if test(begin stmt1stmt2 ...))))))(let ((if #t))(when if (set! if 'now))if)) =) now(let ((x 'outer))(let-syntax ((m (syntax-rules () ((m) x))))(let ((x 'inner))(m)))) =) outer(letrec-syntax hbindingsi hbodyi) syntaxSyntax: Same as for let-syntax.Semantics: The hbodyi is expanded in the syntactic envi-ronment obtained by extending the syntactic environment

of the letrec-syntax expression with macros whose key-words are the hkeywordis, bound to the speci�ed trans-formers. Each binding of a hkeywordi has the hbindingsias well as the hbodyi within its region, so the transformerscan transcribe expressions into uses of the macros intro-duced by the letrec-syntax expression.(letrec-syntax((my-or (syntax-rules ()((my-or) #f)((my-or e) e)((my-or e1 e2 ...)(let ((temp e1))(if temptemp(my-or e2 ...)))))))(let ((x #f)(y 7)(temp 8)(let odd?)(if even?))(my-or x(let temp)(if y)y))) =) 74.3.2. Pattern languageA htransformer speci has the following form:(syntax-rules hliteralsi hsyntax rulei : : :)Syntax: hLiteralsi is a list of identi�ers and eachhsyntax rulei should be of the form(hpatterni htemplatei)The hpatterni in a hsyntax rulei is a list hpatterni thatbegins with the keyword for the macro.A hpatterni is either an identi�er, a constant, or one of thefollowing(hpatterni ...)(hpatterni hpatterni hpatterni)(hpatterni ... hpatterni hellipsisi)#(hpatterni ...)#(hpatterni ... hpatterni hellipsisi)and a template is either an identi�er, a constant, or one ofthe following(helementi ...)(helementi helementi htemplatei)#(helementi ...)where an helementi is a htemplatei optionally followed byan hellipsisi and an hellipsisi is the identi�er \..." (whichcannot be used as an identi�er in either a template or apattern).Semantics: An instance of syntax-rules produces a newmacro transformer by specifying a sequence of hygienic

4. Expressions 15rewrite rules. A use of a macro whose keyword is associatedwith a transformer speci�ed by syntax-rules is matchedagainst the patterns contained in the hsyntax ruleis, be-ginning with the leftmost hsyntax rulei. When a match isfound, the macro use is transcribed hygienically accordingto the template.An identi�er that appears in the pattern of a hsyntax ruleiis a pattern variable, unless it is the keyword that beginsthe pattern, is listed in hliteralsi, or is the identi�er \...".Pattern variables match arbitrary input elements and areused to refer to elements of the input in the template. Itis an error for the same pattern variable to appear morethan once in a hpatterni.The keyword at the beginning of the pattern in ahsyntax rulei is not involved in the matching and is notconsidered a pattern variable or literal identi�er.Rationale: The scope of the keyword is determined by theexpression or syntax de�nition that binds it to the associatedmacro transformer. If the keyword were a pattern variable orliteral identi�er, then the template that follows the patternwould be within its scope regardless of whether the keywordwere bound by let-syntax or by letrec-syntax.Identi�ers that appear in hliteralsi are interpreted as literalidenti�ers to be matched against corresponding subformsof the input. A subform in the input matches a literalidenti�er if and only if it is an identi�er and either both itsoccurrence in the macro expression and its occurrence inthe macro de�nition have the same lexical binding, or thetwo identi�ers are equal and both have no lexical binding.A subpattern followed by ... can match zero or more el-ements of the input. It is an error for ... to appear inhliteralsi. Within a pattern the identi�er ... must followthe last element of a nonempty sequence of subpatterns.More formally, an input form F matches a pattern P if andonly if:� P is a non-literal identi�er; or� P is a literal identi�er and F is an identi�er with thesame binding; or� P is a list (P1 : : : Pn) and F is a list of n forms thatmatch P1 through Pn, respectively; or� P is an improper list (P1 P2 : : : Pn . Pn+1) andF is a list or improper list of n or more forms thatmatch P1 through Pn, respectively, and whose nth\cdr" matches Pn+1; or� P is of the form (P1 : : : Pn Pn+1 hellipsisi) wherehellipsisi is the identi�er ... and F is a proper listof at least n forms, the �rst n of which match P1through Pn, respectively, and each remaining elementof F matches Pn+1; or

� P is a vector of the form #(P1 : : : Pn) and F is avector of n forms that match P1 through Pn; or� P is of the form #(P1 : : : Pn Pn+1 hellipsisi) wherehellipsisi is the identi�er ... and F is a vector of n ormore forms the �rst n of which match P1 through Pn,respectively, and each remaining element of F matchesPn+1; or� P is a datum and F is equal to P in the sense of theequal? procedure.It is an error to use a macro keyword, within the scope ofits binding, in an expression that does not match any ofthe patterns.When a macro use is transcribed according to the templateof the matching hsyntax rulei, pattern variables that occurin the template are replaced by the subforms they matchin the input. Pattern variables that occur in subpatternsfollowed by one or more instances of the identi�er ... areallowed only in subtemplates that are followed by as manyinstances of They are replaced in the output by allof the subforms they match in the input, distributed asindicated. It is an error if the output cannot be built upas speci�ed.Identi�ers that appear in the template but are not patternvariables or the identi�er ... are inserted into the outputas literal identi�ers. If a literal identi�er is inserted as afree identi�er then it refers to the binding of that identi�erwithin whose scope the instance of syntax-rules appears.If a literal identi�er is inserted as a bound identi�er thenit is in e�ect renamed to prevent inadvertent captures offree identi�ers.As an example, if let and cond are de�ned as in section 7.3then they are hygienic (as required) and the following is notan error.(let ((=> #f))(cond (#t => 'ok))) =) okThe macro transformer for cond recognizes => as a localvariable, and hence an expression, and not as the top-levelidenti�er =>, which the macro transformer treats as a syn-tactic keyword. Thus the example expands into(let ((=> #f))(if #t (begin => 'ok)))instead of(let ((=> #f))(let ((temp #t))(if temp ('ok temp))))which would result in an invalid procedure call.

16 Revised5 Scheme5. Program structure5.1. ProgramsA Scheme program consists of a sequence of expressions,de�nitions, and syntax de�nitions. Expressions are de-scribed in chapter 4; de�nitions and syntax de�nitions arethe subject of the rest of the present chapter.Programs are typically stored in �les or entered inter-actively to a running Scheme system, although otherparadigms are possible; questions of user interface lie out-side the scope of this report. (Indeed, Scheme would still beuseful as a notation for expressing computational methodseven in the absence of a mechanical implementation.)De�nitions and syntax de�nitions occurring at the top levelof a program can be interpreted declaratively. They causebindings to be created in the top level environment or mod-ify the value of existing top-level bindings. Expressionsoccurring at the top level of a program are interpreted im-peratively; they are executed in order when the programis invoked or loaded, and typically perform some kind ofinitialization.At the top level of a program (begin hform1i : : :) isequivalent to the sequence of expressions, de�nitions, andsyntax de�nitions that form the body of the begin.5.2. De�nitionsDe�nitions are valid in some, but not all, contexts whereexpressions are allowed. They are valid only at the toplevel of a hprogrami and at the beginning of a hbodyi.A de�nition should have one of the following forms:� (define hvariablei hexpressioni)� (define (hvariablei hformalsi) hbodyi)hFormalsi should be either a sequence of zero or morevariables, or a sequence of one or more variables fol-lowed by a space-delimited period and another vari-able (as in a lambda expression). This form is equiv-alent to(define hvariablei(lambda (hformalsi) hbodyi)).� (define (hvariablei . hformali) hbodyi)hFormali should be a single variable. This form isequivalent to(define hvariablei(lambda hformali hbodyi)).

5.2.1. Top level de�nitionsAt the top level of a program, a de�nition(define hvariablei hexpressioni)has essentially the same e�ect as the assignment expres-sion (set! hvariablei hexpressioni)if hvariablei is bound. If hvariablei is not bound, however,then the de�nition will bind hvariablei to a new locationbefore performing the assignment, whereas it would be anerror to perform a set! on an unbound variable.(define add3(lambda (x) (+ x 3)))(add3 3) =) 6(define first car)(first '(1 2)) =) 1Some implementations of Scheme use an initial environ-ment in which all possible variables are bound to locations,most of which contain unde�ned values. Top level de�ni-tions in such an implementation are truly equivalent toassignments.5.2.2. Internal de�nitionsDe�nitions may occur at the beginning of a hbodyi (thatis, the body of a lambda, let, let*, letrec, let-syntax,or letrec-syntax expression or that of a de�nition of anappropriate form). Such de�nitions are known as internalde�nitions as opposed to the top level de�nitions describedabove. The variable de�ned by an internal de�nition islocal to the hbodyi. That is, hvariablei is bound ratherthan assigned, and the region of the binding is the entirehbodyi. For example,(let ((x 5))(define foo (lambda (y) (bar x y)))(define bar (lambda (a b) (+ (* a b) a)))(foo (+ x 3))) =) 45A hbodyi containing internal de�nitions can always be con-verted into a completely equivalent letrec expression. Forexample, the let expression in the above example is equiv-alent to(let ((x 5))(letrec ((foo (lambda (y) (bar x y)))(bar (lambda (a b) (+ (* a b) a))))(foo (+ x 3))))Just as for the equivalent letrec expression, it must bepossible to evaluate each hexpressioni of every internal def-inition in a hbodyi without assigning or referring to thevalue of any hvariablei being de�ned.Wherever an internal de�nition may occur (beginhde�nition1i : : :) is equivalent to the sequence of de�ni-tions that form the body of the begin.

6. Standard procedures 175.3. Syntax de�nitionsSyntax de�nitions are valid only at the top level of ahprogrami. They have the following form:(define-syntax hkeywordi htransformer speci)hKeywordi is an identi�er, and the htransformer specishould be an instance of syntax-rules. The top-level syn-tactic environment is extended by binding the hkeywordito the speci�ed transformer.There is no define-syntax analogue of internal de�ni-tions.Although macros may expand into de�nitions and syntaxde�nitions in any context that permits them, it is an errorfor a de�nition or syntax de�nition to shadow a syntactickeyword whose meaning is needed to determine whethersome form in the group of forms that contains the shad-owing de�nition is in fact a de�nition, or, for internal def-initions, is needed to determine the boundary between thegroup and the expressions that follow the group. For ex-ample, the following are errors:(define define 3)(begin (define begin list))(let-syntax((foo (syntax-rules ()((foo (proc args ...) body ...)(define proc(lambda (args ...)body ...))))))(let ((x 3))(foo (plus x y) (+ x y))(define foo x)(plus foo x)))6. Standard proceduresThis chapter describes Scheme's built-in procedures. Theinitial (or \top level") Scheme environment starts out witha number of variables bound to locations containing usefulvalues, most of which are primitive procedures that ma-nipulate data. For example, the variable abs is bound to(a location initially containing) a procedure of one argu-ment that computes the absolute value of a number, andthe variable + is bound to a procedure that computes sums.Built-in procedures that can easily be written in terms ofother built-in procedures are identi�ed as \library proce-dures".A program may use a top-level de�nition to bind any vari-able. It may subsequently alter any such binding by anassignment (see 4.1.6). These operations do not modifythe behavior of Scheme's built-in procedures. Altering any

top-level binding that has not been introduced by a de�ni-tion has an unspeci�ed e�ect on the behavior of the built-inprocedures.6.1. Equivalence predicatesA predicate is a procedure that always returns a booleanvalue (#t or #f). An equivalence predicate is the compu-tational analogue of a mathematical equivalence relation(it is symmetric, reexive, and transitive). Of the equiva-lence predicates described in this section, eq? is the �nestor most discriminating, and equal? is the coarsest. Eqv?is slightly less discriminating than eq?.(eqv? obj1 obj2) procedureThe eqv? procedure de�nes a useful equivalence relationon objects. Briey, it returns #t if obj1 and obj2 shouldnormally be regarded as the same object. This relation isleft slightly open to interpretation, but the following par-tial speci�cation of eqv? holds for all implementations ofScheme.The eqv? procedure returns #t if:� obj1 and obj2 are both #t or both #f.� obj1 and obj2 are both symbols and(string=? (symbol->string obj1)(symbol->string obj2))=) #tNote: This assumes that neither obj1 nor obj2 is an \un-interned symbol" as alluded to in section 6.3.3. This re-port does not presume to specify the behavior of eqv? onimplementation-dependent extensions.� obj1 and obj2 are both numbers, are numerically equal(see =, section 6.2), and are either both exact or bothinexact.� obj1 and obj2 are both characters and are the samecharacter according to the char=? procedure (sec-tion 6.3.4).� both obj1 and obj2 are the empty list.� obj1 and obj2 are pairs, vectors, or strings that denotethe same locations in the store (section 3.4).� obj1 and obj2 are procedures whose location tags areequal (section 4.1.4).The eqv? procedure returns #f if:� obj1 and obj2 are of di�erent types (section 3.2).

18 Revised5 Scheme� one of obj1 and obj2 is #t but the other is #f.� obj1 and obj2 are symbols but(string=? (symbol->string obj1)(symbol->string obj2))=) #f� one of obj1 and obj2 is an exact number but the otheris an inexact number.� obj1 and obj2 are numbers for which the = procedurereturns #f.� obj1 and obj2 are characters for which the char=? pro-cedure returns #f.� one of obj1 and obj2 is the empty list but the other isnot.� obj1 and obj2 are pairs, vectors, or strings that denotedistinct locations.� obj1 and obj2 are procedures that would behave di�er-ently (return di�erent value(s) or have di�erent sidee�ects) for some arguments.(eqv? 'a 'a) =) #t(eqv? 'a 'b) =) #f(eqv? 2 2) =) #t(eqv? '() '()) =) #t(eqv? 100000000 100000000) =) #t(eqv? (cons 1 2) (cons 1 2))=) #f(eqv? (lambda () 1)(lambda () 2)) =) #f(eqv? #f 'nil) =) #f(let ((p (lambda (x) x)))(eqv? p p)) =) #tThe following examples illustrate cases in which the aboverules do not fully specify the behavior of eqv?. All thatcan be said about such cases is that the value returned byeqv? must be a boolean.(eqv? "" "") =) unspeci�ed(eqv? '#() '#()) =) unspeci�ed(eqv? (lambda (x) x)(lambda (x) x)) =) unspeci�ed(eqv? (lambda (x) x)(lambda (y) y)) =) unspeci�edThe next set of examples shows the use of eqv? with pro-cedures that have local state. Gen-counter must return adistinct procedure every time, since each procedure has itsown internal counter. Gen-loser, however, returns equiv-alent procedures each time, since the local state does nota�ect the value or side e�ects of the procedures.

(define gen-counter(lambda ()(let ((n 0))(lambda () (set! n (+ n 1)) n))))(let ((g (gen-counter)))(eqv? g g)) =) #t(eqv? (gen-counter) (gen-counter))=) #f(define gen-loser(lambda ()(let ((n 0))(lambda () (set! n (+ n 1)) 27))))(let ((g (gen-loser)))(eqv? g g)) =) #t(eqv? (gen-loser) (gen-loser))=) unspeci�ed(letrec ((f (lambda () (if (eqv? f g) 'both 'f)))(g (lambda () (if (eqv? f g) 'both 'g))))(eqv? f g)) =) unspeci�ed(letrec ((f (lambda () (if (eqv? f g) 'f 'both)))(g (lambda () (if (eqv? f g) 'g 'both))))(eqv? f g)) =) #fSince it is an error to modify constant objects (those re-turned by literal expressions), implementations are per-mitted, though not required, to share structure betweenconstants where appropriate. Thus the value of eqv? onconstants is sometimes implementation-dependent.(eqv? '(a) '(a)) =) unspeci�ed(eqv? "a" "a") =) unspeci�ed(eqv? '(b) (cdr '(a b))) =) unspeci�ed(let ((x '(a)))(eqv? x x)) =) #tRationale: The above de�nition of eqv? allows implementa-tions latitude in their treatment of procedures and literals: im-plementations are free either to detect or to fail to detect thattwo procedures or two literals are equivalent to each other, andcan decide whether or not to merge representations of equivalentobjects by using the same pointer or bit pattern to representboth.(eq? obj1 obj2) procedureEq? is similar to eqv? except that in some cases it is capableof discerning distinctions �ner than those detectable byeqv?.Eq? and eqv? are guaranteed to have the same behavior onsymbols, booleans, the empty list, pairs, procedures, andnon-empty strings and vectors. Eq?'s behavior on numbersand characters is implementation-dependent, but it will al-ways return either true or false, and will return true onlywhen eqv? would also return true. Eq? may also behavedi�erently from eqv? on empty vectors and empty strings.

6. Standard procedures 19(eq? 'a 'a) =) #t(eq? '(a) '(a)) =) unspeci�ed(eq? (list 'a) (list 'a)) =) #f(eq? "a" "a") =) unspeci�ed(eq? "" "") =) unspeci�ed(eq? '() '()) =) #t(eq? 2 2) =) unspeci�ed(eq? #\A #\A) =) unspeci�ed(eq? car car) =) #t(let ((n (+ 2 3)))(eq? n n)) =) unspeci�ed(let ((x '(a)))(eq? x x)) =) #t(let ((x '#()))(eq? x x)) =) #t(let ((p (lambda (x) x)))(eq? p p)) =) #tRationale: It will usually be possible to implement eq? muchmore e�ciently than eqv?, for example, as a simple pointer com-parison instead of as some more complicated operation. Onereason is that it may not be possible to compute eqv? of twonumbers in constant time, whereas eq? implemented as pointercomparison will always �nish in constant time. Eq? may be usedlike eqv? in applications using procedures to implement objectswith state since it obeys the same constraints as eqv?.(equal? obj1 obj2) library procedureEqual? recursively compares the contents of pairs, vectors,and strings, applying eqv? on other objects such as num-bers and symbols. A rule of thumb is that objects aregenerally equal? if they print the same. Equal? may failto terminate if its arguments are circular data structures.(equal? 'a 'a) =) #t(equal? '(a) '(a)) =) #t(equal? '(a (b) c)'(a (b) c)) =) #t(equal? "abc" "abc") =) #t(equal? 2 2) =) #t(equal? (make-vector 5 'a)(make-vector 5 'a)) =) #t(equal? (lambda (x) x)(lambda (y) y)) =) unspeci�ed6.2. NumbersNumerical computation has traditionally been neglectedby the Lisp community. Until Common Lisp there wasno carefully thought out strategy for organizing numericalcomputation, and with the exception of the MacLisp sys-tem [20] little e�ort was made to execute numerical codee�ciently. This report recognizes the excellent work of theCommon Lisp committee and accepts many of their rec-ommendations. In some ways this report simpli�es andgeneralizes their proposals in a manner consistent with thepurposes of Scheme.

It is important to distinguish between the mathemati-cal numbers, the Scheme numbers that attempt to modelthem, the machine representations used to implement theScheme numbers, and notations used to write numbers.This report uses the types number, complex, real, rational,and integer to refer to both mathematical numbers andScheme numbers. Machine representations such as �xedpoint and oating point are referred to by names such as�xnum and onum.6.2.1. Numerical typesMathematically, numbers may be arranged into a tower ofsubtypes in which each level is a subset of the level aboveit: numbercomplexrealrationalintegerFor example, 3 is an integer. Therefore 3 is also a rational,a real, and a complex. The same is true of the Schemenumbers that model 3. For Scheme numbers, these typesare de�ned by the predicates number?, complex?, real?,rational?, and integer?.There is no simple relationship between a number's typeand its representation inside a computer. Although mostimplementations of Scheme will o�er at least two di�erentrepresentations of 3, these di�erent representations denotethe same integer.Scheme's numerical operations treat numbers as abstractdata, as independent of their representation as possible.Although an implementation of Scheme may use �xnum,onum, and perhaps other representations for numbers,this should not be apparent to a casual programmer writingsimple programs.It is necessary, however, to distinguish between numbersthat are represented exactly and those that may not be.For example, indexes into data structures must be knownexactly, as must some polynomial coe�cients in a symbolicalgebra system. On the other hand, the results of measure-ments are inherently inexact, and irrational numbers maybe approximated by rational and therefore inexact approx-imations. In order to catch uses of inexact numbers whereexact numbers are required, Scheme explicitly distinguishesexact from inexact numbers. This distinction is orthogonalto the dimension of type.6.2.2. ExactnessScheme numbers are either exact or inexact. A number isexact if it was written as an exact constant or was derivedfrom exact numbers using only exact operations. A number

20 Revised5 Schemeis inexact if it was written as an inexact constant, if itwas derived using inexact ingredients, or if it was derivedusing inexact operations. Thus inexactness is a contagiousproperty of a number.If two implementations produce exact results for a com-putation that did not involve inexact intermediate results,the two ultimate results will be mathematically equivalent.This is generally not true of computations involving inex-act numbers since approximate methods such as oatingpoint arithmetic may be used, but it is the duty of eachimplementation to make the result as close as practical tothe mathematically ideal result.Rational operations such as + should always produce ex-act results when given exact arguments. If the operationis unable to produce an exact result, then it may eitherreport the violation of an implementation restriction or itmay silently coerce its result to an inexact value. See sec-tion 6.2.3.With the exception of inexact->exact, the operations de-scribed in this section must generally return inexact resultswhen given any inexact arguments. An operation may,however, return an exact result if it can prove that thevalue of the result is una�ected by the inexactness of itsarguments. For example, multiplication of any number byan exact zero may produce an exact zero result, even if theother argument is inexact.6.2.3. Implementation restrictionsImplementations of Scheme are not required to implementthe whole tower of subtypes given in section 6.2.1, butthey must implement a coherent subset consistent withboth the purposes of the implementation and the spiritof the Scheme language. For example, an implementationin which all numbers are real may still be quite useful.Implementations may also support only a limited range ofnumbers of any type, subject to the requirements of thissection. The supported range for exact numbers of anytype may be di�erent from the supported range for inex-act numbers of that type. For example, an implementationthat uses onums to represent all its inexact real numbersmay support a practically unbounded range of exact inte-gers and rationals while limiting the range of inexact reals(and therefore the range of inexact integers and rationals)to the dynamic range of the onum format. Furthermorethe gaps between the representable inexact integers and ra-tionals are likely to be very large in such an implementationas the limits of this range are approached.An implementation of Scheme must support exact integersthroughout the range of numbers that may be used forindexes of lists, vectors, and strings or that may resultfrom computing the length of a list, vector, or string. Thelength, vector-length, and string-length procedures

must return an exact integer, and it is an error to useanything but an exact integer as an index. Furthermoreany integer constant within the index range, if expressedby an exact integer syntax, will indeed be read as an exactinteger, regardless of any implementation restrictions thatmay apply outside this range. Finally, the procedures listedbelow will always return an exact integer result provided alltheir arguments are exact integers and the mathematicallyexpected result is representable as an exact integer withinthe implementation:+ - *quotient remainder modulomax min absnumerator denominator gcdlcm floor ceilingtruncate round rationalizeexptImplementations are encouraged, but not required, to sup-port exact integers and exact rationals of practically unlim-ited size and precision, and to implement the above proce-dures and the / procedure in such a way that they alwaysreturn exact results when given exact arguments. If one ofthese procedures is unable to deliver an exact result whengiven exact arguments, then it may either report a vio-lation of an implementation restriction or it may silentlycoerce its result to an inexact number. Such a coercionmay cause an error later.An implementation may use oating point and other ap-proximate representation strategies for inexact numbers.This report recommends, but does not require, that theIEEE 32-bit and 64-bit oating point standards be followedby implementations that use onum representations, andthat implementations using other representations shouldmatch or exceed the precision achievable using these oat-ing point standards [12].In particular, implementations that use onum represen-tations must follow these rules: A onum result must berepresented with at least as much precision as is used toexpress any of the inexact arguments to that operation. Itis desirable (but not required) for potentially inexact oper-ations such as sqrt, when applied to exact arguments, toproduce exact answers whenever possible (for example thesquare root of an exact 4 ought to be an exact 2). If, how-ever, an exact number is operated upon so as to produce aninexact result (as by sqrt), and if the result is representedas a onum, then the most precise onum format availablemust be used; but if the result is represented in some otherway then the representation must have at least as muchprecision as the most precise onum format available.Although Scheme allows a variety of written notations fornumbers, any particular implementation may support onlysome of them. For example, an implementation in whichall numbers are real need not support the rectangular and

6. Standard procedures 21polar notations for complex numbers. If an implementa-tion encounters an exact numerical constant that it cannotrepresent as an exact number, then it may either report aviolation of an implementation restriction or it may silentlyrepresent the constant by an inexact number.6.2.4. Syntax of numerical constantsThe syntax of the written representations for numbers isdescribed formally in section 7.1.1. Note that case is notsigni�cant in numerical constants.A number may be written in binary, octal, decimal, or hex-adecimal by the use of a radix pre�x. The radix pre�xesare #b (binary), #o (octal), #d (decimal), and #x (hexadec-imal). With no radix pre�x, a number is assumed to beexpressed in decimal.A numerical constant may be speci�ed to be either exact orinexact by a pre�x. The pre�xes are #e for exact, and #ifor inexact. An exactness pre�x may appear before or afterany radix pre�x that is used. If the written representationof a number has no exactness pre�x, the constant may beeither inexact or exact. It is inexact if it contains a decimalpoint, an exponent, or a \#" character in the place of adigit, otherwise it is exact.In systems with inexact numbers of varying precisions itmay be useful to specify the precision of a constant. Forthis purpose, numerical constants may be written with anexponent marker that indicates the desired precision of theinexact representation. The letters s, f, d, and l specifythe use of short , single , double , and long precision, respec-tively. (When fewer than four internal inexact represen-tations exist, the four size speci�cations are mapped ontothose available. For example, an implementation with twointernal representations may map short and single togetherand long and double together.) In addition, the exponentmarker e speci�es the default precision for the implemen-tation. The default precision has at least as much precisionas double , but implementations may wish to allow this de-fault to be set by the user.3.14159265358979F0Round to single | 3.1415930.6L0 Extend to long | .6000000000000006.2.5. Numerical operationsThe reader is referred to section 1.3.3 for a summary ofthe naming conventions used to specify restrictions on thetypes of arguments to numerical routines. The examplesused in this section assume that any numerical constantwritten using an exact notation is indeed represented asan exact number. Some examples also assume that certainnumerical constants written using an inexact notation can

be represented without loss of accuracy; the inexact con-stants were chosen so that this is likely to be true in imple-mentations that use onums to represent inexact numbers.(number? obj) procedure(complex? obj) procedure(real? obj) procedure(rational? obj) procedure(integer? obj) procedureThese numerical type predicates can be applied to any kindof argument, including non-numbers. They return #t if theobject is of the named type, and otherwise they return #f.In general, if a type predicate is true of a number thenall higher type predicates are also true of that number.Consequently, if a type predicate is false of a number, thenall lower type predicates are also false of that number.If z is an inexact complex number, then (real? z) is trueif and only if (zero? (imag-part z)) is true. If x is aninexact real number, then (integer? x) is true if and onlyif (= x (round x)).(complex? 3+4i) =) #t(complex? 3) =) #t(real? 3) =) #t(real? -2.5+0.0i) =) #t(real? #e1e10) =) #t(rational? 6/10) =) #t(rational? 6/3) =) #t(integer? 3+0i) =) #t(integer? 3.0) =) #t(integer? 8/4) =) #tNote: The behavior of these type predicates on inexact num-bers is unreliable, since any inaccuracy may a�ect the result.Note: In many implementations the rational? procedure willbe the same as real?, and the complex? procedure will be thesame as number?, but unusual implementations may be ableto represent some irrational numbers exactly or may extend thenumber system to support some kind of non-complex numbers.(exact? z) procedure(inexact? z) procedureThese numerical predicates provide tests for the exactnessof a quantity. For any Scheme number, precisely one ofthese predicates is true.(= z1 z2 z3 : : :) procedure(< x1 x2 x3 : : :) procedure(> x1 x2 x3 : : :) procedure(<= x1 x2 x3 : : :) procedure(>= x1 x2 x3 : : :) procedureThese procedures return #t if their arguments are (respec-tively): equal, monotonically increasing, monotonically de-creasing, monotonically nondecreasing, or monotonicallynonincreasing.

22 Revised5 SchemeThese predicates are required to be transitive.Note: The traditional implementations of these predicates inLisp-like languages are not transitive.Note: While it is not an error to compare inexact numbersusing these predicates, the results may be unreliable because asmall inaccuracy may a�ect the result; this is especially true of= and zero?. When in doubt, consult a numerical analyst.(zero? z) library procedure(positive? x) library procedure(negative? x) library procedure(odd? n) library procedure(even? n) library procedureThese numerical predicates test a number for a particularproperty, returning #t or #f. See note above.(max x1 x2 : : :) library procedure(min x1 x2 : : :) library procedureThese procedures return the maximum or minimum of theirarguments.(max 3 4) =) 4 ; exact(max 3.9 4) =) 4.0 ; inexactNote: If any argument is inexact, then the result will also beinexact (unless the procedure can prove that the inaccuracy isnot large enough to a�ect the result, which is possible only inunusual implementations). If min or max is used to comparenumbers of mixed exactness, and the numerical value of theresult cannot be represented as an inexact number without lossof accuracy, then the procedure may report a violation of animplementation restriction.(+ z1 : : :) procedure(* z1 : : :) procedureThese procedures return the sum or product of their argu-ments.(+ 3 4) =) 7(+ 3) =) 3(+) =) 0(* 4) =) 4(*) =) 1(- z1 z2) procedure(- z) procedure(- z1 z2 : : :) optional procedure(/ z1 z2) procedure(/ z) procedure(/ z1 z2 : : :) optional procedureWith two or more arguments, these procedures return thedi�erence or quotient of their arguments, associating to theleft. With one argument, however, they return the additiveor multiplicative inverse of their argument.

(- 3 4) =) -1(- 3 4 5) =) -6(- 3) =) -3(/ 3 4 5) =) 3/20(/ 3) =) 1/3(abs x) library procedureAbs returns the absolute value of its argument.(abs -7) =) 7(quotient n1 n2) procedure(remainder n1 n2) procedure(modulo n1 n2) procedureThese procedures implement number-theoretic (integer) di-vision. n2 should be non-zero. All three procedures returnintegers. If n1/n2 is an integer:(quotient n1 n2) =) n1/n2(remainder n1 n2) =) 0(modulo n1 n2) =) 0If n1/n2 is not an integer:(quotient n1 n2) =) nq(remainder n1 n2) =) nr(modulo n1 n2) =) nmwhere nq is n1=n2 rounded towards zero, 0 < jnrj < jn2j,0 < jnmj < jn2j, nr and nm di�er from n1 by a multiple ofn2, nr has the same sign as n1, and nm has the same signas n2.From this we can conclude that for integers n1 and n2 withn2 not equal to 0,(= n1 (+ (* n2 (quotient n1 n2))(remainder n1 n2)))=) #tprovided all numbers involved in that computation are ex-act. (modulo 13 4) =) 1(remainder 13 4) =) 1(modulo -13 4) =) 3(remainder -13 4) =) -1(modulo 13 -4) =) -3(remainder 13 -4) =) 1(modulo -13 -4) =) -1(remainder -13 -4) =) -1(remainder -13 -4.0) =) -1.0 ; inexact

6. Standard procedures 23(gcd n1 : : :) library procedure(lcm n1 : : :) library procedureThese procedures return the greatest common divisor orleast common multiple of their arguments. The result isalways non-negative.(gcd 32 -36) =) 4(gcd) =) 0(lcm 32 -36) =) 288(lcm 32.0 -36) =) 288.0 ; inexact(lcm) =) 1(numerator q) procedure(denominator q) procedureThese procedures return the numerator or denominator oftheir argument; the result is computed as if the argumentwas represented as a fraction in lowest terms. The denom-inator is always positive. The denominator of 0 is de�nedto be 1.(numerator (/ 6 4)) =) 3(denominator (/ 6 4)) =) 2(denominator(exact->inexact (/ 6 4))) =) 2.0(floor x) procedure(ceiling x) procedure(truncate x) procedure(round x) procedureThese procedures return integers. Floor returns thelargest integer not larger than x. Ceiling returns thesmallest integer not smaller than x. Truncate returns theinteger closest to x whose absolute value is not larger thanthe absolute value of x. Round returns the closest inte-ger to x, rounding to even when x is halfway between twointegers.Rationale: Round rounds to even for consistency with the de-fault rounding mode speci�ed by the IEEE oating point stan-dard.Note: If the argument to one of these procedures is inexact,then the result will also be inexact. If an exact value is needed,the result should be passed to the inexact->exact procedure.(floor -4.3) =) -5.0(ceiling -4.3) =) -4.0(truncate -4.3) =) -4.0(round -4.3) =) -4.0(floor 3.5) =) 3.0(ceiling 3.5) =) 4.0(truncate 3.5) =) 3.0(round 3.5) =) 4.0 ; inexact(round 7/2) =) 4 ; exact(round 7) =) 7

(rationalize x y) library procedureRationalize returns the simplest rational number di�er-ing from x by no more than y. A rational number r1 issimpler than another rational number r2 if r1 = p1=q1 andr2 = p2=q2 (in lowest terms) and jp1j � jp2j and jq1j � jq2j.Thus 3=5 is simpler than 4=7. Although not all rationalsare comparable in this ordering (consider 2=7 and 3=5) anyinterval contains a rational number that is simpler than ev-ery other rational number in that interval (the simpler 2=5lies between 2=7 and 3=5). Note that 0 = 0=1 is the sim-plest rational of all.(rationalize(inexact->exact .3) 1/10) =) 1/3 ; exact(rationalize .3 1/10) =) #i1/3 ; inexact(exp z) procedure(log z) procedure(sin z) procedure(cos z) procedure(tan z) procedure(asin z) procedure(acos z) procedure(atan z) procedure(atan y x) procedureThese procedures are part of every implementation thatsupports general real numbers; they compute the usualtranscendental functions. Log computes the natural log-arithm of z (not the base ten logarithm). Asin, acos,and atan compute arcsine (sin�1), arccosine (cos�1), andarctangent (tan�1), respectively. The two-argument vari-ant of atan computes (angle (make-rectangular x y))(see below), even in implementations that don't supportgeneral complex numbers.In general, the mathematical functions log, arcsine, arc-cosine, and arctangent are multiply de�ned. The value oflog z is de�ned to be the one whose imaginary part lies inthe range from �� (exclusive) to � (inclusive). log 0 is un-de�ned. With log de�ned this way, the values of sin�1 z,cos�1 z, and tan�1 z are according to the following for-mul�: sin�1 z = �i log(iz +p1� z2)cos�1 z = �=2� sin�1 ztan�1 z = (log(1 + iz)� log(1� iz))=(2i)The above speci�cation follows [27], which in turncites [19]; refer to these sources for more detailed discussionof branch cuts, boundary conditions, and implementationof these functions. When it is possible these proceduresproduce a real result from a real argument.

24 Revised5 Scheme(sqrt z) procedureReturns the principal square root of z. The result will haveeither positive real part, or zero real part and non-negativeimaginary part.(expt z1 z2) procedureReturns z1 raised to the power z2. For z1 6= 0z1z2 = ez2 log z10z is 1 if z = 0 and 0 otherwise.(make-rectangular x1 x2) procedure(make-polar x3 x4) procedure(real-part z) procedure(imag-part z) procedure(magnitude z) procedure(angle z) procedureThese procedures are part of every implementation thatsupports general complex numbers. Suppose x1, x2, x3,and x4 are real numbers and z is a complex number suchthat z = x1 + x2i = x3 � eix4Then(make-rectangular x1 x2) =) z(make-polar x3 x4) =) z(real-part z) =) x1(imag-part z) =) x2(magnitude z) =) jx3j(angle z) =) xanglewhere �� < xangle � � with xangle = x4 + 2�n for someinteger n.Rationale: Magnitude is the same as abs for a real argu-ment, but abs must be present in all implementations, whereasmagnitude need only be present in implementations that sup-port general complex numbers.(exact->inexact z) procedure(inexact->exact z) procedureExact->inexact returns an inexact representation of z.The value returned is the inexact number that is numeri-cally closest to the argument. If an exact argument has noreasonably close inexact equivalent, then a violation of animplementation restriction may be reported.Inexact->exact returns an exact representation of z. Thevalue returned is the exact number that is numerically clos-est to the argument. If an inexact argument has no rea-sonably close exact equivalent, then a violation of an im-plementation restriction may be reported.These procedures implement the natural one-to-one corre-spondence between exact and inexact integers throughoutan implementation-dependent range. See section 6.2.3.

6.2.6. Numerical input and output(number->string z) procedure(number->string z radix) procedureRadix must be an exact integer, either 2, 8, 10, or 16. Ifomitted, radix defaults to 10. The procedure number->string takes a number and a radix and returns as a stringan external representation of the given number in the givenradix such that(let ((number number)(radix radix))(eqv? number(string->number (number->string numberradix)radix)))is true. It is an error if no possible result makes this ex-pression true.If z is inexact, the radix is 10, and the above expressioncan be satis�ed by a result that contains a decimal point,then the result contains a decimal point and is expressedusing the minimum number of digits (exclusive of exponentand trailing zeroes) needed to make the above expressiontrue [3, 5]; otherwise the format of the result is unspeci�ed.The result returned by number->string never contains anexplicit radix pre�x.Note: The error case can occur only when z is not a complexnumber or is a complex number with a non-rational real orimaginary part.Rationale: If z is an inexact number represented using onums,and the radix is 10, then the above expression is normally satis-�ed by a result containing a decimal point. The unspeci�ed caseallows for in�nities, NaNs, and non-onum representations.(string->number string) procedure(string->number string radix) procedureReturns a number of the maximally precise representationexpressed by the given string. Radix must be an exactinteger, either 2, 8, 10, or 16. If supplied, radix is a defaultradix that may be overridden by an explicit radix pre�x instring (e.g. "#o177"). If radix is not supplied, then thedefault radix is 10. If string is not a syntactically validnotation for a number, then string->number returns #f.(string->number "100") =) 100(string->number "100" 16) =) 256(string->number "1e2") =) 100.0(string->number "15##") =) 1500.0Note: The domain of string->number may be restricted byimplementations in the following ways. String->number is per-mitted to return #f whenever string contains an explicit radixpre�x. If all numbers supported by an implementation are real,

6. Standard procedures 25then string->number is permitted to return #f whenever stringuses the polar or rectangular notations for complex numbers. Ifall numbers are integers, then string->number may return #fwhenever the fractional notation is used. If all numbers areexact, then string->number may return #f whenever an ex-ponent marker or explicit exactness pre�x is used, or if a #appears in place of a digit. If all inexact numbers are integers,then string->number may return #f whenever a decimal pointis used.6.3. Other data typesThis section describes operations on some of Scheme's non-numeric data types: booleans, pairs, lists, symbols, char-acters, strings and vectors.6.3.1. BooleansThe standard boolean objects for true and false are writtenas #t and #f. What really matters, though, are the objectsthat the Scheme conditional expressions (if, cond, and,or, do) treat as true or false. The phrase \a true value"(or sometimes just \true") means any object treated astrue by the conditional expressions, and the phrase \a falsevalue" (or \false") means any object treated as false by theconditional expressions.Of all the standard Scheme values, only #f counts as falsein conditional expressions. Except for #f, all standardScheme values, including #t, pairs, the empty list, sym-bols, numbers, strings, vectors, and procedures, count astrue.Note: Programmers accustomed to other dialects of Lispshould be aware that Scheme distinguishes both #f and theempty list from the symbol nil.Boolean constants evaluate to themselves, so they do notneed to be quoted in programs.#t =) #t#f =) #f'#f =) #f(not obj) library procedureNot returns #t if obj is false, and returns #f otherwise.(not #t) =) #f(not 3) =) #f(not (list 3)) =) #f(not #f) =) #t(not '()) =) #f(not (list)) =) #f(not 'nil) =) #f

(boolean? obj) library procedureBoolean? returns #t if obj is either #t or #f and returns#f otherwise.(boolean? #f) =) #t(boolean? 0) =) #f(boolean? '()) =) #f6.3.2. Pairs and listsA pair (sometimes called a dotted pair) is a record structurewith two �elds called the car and cdr �elds (for historicalreasons). Pairs are created by the procedure cons. Thecar and cdr �elds are accessed by the procedures car andcdr. The car and cdr �elds are assigned by the proceduresset-car! and set-cdr!.Pairs are used primarily to represent lists. A list can bede�ned recursively as either the empty list or a pair whosecdr is a list. More precisely, the set of lists is de�ned asthe smallest set X such that� The empty list is in X .� If list is in X , then any pair whose cdr �eld containslist is also in X .The objects in the car �elds of successive pairs of a list arethe elements of the list. For example, a two-element listis a pair whose car is the �rst element and whose cdr is apair whose car is the second element and whose cdr is theempty list. The length of a list is the number of elements,which is the same as the number of pairs.The empty list is a special object of its own type (it is nota pair); it has no elements and its length is zero.Note: The above de�nitions imply that all lists have �nitelength and are terminated by the empty list.The most general notation (external representation) forScheme pairs is the \dotted" notation (c1 . c2) where c1is the value of the car �eld and c2 is the value of the cdr�eld. For example (4 . 5) is a pair whose car is 4 andwhose cdr is 5. Note that (4 . 5) is the external repre-sentation of a pair, not an expression that evaluates to apair.A more streamlined notation can be used for lists: theelements of the list are simply enclosed in parentheses andseparated by spaces. The empty list is written () . Forexample,(a b c d e)and (a . (b . (c . (d . (e . ())))))

26 Revised5 Schemeare equivalent notations for a list of symbols.A chain of pairs not ending in the empty list is called animproper list. Note that an improper list is not a list.The list and dotted notations can be combined to representimproper lists:(a b c . d)is equivalent to(a . (b . (c . d)))Whether a given pair is a list depends upon what is storedin the cdr �eld. When the set-cdr! procedure is used, anobject can be a list one moment and not the next:(define x (list 'a 'b 'c))(define y x)y =) (a b c)(list? y) =) #t(set-cdr! x 4) =) unspeci�edx =) (a . 4)(eqv? x y) =) #ty =) (a . 4)(list? y) =) #f(set-cdr! x x) =) unspeci�ed(list? x) =) #fWithin literal expressions and representations of ob-jects read by the read procedure, the forms 'hdatumi,�hdatumi, ,hdatumi, and ,@hdatumi denote two-ele-ment lists whose �rst elements are the symbols quote,quasiquote, unquote, and unquote-splicing, respec-tively. The second element in each case is hdatumi. Thisconvention is supported so that arbitrary Scheme pro-grams may be represented as lists. That is, accordingto Scheme's grammar, every hexpressioni is also a hdatumi(see section 7.1.2). Among other things, this permits theuse of the read procedure to parse Scheme programs. Seesection 3.3.(pair? obj) procedurePair? returns #t if obj is a pair, and otherwise returns #f.(pair? '(a . b)) =) #t(pair? '(a b c)) =) #t(pair? '()) =) #f(pair? '#(a b)) =) #f(cons obj1 obj2) procedureReturns a newly allocated pair whose car is obj1 and whosecdr is obj2. The pair is guaranteed to be di�erent (in thesense of eqv?) from every existing object.(cons 'a '()) =) (a)(cons '(a) '(b c d)) =) ((a) b c d)(cons "a" '(b c)) =) ("a" b c)(cons 'a 3) =) (a . 3)(cons '(a b) 'c) =) ((a b) . c)

(car pair) procedureReturns the contents of the car �eld of pair . Note that itis an error to take the car of the empty list.(car '(a b c)) =) a(car '((a) b c d)) =) (a)(car '(1 . 2)) =) 1(car '()) =) error(cdr pair) procedureReturns the contents of the cdr �eld of pair . Note that itis an error to take the cdr of the empty list.(cdr '((a) b c d)) =) (b c d)(cdr '(1 . 2)) =) 2(cdr '()) =) error(set-car! pair obj) procedureStores obj in the car �eld of pair . The value returned byset-car! is unspeci�ed.(define (f) (list 'not-a-constant-list))(define (g) '(constant-list))(set-car! (f) 3) =) unspeci�ed(set-car! (g) 3) =) error(set-cdr! pair obj) procedureStores obj in the cdr �eld of pair . The value returned byset-cdr! is unspeci�ed.(caar pair) library procedure(cadr pair) library procedure... ...(cdddar pair) library procedure(cddddr pair) library procedureThese procedures are compositions of car and cdr, wherefor example caddr could be de�ned by(define caddr (lambda (x) (car (cdr (cdr x))))).Arbitrary compositions, up to four deep, are provided.There are twenty-eight of these procedures in all.(null? obj) library procedureReturns #t if obj is the empty list, otherwise returns #f.(list? obj) library procedureReturns #t if obj is a list, otherwise returns #f. By de�ni-tion, all lists have �nite length and are terminated by theempty list.

6. Standard procedures 27(list? '(a b c)) =) #t(list? '()) =) #t(list? '(a . b)) =) #f(let ((x (list 'a)))(set-cdr! x x)(list? x)) =) #f(list obj : : :) library procedureReturns a newly allocated list of its arguments.(list 'a (+ 3 4) 'c) =) (a 7 c)(list) =) ()(length list) library procedureReturns the length of list .(length '(a b c)) =) 3(length '(a (b) (c d e))) =) 3(length '()) =) 0(append list : : :) library procedureReturns a list consisting of the elements of the �rst listfollowed by the elements of the other lists.(append '(x) '(y)) =) (x y)(append '(a) '(b c d)) =) (a b c d)(append '(a (b)) '((c))) =) (a (b) (c))The resulting list is always newly allocated, except thatit shares structure with the last list argument. The lastargument may actually be any object; an improper listresults if the last argument is not a proper list.(append '(a b) '(c . d)) =) (a b c . d)(append '() 'a) =) a(reverse list) library procedureReturns a newly allocated list consisting of the elements oflist in reverse order.(reverse '(a b c)) =) (c b a)(reverse '(a (b c) d (e (f))))=) ((e (f)) d (b c) a)(list-tail list k) library procedureReturns the sublist of list obtained by omitting the �rst kelements. It is an error if list has fewer than k elements.List-tail could be de�ned by(define list-tail(lambda (x k)(if (zero? k)x(list-tail (cdr x) (- k 1)))))

(list-ref list k) library procedureReturns the kth element of list . (This is the same as thecar of (list-tail list k).) It is an error if list has fewerthan k elements.(list-ref '(a b c d) 2) =) c(list-ref '(a b c d)(inexact->exact (round 1.8)))=) c(memq obj list) library procedure(memv obj list) library procedure(member obj list) library procedureThese procedures return the �rst sublist of list whose caris obj , where the sublists of list are the non-empty listsreturned by (list-tail list k) for k less than the lengthof list . If obj does not occur in list , then #f (not the emptylist) is returned. Memq uses eq? to compare obj with theelements of list , while memv uses eqv? and member usesequal?.(memq 'a '(a b c)) =) (a b c)(memq 'b '(a b c)) =) (b c)(memq 'a '(b c d)) =) #f(memq (list 'a) '(b (a) c)) =) #f(member (list 'a)'(b (a) c)) =) ((a) c)(memq 101 '(100 101 102)) =) unspeci�ed(memv 101 '(100 101 102)) =) (101 102)(assq obj alist) library procedure(assv obj alist) library procedure(assoc obj alist) library procedureAlist (for \association list") must be a list of pairs. Theseprocedures �nd the �rst pair in alist whose car �eld is obj ,and returns that pair. If no pair in alist has obj as its car,then #f (not the empty list) is returned. Assq uses eq? tocompare obj with the car �elds of the pairs in alist , whileassv uses eqv? and assoc uses equal?.(define e '((a 1) (b 2) (c 3)))(assq 'a e) =) (a 1)(assq 'b e) =) (b 2)(assq 'd e) =) #f(assq (list 'a) '(((a)) ((b)) ((c))))=) #f(assoc (list 'a) '(((a)) ((b)) ((c))))=) ((a))(assq 5 '((2 3) (5 7) (11 13)))=) unspeci�ed(assv 5 '((2 3) (5 7) (11 13)))=) (5 7)Rationale: Although they are ordinarily used as predicates,memq, memv, member, assq, assv, and assoc do not have questionmarks in their names because they return useful values ratherthan just #t or #f.

28 Revised5 Scheme6.3.3. SymbolsSymbols are objects whose usefulness rests on the fact thattwo symbols are identical (in the sense of eqv?) if and onlyif their names are spelled the same way. This is exactly theproperty needed to represent identi�ers in programs, andso most implementations of Scheme use them internally forthat purpose. Symbols are useful for many other applica-tions; for instance, they may be used the way enumeratedvalues are used in Pascal.The rules for writing a symbol are exactly the same as therules for writing an identi�er; see sections 2.1 and 7.1.1.It is guaranteed that any symbol that has been returned aspart of a literal expression, or read using the read proce-dure, and subsequently written out using the write proce-dure, will read back in as the identical symbol (in the senseof eqv?). The string->symbol procedure, however, cancreate symbols for which this write/read invariance maynot hold because their names contain special characters orletters in the non-standard case.Note: Some implementations of Scheme have a feature knownas \slashi�cation" in order to guarantee write/read invariancefor all symbols, but historically the most important use of thisfeature has been to compensate for the lack of a string datatype.Some implementations also have \uninterned symbols", whichdefeat write/read invariance even in implementations withslashi�cation, and also generate exceptions to the rule that twosymbols are the same if and only if their names are spelled thesame.(symbol? obj) procedureReturns #t if obj is a symbol, otherwise returns #f.(symbol? 'foo) =) #t(symbol? (car '(a b))) =) #t(symbol? "bar") =) #f(symbol? 'nil) =) #t(symbol? '()) =) #f(symbol? #f) =) #f(symbol->string symbol) procedureReturns the name of symbol as a string. If the symbol waspart of an object returned as the value of a literal expres-sion (section 4.1.2) or by a call to the read procedure, andits name contains alphabetic characters, then the stringreturned will contain characters in the implementation'spreferred standard case|some implementations will preferupper case, others lower case. If the symbol was returnedby string->symbol, the case of characters in the stringreturned will be the same as the case in the string thatwas passed to string->symbol. It is an error to applymutation procedures like string-set! to strings returnedby this procedure.

The following examples assume that the implementation'sstandard case is lower case:(symbol->string 'flying-fish)=) "flying-fish"(symbol->string 'Martin) =) "martin"(symbol->string(string->symbol "Malvina"))=) "Malvina"(string->symbol string) procedureReturns the symbol whose name is string . This procedurecan create symbols with names containing special charac-ters or letters in the non-standard case, but it is usuallya bad idea to create such symbols because in some imple-mentations of Scheme they cannot be read as themselves.See symbol->string.The following examples assume that the implementation'sstandard case is lower case:(eq? 'mISSISSIppi 'mississippi)=) #t(string->symbol "mISSISSIppi")=) the symbol with name "mISSISSIppi"(eq? 'bitBlt (string->symbol "bitBlt"))=) #f(eq? 'JollyWog(string->symbol(symbol->string 'JollyWog)))=) #t(string=? "K. Harper, M.D."(symbol->string(string->symbol "K. Harper, M.D.")))=) #t6.3.4. CharactersCharacters are objects that represent printed characterssuch as letters and digits. Characters are written using thenotation #\hcharacteri or #\hcharacter namei. For exam-ple: #\a ; lower case letter#\A ; upper case letter#\(; left parenthesis#\ ; the space character#\space ; the preferred way to write a space#\newline ; the newline characterCase is signi�cant in #\hcharacteri, but not in #\hcharacternamei. If hcharacteri in #\hcharacteri is alphabetic, thenthe character following hcharacteri must be a delimitercharacter such as a space or parenthesis. This rule resolvesthe ambiguous case where, for example, the sequence of

6. Standard procedures 29characters \#\space" could be taken to be either a repre-sentation of the space character or a representation of thecharacter \#\s" followed by a representation of the symbol\pace."Characters written in the #\ notation are self-evaluating.That is, they do not have to be quoted in programs.Some of the procedures that operate on characters ignorethe di�erence between upper case and lower case. The pro-cedures that ignore case have \-ci" (for \case insensitive")embedded in their names.(char? obj) procedureReturns #t if obj is a character, otherwise returns #f.(char=? char1 char2) procedure(char<? char1 char2) procedure(char>? char1 char2) procedure(char<=? char1 char2) procedure(char>=? char1 char2) procedureThese procedures impose a total ordering on the set ofcharacters. It is guaranteed that under this ordering:� The upper case characters are in order. For example,(char<? #\A #\B) returns #t.� The lower case characters are in order. For example,(char<? #\a #\b) returns #t.� The digits are in order. For example, (char<? #\0#\9) returns #t.� Either all the digits precede all the upper case letters,or vice versa.� Either all the digits precede all the lower case letters,or vice versa.Some implementations may generalize these procedures totake more than two arguments, as with the correspondingnumerical predicates.(char-ci=? char1 char2) library procedure(char-ci<? char1 char2) library procedure(char-ci>? char1 char2) library procedure(char-ci<=? char1 char2) library procedure(char-ci>=? char1 char2) library procedureThese procedures are similar to char=? et cetera, but theytreat upper case and lower case letters as the same. Forexample, (char-ci=? #\A #\a) returns #t. Some imple-mentations may generalize these procedures to take morethan two arguments, as with the corresponding numericalpredicates.

(char-alphabetic? char) library procedure(char-numeric? char) library procedure(char-whitespace? char) library procedure(char-upper-case? letter) library procedure(char-lower-case? letter) library procedureThese procedures return #t if their arguments are alpha-betic, numeric, whitespace, upper case, or lower case char-acters, respectively, otherwise they return #f. The follow-ing remarks, which are speci�c to the ASCII character set,are intended only as a guide: The alphabetic characters arethe 52 upper and lower case letters. The numeric charac-ters are the ten decimal digits. The whitespace charactersare space, tab, line feed, form feed, and carriage return.(char->integer char) procedure(integer->char n) procedureGiven a character, char->integer returns an exact inte-ger representation of the character. Given an exact inte-ger that is the image of a character under char->integer,integer->char returns that character. These proceduresimplement order-preserving isomorphisms between the setof characters under the char<=? ordering and some subsetof the integers under the <= ordering. That is, if(char<=? a b) =) #t and (<= x y) =) #tand x and y are in the domain of integer->char, then(<= (char->integer a)(char->integer b)) =) #t(char<=? (integer->char x)(integer->char y)) =) #t(char-upcase char) library procedure(char-downcase char) library procedureThese procedures return a character char2 such that(char-ci=? char char2). In addition, if char is alpha-betic, then the result of char-upcase is upper case andthe result of char-downcase is lower case.6.3.5. StringsStrings are sequences of characters. Strings are writtenas sequences of characters enclosed within doublequotes("). A doublequote can be written inside a string only byescaping it with a backslash (\), as in"The word \"recursion\" has many meanings."A backslash can be written inside a string only by escapingit with another backslash. Scheme does not specify thee�ect of a backslash within a string that is not followed bya doublequote or backslash.

30 Revised5 SchemeA string constant may continue from one line to the next,but the exact contents of such a string are unspeci�ed.The length of a string is the number of characters that itcontains. This number is an exact, non-negative integerthat is �xed when the string is created. The valid indexesof a string are the exact non-negative integers less thanthe length of the string. The �rst character of a string hasindex 0, the second has index 1, and so on.In phrases such as \the characters of string beginning withindex start and ending with index end ," it is understoodthat the index start is inclusive and the index end is ex-clusive. Thus if start and end are the same index, a nullsubstring is referred to, and if start is zero and end is thelength of string , then the entire string is referred to.Some of the procedures that operate on strings ignore thedi�erence between upper and lower case. The versions thatignore case have \-ci" (for \case insensitive") embeddedin their names.(string? obj) procedureReturns #t if obj is a string, otherwise returns #f.(make-string k) procedure(make-string k char) procedureMake-string returns a newly allocated string of length k.If char is given, then all elements of the string are ini-tialized to char , otherwise the contents of the string areunspeci�ed.(string char : : :) library procedureReturns a newly allocated string composed of the argu-ments.(string-length string) procedureReturns the number of characters in the given string .(string-ref string k) procedurek must be a valid index of string . String-ref returnscharacter k of string using zero-origin indexing.(string-set! string k char) procedurek must be a valid index of string . String-set! stores charin element k of string and returns an unspeci�ed value.(define (f) (make-string 3 #*))(define (g) "***")(string-set! (f) 0 #\?) =) unspeci�ed(string-set! (g) 0 #\?) =) error(string-set! (symbol->string 'immutable)0#\?) =) error

(string=? string1 string2) library procedure(string-ci=? string1 string2) library procedureReturns #t if the two strings are the same length and con-tain the same characters in the same positions, otherwisereturns #f. String-ci=? treats upper and lower case let-ters as though they were the same character, but string=?treats upper and lower case as distinct characters.(string<? string1 string2) library procedure(string>? string1 string2) library procedure(string<=? string1 string2) library procedure(string>=? string1 string2) library procedure(string-ci<? string1 string2) library procedure(string-ci>? string1 string2) library procedure(string-ci<=? string1 string2) library procedure(string-ci>=? string1 string2) library procedureThese procedures are the lexicographic extensions tostrings of the corresponding orderings on characters. Forexample, string<? is the lexicographic ordering on stringsinduced by the ordering char<? on characters. If twostrings di�er in length but are the same up to the lengthof the shorter string, the shorter string is considered to belexicographically less than the longer string.Implementations may generalize these and the string=?and string-ci=? procedures to take more than two argu-ments, as with the corresponding numerical predicates.(substring string start end) library procedureString must be a string, and start and end must be exactintegers satisfying0 � start � end � (string-length string).Substring returns a newly allocated string formed fromthe characters of string beginning with index start (inclu-sive) and ending with index end (exclusive).(string-append string : : :) library procedureReturns a newly allocated string whose characters form theconcatenation of the given strings.(string->list string) library procedure(list->string list) library procedureString->list returns a newly allocated list of the charac-ters that make up the given string. List->string returnsa newly allocated string formed from the characters in thelist list , which must be a list of characters. String->listand list->string are inverses so far as equal? is con-cerned.(string-copy string) library procedureReturns a newly allocated copy of the given string .

6. Standard procedures 31(string-fill! string char) library procedureStores char in every element of the given string and returnsan unspeci�ed value.6.3.6. VectorsVectors are heterogenous structures whose elements are in-dexed by integers. A vector typically occupies less spacethan a list of the same length, and the average time re-quired to access a randomly chosen element is typicallyless for the vector than for the list.The length of a vector is the number of elements that itcontains. This number is a non-negative integer that is�xed when the vector is created. The valid indexes of avector are the exact non-negative integers less than thelength of the vector. The �rst element in a vector is indexedby zero, and the last element is indexed by one less thanthe length of the vector.Vectors are written using the notation #(obj : : :). Forexample, a vector of length 3 containing the number zeroin element 0, the list (2 2 2 2) in element 1, and thestring "Anna" in element 2 can be written as following:#(0 (2 2 2 2) "Anna")Note that this is the external representation of a vector, notan expression evaluating to a vector. Like list constants,vector constants must be quoted:'#(0 (2 2 2 2) "Anna")=) #(0 (2 2 2 2) "Anna")(vector? obj) procedureReturns #t if obj is a vector, otherwise returns #f.(make-vector k) procedure(make-vector k �ll) procedureReturns a newly allocated vector of k elements. If a secondargument is given, then each element is initialized to �ll .Otherwise the initial contents of each element is unspeci-�ed.(vector obj : : :) library procedureReturns a newly allocated vector whose elements containthe given arguments. Analogous to list.(vector 'a 'b 'c) =) #(a b c)(vector-length vector) procedureReturns the number of elements in vector as an exact in-teger.(vector-ref vector k) procedurek must be a valid index of vector . Vector-ref returns thecontents of element k of vector .

(vector-ref '#(1 1 2 3 5 8 13 21)5)=) 8(vector-ref '#(1 1 2 3 5 8 13 21)(let ((i (round (* 2 (acos -1)))))(if (inexact? i)(inexact->exact i)i)))=) 13(vector-set! vector k obj) procedurek must be a valid index of vector . Vector-set! stores objin element k of vector . The value returned by vector-set!is unspeci�ed.(let ((vec (vector 0 '(2 2 2 2) "Anna")))(vector-set! vec 1 '("Sue" "Sue"))vec) =) #(0 ("Sue" "Sue") "Anna")(vector-set! '#(0 1 2) 1 "doe")=) error ; constant vector(vector->list vector) library procedure(list->vector list) library procedureVector->list returns a newly allocated list of the objectscontained in the elements of vector . List->vector returnsa newly created vector initialized to the elements of the listlist . (vector->list '#(dah dah didah))=) (dah dah didah)(list->vector '(dididit dah))=) #(dididit dah)(vector-fill! vector �ll) library procedureStores �ll in every element of vector . The value returnedby vector-fill! is unspeci�ed.6.4. Control featuresThis chapter describes various primitive procedures whichcontrol the ow of program execution in special ways. Theprocedure? predicate is also described here.(procedure? obj) procedureReturns #t if obj is a procedure, otherwise returns #f.(procedure? car) =) #t(procedure? 'car) =) #f(procedure? (lambda (x) (* x x)))=) #t(procedure? '(lambda (x) (* x x)))=) #f(call-with-current-continuation procedure?)=) #t

32 Revised5 Scheme(apply proc arg1 : : : args) procedureProc must be a procedure and args must be a list. Callsproc with the elements of the list (append (list arg1: : :) args) as the actual arguments.(apply + (list 3 4)) =) 7(define compose(lambda (f g)(lambda args(f (apply g args)))))((compose sqrt *) 12 75) =) 30(map proc list1 list2 : : :) library procedureThe lists must be lists, and proc must be a procedure takingas many arguments as there are lists and returning a singlevalue. If more than one list is given, then they must allbe the same length. Map applies proc element-wise to theelements of the lists and returns a list of the results, inorder. The dynamic order in which proc is applied to theelements of the lists is unspeci�ed.(map cadr '((a b) (d e) (g h)))=) (b e h)(map (lambda (n) (expt n n))'(1 2 3 4 5))=) (1 4 27 256 3125)(map + '(1 2 3) '(4 5 6)) =) (5 7 9)(let ((count 0))(map (lambda (ignored)(set! count (+ count 1))count)'(a b))) =) (1 2) or (2 1)(for-each proc list1 list2 : : :) library procedureThe arguments to for-each are like the arguments to map,but for-each calls proc for its side e�ects rather than forits values. Unlike map, for-each is guaranteed to call procon the elements of the lists in order from the �rst ele-ment(s) to the last, and the value returned by for-each isunspeci�ed.(let ((v (make-vector 5)))(for-each (lambda (i)(vector-set! v i (* i i)))'(0 1 2 3 4))v) =) #(0 1 4 9 16)(force promise) library procedureForces the value of promise (see delay, section 4.2.5). If novalue has been computed for the promise, then a value is

computed and returned. The value of the promise is cached(or \memoized") so that if it is forced a second time, thepreviously computed value is returned.(force (delay (+ 1 2))) =) 3(let ((p (delay (+ 1 2))))(list (force p) (force p)))=) (3 3)(define a-stream(letrec ((next(lambda (n)(cons n (delay (next (+ n 1)))))))(next 0)))(define head car)(define tail(lambda (stream) (force (cdr stream))))(head (tail (tail a-stream)))=) 2Force and delay are mainly intended for programs writtenin functional style. The following examples should not beconsidered to illustrate good programming style, but theyillustrate the property that only one value is computed fora promise, no matter how many times it is forced.(define count 0)(define p(delay (begin (set! count (+ count 1))(if (> count x)count(force p)))))(define x 5)p =) a promise(force p) =) 6p =) a promise, still(begin (set! x 10)(force p)) =) 6Here is a possible implementation of delay and force.Promises are implemented here as procedures of no argu-ments, and force simply calls its argument:(define force(lambda (object)(object)))We de�ne the expression(delay hexpressioni)to have the same meaning as the procedure call(make-promise (lambda () hexpressioni))as follows(define-syntax delay(syntax-rules ()((delay expression)(make-promise (lambda () expression))))),

6. Standard procedures 33where make-promise is de�ned as follows:(define make-promise(lambda (proc)(let ((result-ready? #f)(result #f))(lambda ()(if result-ready?result(let ((x (proc)))(if result-ready?result(begin (set! result-ready? #t)(set! result x)result))))))))Rationale: A promise may refer to its own value, as in thelast example above. Forcing such a promise may cause thepromise to be forced a second time before the value of the �rstforce has been computed. This complicates the de�nition ofmake-promise.Various extensions to this semantics of delay and forceare supported in some implementations:� Calling force on an object that is not a promise maysimply return the object.� It may be the case that there is no means by whicha promise can be operationally distinguished from itsforced value. That is, expressions like the followingmay evaluate to either #t or to #f, depending on theimplementation:(eqv? (delay 1) 1) =) unspeci�ed(pair? (delay (cons 1 2))) =) unspeci�ed� Some implementations may implement \implicit forc-ing," where the value of a promise is forced by primi-tive procedures like cdr and +:(+ (delay (* 3 7)) 13) =) 34(call-with-current-continuation proc) procedureProc must be a procedure of one argument. The procedurecall-with-current-continuation packages up the cur-rent continuation (see the rationale below) as an \escapeprocedure" and passes it as an argument to proc. The es-cape procedure is a Scheme procedure that, if it is latercalled, will abandon whatever continuation is in e�ect atthat later time and will instead use the continuation thatwas in e�ect when the escape procedure was created. Call-ing the escape procedure may cause the invocation of beforeand after thunks installed using dynamic-wind.The escape procedure accepts the same number of ar-guments as the continuation to the original call to

call-with-current-continuation. Except for continua-tions created by the call-with-values procedure, all con-tinuations take exactly one value. The e�ect of passing novalue or more than one value to continuations that werenot created by call-with-values is unspeci�ed.The escape procedure that is passed to proc has unlimitedextent just like any other procedure in Scheme. It may bestored in variables or data structures and may be called asmany times as desired.The following examples show only the most common waysin which call-with-current-continuation is used. Ifall real uses were as simple as these examples, therewould be no need for a procedure with the power ofcall-with-current-continuation.(call-with-current-continuation(lambda (exit)(for-each (lambda (x)(if (negative? x)(exit x)))'(54 0 37 -3 245 19))#t)) =) -3(define list-length(lambda (obj)(call-with-current-continuation(lambda (return)(letrec ((r(lambda (obj)(cond ((null? obj) 0)((pair? obj)(+ (r (cdr obj)) 1))(else (return #f))))))(r obj))))))(list-length '(1 2 3 4)) =) 4(list-length '(a b . c)) =) #fRationale:A common use of call-with-current-continuation is forstructured, non-local exits from loops or procedure bodies, butin fact call-with-current-continuation is extremely usefulfor implementing a wide variety of advanced control structures.Whenever a Scheme expression is evaluated there is a contin-uation wanting the result of the expression. The continuationrepresents an entire (default) future for the computation. If theexpression is evaluated at top level, for example, then the con-tinuation might take the result, print it on the screen, promptfor the next input, evaluate it, and so on forever. Most of thetime the continuation includes actions speci�ed by user code,as in a continuation that will take the result, multiply it by thevalue stored in a local variable, add seven, and give the answerto the top level continuation to be printed. Normally theseubiquitous continuations are hidden behind the scenes and pro-grammers do not think much about them. On rare occasions,however, a programmer may need to deal with continuations ex-plicitly. Call-with-current-continuation allows Scheme pro-

34 Revised5 Schemegrammers to do that by creating a procedure that acts just likethe current continuation.Most programming languages incorporate one or more special-purpose escape constructs with names like exit, return, oreven goto. In 1965, however, Peter Landin [16] invented ageneral purpose escape operator called the J-operator. JohnReynolds [24] described a simpler but equally powerful con-struct in 1972. The catch special form described by Sussmanand Steele in the 1975 report on Scheme is exactly the same asReynolds's construct, though its name came from a less generalconstruct in MacLisp. Several Scheme implementors noticedthat the full power of the catch construct could be provided bya procedure instead of by a special syntactic construct, and thename call-with-current-continuation was coined in 1982.This name is descriptive, but opinions di�er on the merits ofsuch a long name, and some people use the name call/cc in-stead.(values obj : : :) procedureDelivers all of its arguments to its continuation. Exceptfor continuations created by the call-with-values pro-cedure, all continuations take exactly one value. Valuesmight be de�ned as follows:(define (values . things)(call-with-current-continuation(lambda (cont) (apply cont things))))(call-with-values producer consumer) procedureCalls its producer argument with no values and a contin-uation that, when passed some values, calls the consumerprocedure with those values as arguments. The continua-tion for the call to consumer is the continuation of the callto call-with-values.(call-with-values (lambda () (values 4 5))(lambda (a b) b))=) 5(call-with-values * -) =) -1(dynamic-wind before thunk after) procedureCalls thunk without arguments, returning the result(s) ofthis call. Before and after are called, also without ar-guments, as required by the following rules (note thatin the absence of calls to continuations captured usingcall-with-current-continuation the three argumentsare called once each, in order). Before is called wheneverexecution enters the dynamic extent of the call to thunkand after is called whenever it exits that dynamic extent.The dynamic extent of a procedure call is the period be-tween when the call is initiated and when it returns. In

Scheme, because of call-with-current-continuation,the dynamic extent of a call may not be a single, connectedtime period. It is de�ned as follows:� The dynamic extent is entered when execution of thebody of the called procedure begins.� The dynamic extent is also entered when exe-cution is not within the dynamic extent and acontinuation is invoked that was captured (usingcall-with-current-continuation) during the dy-namic extent.� It is exited when the called procedure returns.� It is also exited when execution is within the dynamicextent and a continuation is invoked that was capturedwhile not within the dynamic extent.If a second call to dynamic-wind occurs within the dynamicextent of the call to thunk and then a continuation is in-voked in such a way that the after s from these two invoca-tions of dynamic-wind are both to be called, then the afterassociated with the second (inner) call to dynamic-wind iscalled �rst.If a second call to dynamic-wind occurs within the dy-namic extent of the call to thunk and then a continua-tion is invoked in such a way that the befores from thesetwo invocations of dynamic-wind are both to be called,then the before associated with the �rst (outer) call todynamic-wind is called �rst.If invoking a continuation requires calling the before fromone call to dynamic-wind and the after from another, thenthe after is called �rst.The e�ect of using a captured continuation to enter or exitthe dynamic extent of a call to before or after is unde�ned.(let ((path '())(c #f))(let ((add (lambda (s)(set! path (cons s path)))))(dynamic-wind(lambda () (add 'connect))(lambda ()(add (call-with-current-continuation(lambda (c0)(set! c c0)'talk1))))(lambda () (add 'disconnect)))(if (< (length path) 4)(c 'talk2)(reverse path))))=) (connect talk1 disconnectconnect talk2 disconnect)

6. Standard procedures 356.5. Eval(eval expression environment-speci�er) procedureEvaluates expression in the speci�ed environment and re-turns its value. Expression must be a valid Scheme expres-sion represented as data, and environment-speci�er mustbe a value returned by one of the three procedures de-scribed below. Implementations may extend eval to allownon-expression programs (de�nitions) as the �rst argumentand to allow other values as environments, with the re-striction that eval is not allowed to create new bindingsin the environments associated with null-environment orscheme-report-environment.(eval '(* 7 3) (scheme-report-environment 5))=) 21(let ((f (eval '(lambda (f x) (f x x))(null-environment 5))))(f + 10)) =) 20(scheme-report-environment version) procedure(null-environment version) procedureVersion must be the exact integer 5, corresponding to thisrevision of the Scheme report (the Revised5 Report onScheme). Scheme-report-environment returns a speci�erfor an environment that is empty except for all bindings de-�ned in this report that are either required or both optionaland supported by the implementation. Null-environmentreturns a speci�er for an environment that is empty exceptfor the (syntactic) bindings for all syntactic keywords de-�ned in this report that are either required or both optionaland supported by the implementation.Other values of version can be used to specify environmentsmatching past revisions of this report, but their support isnot required. An implementation will signal an error ifversion is neither 5 nor another value supported by theimplementation.The e�ect of assigning (through the use of eval) a vari-able bound in a scheme-report-environment (for exam-ple car) is unspeci�ed. Thus the environments speci�edby scheme-report-environment may be immutable.(interaction-environment) optional procedureThis procedure returns a speci�er for the environment thatcontains implementation-de�ned bindings, typically a su-perset of those listed in the report. The intent is that thisprocedure will return the environment in which the imple-mentation would evaluate expressions dynamically typedby the user.

6.6. Input and output6.6.1. PortsPorts represent input and output devices. To Scheme, aninput port is a Scheme object that can deliver charactersupon command, while an output port is a Scheme objectthat can accept characters.(call-with-input-file string proc) library procedure(call-with-output-file string proc) library procedureString should be a string naming a �le, and procshould be a procedure that accepts one argument. Forcall-with-input-file, the �le should already exist; forcall-with-output-file, the e�ect is unspeci�ed if the�le already exists. These procedures call proc with one ar-gument: the port obtained by opening the named �le forinput or output. If the �le cannot be opened, an error issignalled. If proc returns, then the port is closed automati-cally and the value(s) yielded by the proc is(are) returned.If proc does not return, then the port will not be closedautomatically unless it is possible to prove that the portwill never again be used for a read or write operation.Rationale: Because Scheme's escape procedures have un-limited extent, it is possible to escape from the current con-tinuation but later to escape back in. If implementationswere permitted to close the port on any escape from thecurrent continuation, then it would be impossible to writeportable code using both call-with-current-continuationand call-with-input-file or call-with-output-file.(input-port? obj) procedure(output-port? obj) procedureReturns #t if obj is an input port or output port respec-tively, otherwise returns #f.(current-input-port) procedure(current-output-port) procedureReturns the current default input or output port.(with-input-from-file string thunk)optional procedure(with-output-to-file string thunk)optional procedureString should be a string naming a �le, and proc should bea procedure of no arguments. For with-input-from-file,the �le should already exist; for with-output-to-file,the e�ect is unspeci�ed if the �le already exists. The�le is opened for input or output, an input or outputport connected to it is made the default value returnedby current-input-port or current-output-port (and is

36 Revised5 Schemeused by (read), (write obj), and so forth), and the thunkis called with no arguments. When the thunk returns,the port is closed and the previous default is restored.With-input-from-file and with-output-to-file re-turn(s) the value(s) yielded by thunk . If an escape pro-cedure is used to escape from the continuation of theseprocedures, their behavior is implementation dependent.(open-input-file �lename) procedureTakes a string naming an existing �le and returns an inputport capable of delivering characters from the �le. If the�le cannot be opened, an error is signalled.(open-output-file �lename) procedureTakes a string naming an output �le to be created andreturns an output port capable of writing characters to anew �le by that name. If the �le cannot be opened, anerror is signalled. If a �le with the given name alreadyexists, the e�ect is unspeci�ed.(close-input-port port) procedure(close-output-port port) procedureCloses the �le associated with port , rendering the port in-capable of delivering or accepting characters. These rou-tines have no e�ect if the �le has already been closed. Thevalue returned is unspeci�ed.6.6.2. Input(read) library procedure(read port) library procedureRead converts external representations of Scheme objectsinto the objects themselves. That is, it is a parser for thenonterminal hdatumi (see sections 7.1.2 and 6.3.2). Readreturns the next object parsable from the given input port ,updating port to point to the �rst character past the endof the external representation of the object.If an end of �le is encountered in the input before any char-acters are found that can begin an object, then an end of�le object is returned. The port remains open, and fur-ther attempts to read will also return an end of �le object.If an end of �le is encountered after the beginning of anobject's external representation, but the external represen-tation is incomplete and therefore not parsable, an error issignalled.The port argument may be omitted, in which case it de-faults to the value returned by current-input-port. It isan error to read from a closed port.

(read-char) procedure(read-char port) procedureReturns the next character available from the input port ,updating the port to point to the following character. Ifno more characters are available, an end of �le object isreturned. Port may be omitted, in which case it defaultsto the value returned by current-input-port.(peek-char) procedure(peek-char port) procedureReturns the next character available from the input port ,without updating the port to point to the following char-acter. If no more characters are available, an end of �leobject is returned. Port may be omitted, in which case itdefaults to the value returned by current-input-port.Note: The value returned by a call to peek-char is the same asthe value that would have been returned by a call to read-charwith the same port . The only di�erence is that the very next callto read-char or peek-char on that port will return the valuereturned by the preceding call to peek-char. In particular, acall to peek-char on an interactive port will hang waiting forinput whenever a call to read-char would have hung.(eof-object? obj) procedureReturns #t if obj is an end of �le object, otherwise returns#f. The precise set of end of �le objects will vary amongimplementations, but in any case no end of �le object willever be an object that can be read in using read.(char-ready?) procedure(char-ready? port) procedureReturns #t if a character is ready on the input port andreturns #f otherwise. If char-ready returns #t then thenext read-char operation on the given port is guaranteednot to hang. If the port is at end of �le then char-ready?returns #t. Port may be omitted, in which case it defaultsto the value returned by current-input-port.Rationale: Char-ready? exists to make it possible for a pro-gram to accept characters from interactive ports without gettingstuck waiting for input. Any input editors associated with suchports must ensure that characters whose existence has been as-serted by char-ready? cannot be rubbed out. If char-ready?were to return #f at end of �le, a port at end of �le wouldbe indistinguishable from an interactive port that has no readycharacters.6.6.3. Output

6. Standard procedures 37(write obj) library procedure(write obj port) library procedureWrites a written representation of obj to the given port .Strings that appear in the written representation are en-closed in doublequotes, and within those strings backslashand doublequote characters are escaped by backslashes.Character objects are written using the #\ notation. Writereturns an unspeci�ed value. The port argument may beomitted, in which case it defaults to the value returned bycurrent-output-port.(display obj) library procedure(display obj port) library procedureWrites a representation of obj to the given port . Stringsthat appear in the written representation are not enclosedin doublequotes, and no characters are escaped withinthose strings. Character objects appear in the represen-tation as if written by write-char instead of by write.Display returns an unspeci�ed value. The port argumentmay be omitted, in which case it defaults to the value re-turned by current-output-port.Rationale: Write is intended for producing machine-readableoutput and display is for producing human-readable output.Implementations that allow \slashi�cation" within symbols willprobably want write but not display to slashify funny charac-ters in symbols.(newline) library procedure(newline port) library procedureWrites an end of line to port . Exactly how this is donedi�ers from one operating system to another. Returnsan unspeci�ed value. The port argument may be omit-ted, in which case it defaults to the value returned bycurrent-output-port.(write-char char) procedure(write-char char port) procedureWrites the character char (not an external representa-tion of the character) to the given port and returns anunspeci�ed value. The port argument may be omit-ted, in which case it defaults to the value returned bycurrent-output-port.6.6.4. System interfaceQuestions of system interface generally fall outside of thedomain of this report. However, the following operationsare important enough to deserve description here.(load �lename) optional procedureFilename should be a string naming an existing �le con-taining Scheme source code. The load procedure reads ex-pressions and de�nitions from the �le and evaluates them

sequentially. It is unspeci�ed whether the results of theexpressions are printed. The load procedure does nota�ect the values returned by current-input-port andcurrent-output-port. Load returns an unspeci�ed value.Rationale: For portability, load must operate on source �les.Its operation on other kinds of �les necessarily varies amongimplementations.(transcript-on �lename) optional procedure(transcript-off) optional procedureFilename must be a string naming an output �le to be cre-ated. The e�ect of transcript-on is to open the named�le for output, and to cause a transcript of subsequentinteraction between the user and the Scheme system tobe written to the �le. The transcript is ended by a callto transcript-off, which closes the transcript �le. Onlyone transcript may be in progress at any time, though someimplementations may relax this restriction. The values re-turned by these procedures are unspeci�ed.

38 Revised5 Scheme7. Formal syntax and semanticsThis chapter provides formal descriptions of what has al-ready been described informally in previous chapters of thisreport.7.1. Formal syntaxThis section provides a formal syntax for Scheme writtenin an extended BNF.All spaces in the grammar are for legibility. Case is insignif-icant; for example, #x1A and #X1a are equivalent. hemptyistands for the empty string.The following extensions to BNF are used to make the de-scription more concise: hthingi* means zero or more occur-rences of hthingi; and hthingi+ means at least one hthingi.7.1.1. Lexical structureThis section describes how individual tokens (identi�ers,numbers, etc.) are formed from sequences of characters.The following sections describe how expressions and pro-grams are formed from sequences of tokens.hIntertoken spacei may occur on either side of any token,but not within a token.Tokens which require implicit termination (identi�ers,numbers, characters, and dot) may be terminated by anyhdelimiteri, but not necessarily by anything else.The following �ve characters are reserved for future exten-sions to the language: [] { } |htokeni �! hidenti�eri j hbooleani j hnumberij hcharacteri j hstringij (j) j #(j ' j � j , j ,@ j .hdelimiteri �! hwhitespacei j (j) j " j ;hwhitespacei �! hspace or newlineihcommenti �! ; hall subsequent characters up to aline breakihatmospherei �! hwhitespacei j hcommentihintertoken spacei �! hatmospherei*hidenti�eri �! hinitiali hsubsequenti*j hpeculiar identi�erihinitiali �! hletteri j hspecial initialihletteri �! a j b j c j ... j zhspecial initiali �! ! j $ j % j & j * j / j : j < j =j > j ? j ^ j _ j ~hsubsequenti �! hinitiali j hdigitij hspecial subsequentihdigiti �! 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9hspecial subsequenti �! + j - j . j @hpeculiar identi�eri �! + j - j ...

hsyntactic keywordi �! hexpression keywordij else j => j definej unquote j unquote-splicinghexpression keywordi �! quote j lambda j ifj set! j begin j cond j and j or j casej let j let* j letrec j do j delayj quasiquotehvariablei �! hany hidenti�eri that isn'talso a hsyntactic keywordiihbooleani �! #t j #fhcharacteri �! #\ hany characterij #\ hcharacter nameihcharacter namei �! space j newlinehstringi �! " hstring elementi* "hstring elementi �! hany character other than " or \ij \" j \\hnumberi �! hnum 2ij hnum 8ij hnum 10ij hnum 16iThe following rules for hnum Ri, hcomplex Ri, hreal Ri,hureal Ri, huinteger Ri, and hpre�x Ri should be repli-cated for R = 2; 8; 10; and 16. There are no rules forhdecimal 2i, hdecimal 8i, and hdecimal 16i, which meansthat numbers containing decimal points or exponents mustbe in decimal radix.hnum Ri �! hpre�x Ri hcomplex Rihcomplex Ri �! hreal Ri j hreal Ri @ hreal Rij hreal Ri + hureal Ri i j hreal Ri - hureal Ri ij hreal Ri + i j hreal Ri - ij + hureal Ri i j - hureal Ri i j + i j - ihreal Ri �! hsigni hureal Rihureal Ri �! huinteger Rij huinteger Ri / huinteger Rij hdecimal Rihdecimal 10i �! huinteger 10i hsu�xij . hdigit 10i+ #* hsu�xij hdigit 10i+ . hdigit 10i* #* hsu�xij hdigit 10i+ #+ . #* hsu�xihuinteger Ri �! hdigit Ri+ #*hpre�x Ri �! hradix Ri hexactnessij hexactnessi hradix Rihsu�xi �! hemptyij hexponent markeri hsigni hdigit 10i+hexponent markeri �! e j s j f j d j lhsigni �! hemptyi j + j -hexactnessi �! hemptyi j #i j #ehradix 2i �! #bhradix 8i �! #ohradix 10i �! hemptyi j #d

7. Formal syntax and semantics 39hradix 16i �! #xhdigit 2i �! 0 j 1hdigit 8i �! 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7hdigit 10i �! hdigitihdigit 16i �! hdigit 10i j a j b j c j d j e j f7.1.2. External representationshDatumi is what the read procedure (section 6.6.2) suc-cessfully parses. Note that any string that parses as anhexpressioni will also parse as a hdatumi.hdatumi �! hsimple datumi j hcompound datumihsimple datumi �! hbooleani j hnumberij hcharacteri j hstringi j hsymbolihsymboli �! hidenti�erihcompound datumi �! hlisti j hvectorihlisti �! (hdatumi*) j (hdatumi+ . hdatumi)j habbreviationihabbreviationi �! habbrev pre�xi hdatumihabbrev pre�xi �! ' j � j , j ,@hvectori �! #(hdatumi*)7.1.3. Expressionshexpressioni �! hvariableij hliteralij hprocedure callij hlambda expressionij hconditionalij hassignmentij hderived expressionij hmacro useij hmacro blockihliterali �! hquotationi j hself-evaluatingihself-evaluatingi �! hbooleani j hnumberij hcharacteri j hstringihquotationi �! 'hdatumi j (quote hdatumi)hprocedure calli �! (hoperatori hoperandi*)hoperatori �! hexpressionihoperandi �! hexpressionihlambda expressioni �! (lambda hformalsi hbodyi)hformalsi �! (hvariablei*) j hvariableij (hvariablei+ . hvariablei)hbodyi �! hde�nitioni* hsequenceihsequencei �! hcommandi* hexpressionihcommandi �! hexpressionihconditionali �! (if htesti hconsequenti halternatei)htesti �! hexpressionihconsequenti �! hexpressionihalternatei �! hexpressioni j hemptyi

hassignmenti �! (set! hvariablei hexpressioni)hderived expressioni �!(cond hcond clausei+)j (cond hcond clausei* (else hsequencei))j (case hexpressionihcase clausei+)j (case hexpressionihcase clausei*(else hsequencei))j (and htesti*)j (or htesti*)j (let (hbinding speci*) hbodyi)j (let hvariablei (hbinding speci*) hbodyi)j (let* (hbinding speci*) hbodyi)j (letrec (hbinding speci*) hbodyi)j (begin hsequencei)j (do (hiteration speci*)(htesti hdo resulti)hcommandi*)j (delay hexpressioni)j hquasiquotationihcond clausei �! (htesti hsequencei)j (htesti)j (htesti => hrecipienti)hrecipienti �! hexpressionihcase clausei �! ((hdatumi*) hsequencei)hbinding speci �! (hvariablei hexpressioni)hiteration speci �! (hvariablei hiniti hstepi)j (hvariablei hiniti)hiniti �! hexpressionihstepi �! hexpressionihdo resulti �! hsequencei j hemptyihmacro usei �! (hkeywordi hdatumi*)hkeywordi �! hidenti�erihmacro blocki �!(let-syntax (hsyntax speci*) hbodyi)j (letrec-syntax (hsyntax speci*) hbodyi)hsyntax speci �! (hkeywordi htransformer speci)7.1.4. QuasiquotationsThe following grammar for quasiquote expressions is notcontext-free. It is presented as a recipe for generating anin�nite number of production rules. Imagine a copy of thefollowing rules for D = 1; 2; 3; : : :. D keeps track of thenesting depth.hquasiquotationi �! hquasiquotation 1ihqq template 0i �! hexpressioni

40 Revised5 Schemehquasiquotation Di �! �hqq template Dij (quasiquote hqq template Di)hqq template Di �! hsimple datumij hlist qq template Dij hvector qq template Dij hunquotation Dihlist qq template Di �! (hqq template or splice Di*)j (hqq template or splice Di+ . hqq template Di)j 'hqq template Dij hquasiquotation D + 1ihvector qq template Di �! #(hqq template or splice Di*)hunquotation Di �! ,hqq template D � 1ij (unquote hqq template D � 1i)hqq template or splice Di �! hqq template Dij hsplicing unquotation Dihsplicing unquotation Di �! ,@hqq template D � 1ij (unquote-splicing hqq template D � 1i)In hquasiquotationis, a hlist qq template Di can some-times be confused with either an hunquotation Di ora hsplicing unquotation Di. The interpretation as anhunquotationi or hsplicing unquotation Di takes prece-dence.7.1.5. Transformershtransformer speci �!(syntax-rules (hidenti�eri*) hsyntax rulei*)hsyntax rulei �! (hpatterni htemplatei)hpatterni �! hpattern identi�erij (hpatterni*)j (hpatterni+ . hpatterni)j (hpatterni* hpatterni hellipsisi)j #(hpatterni*)j #(hpatterni* hpatterni hellipsisi)j hpattern datumihpattern datumi �! hstringij hcharacterij hbooleanij hnumberihtemplatei �! hpattern identi�erij (htemplate elementi*)j (htemplate elementi+ . htemplatei)j #(htemplate elementi*)j htemplate datumihtemplate elementi �! htemplateij htemplatei hellipsisihtemplate datumi �! hpattern datumihpattern identi�eri �! hany identi�er except ...ihellipsisi �! hthe identi�er ...i7.1.6. Programs and de�nitionshprogrami �! hcommand or de�nitioni*

hcommand or de�nitioni �! hcommandij hde�nitionij hsyntax de�nitionij (begin hcommand or de�nitioni+)hde�nitioni �! (define hvariablei hexpressioni)j (define (hvariablei hdef formalsi) hbodyi)j (begin hde�nitioni*)hdef formalsi �! hvariablei*j hvariablei* . hvariableihsyntax de�nitioni �!(define-syntax hkeywordi htransformer speci)7.2. Formal semanticsThis section provides a formal denotational semantics forthe primitive expressions of Scheme and selected built-inprocedures. The concepts and notation used here are de-scribed in [29]; the notation is summarized below:h : : : i sequence formations # k kth member of the sequence s (1-based)#s length of sequence ss x t concatenation of sequences s and ts y k drop the �rst k members of sequence st ! a; b McCarthy conditional \if t then a else b"�[x=i] substitution \� with x for i"x in D injection of x into domain Dx j D projection of x to domain DThe reason that expression continuations take sequencesof values instead of single values is to simplify the formaltreatment of procedure calls and multiple return values.The boolean ag associated with pairs, vectors, and stringswill be true for mutable objects and false for immutableobjects.The order of evaluation within a call is unspeci�ed. Wemimic that here by applying arbitrary permutations per-mute and unpermute, which must be inverses, to the argu-ments in a call before and after they are evaluated. This isnot quite right since it suggests, incorrectly, that the orderof evaluation is constant throughout a program (for anygiven number of arguments), but it is a closer approxima-tion to the intended semantics than a left-to-right evalua-tion would be.The storage allocator new is implementation-dependent,but it must obey the following axiom: if new � 2 L, then� (new � j L) # 2 = false .The de�nition of K is omitted because an accurate de�ni-tion of K would complicate the semantics without beingvery interesting.If P is a program in which all variables are de�ned beforebeing referenced or assigned, then the meaning of P isE [[((lambda (I*) P') hunde�nedi : : :)]]

7. Formal syntax and semantics 41where I* is the sequence of variables de�ned in P, P0 is thesequence of expressions obtained by replacing every de�ni-tion in P by an assignment, hunde�nedi is an expressionthat evaluates to unde�ned, and E is the semantic functionthat assigns meaning to expressions.7.2.1. Abstract syntaxK 2 Con constants, including quotationsI 2 Ide identi�ers (variables)E 2 Exp expressions� 2 Com = Exp commandsExp �! K j I j (E0 E*)j (lambda (I*) �* E0)j (lambda (I* . I) �* E0)j (lambda I �* E0)j (if E0 E1 E2) j (if E0 E1)j (set! I E)7.2.2. Domain equations� 2 L locations� 2 N natural numbersT = ffalse, trueg booleansQ symbolsH charactersR numbersEp = L� L� T pairsEv = L*� T vectorsEs = L*� T stringsM = ffalse, true, null, unde�ned, unspeci�edgmiscellaneous� 2 F = L� (E*! K! C) procedure values� 2 E = Q+ H+ R+ Ep + Ev + Es + M+ Fexpressed values� 2 S = L! (E� T) stores� 2 U = Ide! L environments� 2 C = S! A command continuations� 2 K = E*! C expression continuationsA answersX errors7.2.3. Semantic functionsK : Con! EE : Exp! U! K! CE* : Exp*! U! K! CC : Com*! U! C! CDe�nition of K deliberately omitted.E[[K]] = ��� : send (K[[K]])�

E[[I]] = ��� : hold (lookup � I)(single(�� : � = unde�ned !wrong \unde�ned variable";send � �))E[[(E0 E*)]] =��� : E*(permute(hE0i x E*))�(��* : ((��* : applicate (�* # 1) (�* y 1) �)(unpermute �*)))E[[(lambda (I*) �* E0)]] =��� : �� :new � 2 L!send (hnew � j L;��*�0 :#�* = #I* !tievals(��* : (��0 : C[[�*]]�0(E[[E0]]�0�0))(extends � I* �*))�*;wrong \wrong number of arguments"iin E)�(update (new � j L) unspeci�ed �);wrong \out of memory" �E[[(lambda (I* . I) �* E0)]] =��� : �� :new � 2 L!send (hnew � j L;��*�0 :#�* � #I* !tievalsrest(��* : (��0 : C[[�*]]�0(E[[E0]]�0�0))(extends � (I* x hIi) �*))�*(#I*);wrong \too few arguments"i in E)�(update (new � j L) unspeci�ed �);wrong \out of memory" �E[[(lambda I �* E0)]] = E[[(lambda (. I) �* E0)]]E[[(if E0 E1 E2)]] =��� : E[[E0]] � (single (�� : truish �! E[[E1]]��;E[[E2]]��))E[[(if E0 E1)]] =��� : E[[E0]] � (single (�� : truish �! E[[E1]]��;send unspeci�ed �))Here and elsewhere, any expressed value other than unde�nedmay be used in place of unspeci�ed.E[[(set! I E)]] =��� : E[[E]] � (single(�� : assign (lookup � I)�(send unspeci�ed �)))E*[[]] = ��� : �h iE*[[E0 E*]] =��� : E[[E0]] � (single(��0 : E*[[E*]] � (��* : � (h�0i x �*))))C[[]] = ��� : �C[[�0 �*]] = ��� : E[[�0]] � (��* : C[[�*]]��)

42 Revised5 Scheme7.2.4. Auxiliary functionslookup : U! Ide! Llookup = ��I : �Iextends : U ! Ide* ! L* ! Uextends =��I*�* :#I* = 0 ! �;extends (�[(�* # 1)=(I* # 1)]) (I* y 1) (�* y 1)wrong : X ! C [implementation-dependent]send : E ! K! Csend = ��� : �h�isingle : (E ! C)! Ksingle =� �* :#�* = 1 ! (�* # 1);wrong \wrong number of return values"new : S ! (L+ ferrorg) [implementation-dependent]hold : L ! K! Chold = ���� : send (�� # 1)��assign : L! E! C ! Cassign = ����� : �(update ���)update : L! E ! S ! Supdate = ���� : �[h�; truei=�]tievals : (L* ! C)! E* ! Ctievals =� �*� :#�* = 0 ! h i�;new � 2 L! tievals (��* : (hnew � j Li x �*))(�* y 1)(update(new � j L)(�* # 1)�);wrong \out of memory"�tievalsrest : (L* ! C) ! E* ! N! Ctievalsrest =� �*� : list (drop�rst �*�)(single(�� : tievals ((take�rst �*�) x h�i)))drop�rst = �ln : n = 0 ! l; drop�rst (l y 1)(n� 1)take�rst = �ln : n = 0 ! h i; hl # 1i x (take�rst (l y 1)(n � 1))truish : E ! Ttruish = �� : � = false ! false; truepermute : Exp* ! Exp* [implementation-dependent]unpermute : E* ! E* [inverse of permute]applicate : E ! E* ! K! Capplicate =���*� : � 2 F! (� j F # 2)�*�;wrong \bad procedure"onearg : (E! K ! C)! (E* ! K ! C)onearg =���*� :#�* = 1! �(�* # 1)�;wrong \wrong number of arguments"twoarg : (E! E ! K! C)! (E* ! K ! C)twoarg =���*� :#�* = 2! �(�* # 1)(�* # 2)�;wrong \wrong number of arguments"

list : E* ! K ! Clist =��*� :#�* = 0 ! send null �;list (�* y 1)(single(�� : consh�* # 1; �i�))cons : E*! K ! Ccons =twoarg (��1�2�� : new � 2 L!(��0 : new �0 2 L !send (hnew � j L; new �0 j L; trueiin E)�(update(new �0 j L)�2�0);wrong \out of memory"�0)(update(new � j L)�1�);wrong \out of memory"�)less : E* ! K ! Cless =twoarg (��1�2� : (�1 2 R ^ �2 2 R)!send (�1 j R < �2 j R! true; false)�;wrong \non-numeric argument to <")add : E* ! K ! Cadd =twoarg (��1�2� : (�1 2 R ^ �2 2 R)!send ((�1 j R+ �2 j R) in E)�;wrong \non-numeric argument to +")car : E* ! K ! Ccar =onearg (��� : � 2 Ep ! hold (� j Ep # 1)�;wrong \non-pair argument to car")cdr : E* ! K ! C [similar to car]setcar : E*! K ! Csetcar =twoarg (��1�2� : �1 2 Ep !(�1 j Ep # 3) ! assign (�1 j Ep # 1)�2(send unspeci�ed �);wrong \immutable argument to set-car!";wrong \non-pair argument to set-car!")eqv : E* ! K ! Ceqv =twoarg (��1�2� : (�1 2 M ^ �2 2 M)!send (�1 j M = �2 j M! true; false)�;(�1 2 Q ^ �2 2 Q)!send (�1 j Q = �2 j Q! true; false)�;(�1 2 H ^ �2 2 H)!send (�1 j H = �2 j H! true; false)�;(�1 2 R ^ �2 2 R)!send (�1 j R = �2 j R! true; false)�;(�1 2 Ep ^ �2 2 Ep)!send ((�p1p2 : ((p1 # 1) = (p2 # 1)^(p1 # 2) = (p2 # 2))! true;false)(�1 j Ep)(�2 j Ep))�;

7. Formal syntax and semantics 43(�1 2 Ev ^ �2 2 Ev) ! : : : ;(�1 2 Es ^ �2 2 Es)! : : : ;(�1 2 F ^ �2 2 F) !send ((�1 j F # 1) = (�2 j F # 1)! true; false)�;send false �)apply : E*! K! Capply =twoarg (��1�2� : �1 2 F ! valueslist h�2i(��* : applicate �1�*�);wrong \bad procedure argument to apply")valueslist : E* ! K ! Cvalueslist =onearg (��� : � 2 Ep !cdrh�i(��* : valueslist�*(��* : carh�i(single(�� : �(h�i x �*)))));� = null ! �h i;wrong \non-list argument to values-list")cwcc : E* ! K ! C [call-with-current-continuation]cwcc =onearg (��� : � 2 F !(�� : new � 2 L!applicate �hhnew � j L; ��*�0 : ��*i in Ei�(update (new � j L)unspeci�ed�);wrong \out of memory"�);wrong \bad procedure argument")values : E* ! K ! Cvalues = ��*� : ��*cwv : E*! K! C [call-with-values]cwv =twoarg (��1�2� : applicate �1h i(��* : applicate �2 �*))7.3. Derived expression typesThis section gives macro de�nitions for the derived expres-sion types in terms of the primitive expression types (lit-eral, variable, call, lambda, if, set!). See section 6.4 fora possible de�nition of delay.(define-syntax cond(syntax-rules (else =>)((cond (else result1 result2 ...))(begin result1 result2 ...))((cond (test => result))(let ((temp test))(if temp (result temp))))((cond (test => result) clause1 clause2 ...)(let ((temp test))(if temp(result temp)(cond clause1 clause2 ...))))

((cond (test)) test)((cond (test) clause1 clause2 ...)(let ((temp test))(if temptemp(cond clause1 clause2 ...))))((cond (test result1 result2 ...))(if test (begin result1 result2 ...)))((cond (test result1 result2 ...)clause1 clause2 ...)(if test(begin result1 result2 ...)(cond clause1 clause2 ...)))))(define-syntax case(syntax-rules (else)((case (key ...)clauses ...)(let ((atom-key (key ...)))(case atom-key clauses ...)))((case key(else result1 result2 ...))(begin result1 result2 ...))((case key((atoms ...) result1 result2 ...))(if (memv key '(atoms ...))(begin result1 result2 ...)))((case key((atoms ...) result1 result2 ...)clause clauses ...)(if (memv key '(atoms ...))(begin result1 result2 ...)(case key clause clauses ...)))))(define-syntax and(syntax-rules ()((and) #t)((and test) test)((and test1 test2 ...)(if test1 (and test2 ...) #f))))(define-syntax or(syntax-rules ()((or) #f)((or test) test)((or test1 test2 ...)(let ((x test1))(if x x (or test2 ...))))))(define-syntax let(syntax-rules ()((let ((name val) ...) body1 body2 ...)((lambda (name ...) body1 body2 ...)val ...))((let tag ((name val) ...) body1 body2 ...)((letrec ((tag (lambda (name ...)body1 body2 ...)))tag)

44 Revised5 Schemeval ...))))(define-syntax let*(syntax-rules ()((let* () body1 body2 ...)(let () body1 body2 ...))((let* ((name1 val1) (name2 val2) ...)body1 body2 ...)(let ((name1 val1))(let* ((name2 val2) ...)body1 body2 ...)))))The following letrecmacro uses the symbol <undefined>in place of an expression which returns something thatwhen stored in a location makes it an error to try to ob-tain the value stored in the location (no such expression isde�ned in Scheme). A trick is used to generate the tempo-rary names needed to avoid specifying the order in whichthe values are evaluated. This could also be accomplishedby using an auxiliary macro.(define-syntax letrec(syntax-rules ()((letrec ((var1 init1) ...) body ...)(letrec "generate temp names"(var1 ...)()((var1 init1) ...)body ...))((letrec "generate temp names"()(temp1 ...)((var1 init1) ...)body ...)(let ((var1 <undefined>) ...)(let ((temp1 init1) ...)(set! var1 temp1)...body ...)))((letrec "generate temp names"(x y ...)(temp ...)((var1 init1) ...)body ...)(letrec "generate temp names"(y ...)(newtemp temp ...)((var1 init1) ...)body ...))))(define-syntax begin(syntax-rules ()((begin exp ...)((lambda () exp ...)))))The following alternative expansion for begin does notmake use of the ability to write more than one expression

in the body of a lambda expression. In any case, note thatthese rules apply only if the body of the begin contains node�nitions.(define-syntax begin(syntax-rules ()((begin exp)exp)((begin exp1 exp2 ...)(let ((x exp1))(begin exp2 ...)))))The following de�nition of do uses a trick to expand thevariable clauses. As with letrec above, an auxiliary macrowould also work. The expression (if #f #f) is used toobtain an unspeci�c value.(define-syntax do(syntax-rules ()((do ((var init step ...) ...)(test expr ...)command ...)(letrec((loop(lambda (var ...)(if test(begin(if #f #f)expr ...)(begincommand...(loop (do "step" var step ...)...))))))(loop init ...)))((do "step" x)x)((do "step" x y)y)))

Example 45NOTESLanguage changesThis section enumerates the changes that have been madeto Scheme since the \Revised4 report" [6] was published.� The report is now a superset of the IEEE standardfor Scheme [13]: implementations that conform to thereport will also conform to the standard. This requiredthe following changes:{ The empty list is now required to count as true.{ The classi�cation of features as essential orinessential has been removed. There are nowthree classes of built-in procedures: primitive, li-brary, and optional. The optional procedures areload, with-input-from-file, with-output-to-file, transcript-on, transcript-off, andinteraction-environment, and - and / withmore than two arguments. None of these are inthe IEEE standard.{ Programs are allowed to rede�ne built-in proce-dures. Doing so will not change the behavior ofother built-in procedures.� Port has been added to the list of disjoint types.� The macro appendix has been removed. High-levelmacros are now part of the main body of the report.The rewrite rules for derived expressions have beenreplaced with macro de�nitions. There are no reservedidenti�ers.� Syntax-rules now allows vector patterns.� Multiple-value returns, eval, and dynamic-wind havebeen added.� The calls that are required to be implemented in aproperly tail-recursive fashion are de�ned explicitly.� `@' can be used within identi�ers. `|' is reserved forpossible future extensions.ADDITIONAL MATERIALThe Internet Scheme Repository athttp://www.cs.indiana.edu/scheme-repository/contains an extensive Scheme bibliography, as well as pa-pers, programs, implementations, and other material re-lated to Scheme.

EXAMPLEIntegrate-system integrates the systemy0k = fk(y1; y2; : : : ; yn); k = 1; : : : ; nof di�erential equations with the method of Runge-Kutta.The parameter system-derivative is a function thattakes a system state (a vector of values for the state vari-ables y1; : : : ; yn) and produces a system derivative (the val-ues y01; : : : ; y0n). The parameter initial-state providesan initial system state, and h is an initial guess for thelength of the integration step.The value returned by integrate-system is an in�nitestream of system states.(define integrate-system(lambda (system-derivative initial-state h)(let ((next (runge-kutta-4 system-derivative h)))(letrec ((states(cons initial-state(delay (map-streams nextstates)))))states))))Runge-Kutta-4 takes a function, f, that produces a systemderivative from a system state. Runge-Kutta-4 producesa function that takes a system state and produces a newsystem state.(define runge-kutta-4(lambda (f h)(let ((*h (scale-vector h))(*2 (scale-vector 2))(*1/2 (scale-vector (/ 1 2)))(*1/6 (scale-vector (/ 1 6))))(lambda (y);; y is a system state(let* ((k0 (*h (f y)))(k1 (*h (f (add-vectors y (*1/2 k0)))))(k2 (*h (f (add-vectors y (*1/2 k1)))))(k3 (*h (f (add-vectors y k2)))))(add-vectors y(*1/6 (add-vectors k0(*2 k1)(*2 k2)k3))))))))(define elementwise(lambda (f)(lambda vectors(generate-vector(vector-length (car vectors))(lambda (i)(apply f(map (lambda (v) (vector-ref v i))vectors)))))))(define generate-vector(lambda (size proc)

46 Revised5 Scheme(let ((ans (make-vector size)))(letrec ((loop(lambda (i)(cond ((= i size) ans)(else(vector-set! ans i (proc i))(loop (+ i 1)))))))(loop 0)))))(define add-vectors (elementwise +))(define scale-vector(lambda (s)(elementwise (lambda (x) (* x s)))))Map-streams is analogous to map: it applies its �rst argu-ment (a procedure) to all the elements of its second argu-ment (a stream).(define map-streams(lambda (f s)(cons (f (head s))(delay (map-streams f (tail s))))))In�nite streams are implemented as pairs whose car holdsthe �rst element of the stream and whose cdr holds apromise to deliver the rest of the stream.(define head car)(define tail(lambda (stream) (force (cdr stream))))The following illustrates the use of integrate-system inintegrating the systemC dvCdt = �iL � vCRLdiLdt = vCwhich models a damped oscillator.(define damped-oscillator(lambda (R L C)(lambda (state)(let ((Vc (vector-ref state 0))(Il (vector-ref state 1)))(vector (- 0 (+ (/ Vc (* R C)) (/ Il C)))(/ Vc L))))))(define the-states(integrate-system(damped-oscillator 10000 1000 .001)'#(1 0).01))

REFERENCES[1] Harold Abelson and Gerald Jay Sussman with JulieSussman. Structure and Interpretation of ComputerPrograms, second edition. MIT Press, Cambridge,1996.[2] Alan Bawden and Jonathan Rees. Syntactic closures.In Proceedings of the 1988 ACM Symposium on Lispand Functional Programming, pages 86{95.[3] Robert G. Burger and R. Kent Dybvig. Printingoating-point numbers quickly and accurately. InProceedings of the ACM SIGPLAN '96 Conferenceon Programming Language Design and Implementa-tion, pages 108{116.[4] William Clinger, editor. The revised revised reporton Scheme, or an uncommon Lisp. MIT Arti�cialIntelligence Memo 848, August 1985. Also publishedas Computer Science Department Technical Report174, Indiana University, June 1985.[5] William Clinger. How to read oating point numbersaccurately. In Proceedings of the ACM SIGPLAN'90 Conference on Programming Language Designand Implementation, pages 92{101. Proceedings pub-lished as SIGPLAN Notices 25(6), June 1990.[6] William Clinger and Jonathan Rees, editors. Therevised4 report on the algorithmic language Scheme.In ACM Lisp Pointers 4(3), pages 1{55, 1991.[7] William Clinger and Jonathan Rees. Macros thatwork. In Proceedings of the 1991 ACM Conferenceon Principles of Programming Languages, pages 155{162.[8] William Clinger. Proper Tail Recursion and SpaceE�ciency. To appear in Proceedings of the 1998 ACMConference on Programming Language Design andImplementation, June 1998.[9] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman.Syntactic abstraction in Scheme. Lisp and SymbolicComputation 5(4):295{326, 1993.[10] Carol Fessenden, William Clinger, Daniel P. Fried-man, and Christopher Haynes. Scheme 311 version 4reference manual. Indiana University Computer Sci-ence Technical Report 137, February 1983. Super-seded by [11].[11] D. Friedman, C. Haynes, E. Kohlbecker, andM. Wand. Scheme 84 interim reference manual. Indi-ana University Computer Science Technical Report153, January 1985.

References 47[12] IEEE Standard 754-1985. IEEE Standard for BinaryFloating-Point Arithmetic. IEEE, New York, 1985.[13] IEEE Standard 1178-1990. IEEE Standard for theScheme Programming Language. IEEE, New York,1991.[14] Eugene E. Kohlbecker Jr. Syntactic Extensions inthe Programming Language Lisp. PhD thesis, Indi-ana University, August 1986.[15] Eugene E. Kohlbecker Jr., Daniel P. Friedman,Matthias Felleisen, and Bruce Duba. Hygienic macroexpansion. In Proceedings of the 1986 ACM Con-ference on Lisp and Functional Programming, pages151{161.[16] Peter Landin. A correspondence between Algol 60and Church's lambda notation: Part I. Communica-tions of the ACM 8(2):89{101, February 1965.[17] MIT Department of Electrical Engineering and Com-puter Science. Scheme manual, seventh edition.September 1984.[18] Peter Naur et al. Revised report on the algorith-mic language Algol 60. Communications of the ACM6(1):1{17, January 1963.[19] Paul Pen�eld, Jr. Principal values and branch cutsin complex APL. In APL '81 Conference Proceed-ings, pages 248{256. ACM SIGAPL, San Fran-cisco, September 1981. Proceedings published asAPL Quote Quad 12(1), ACM, September 1981.[20] Kent M. Pitman. The revised MacLisp manual (Sat-urday evening edition). MIT Laboratory for Com-puter Science Technical Report 295, May 1983.[21] Jonathan A. Rees and Norman I. Adams IV. T: Adialect of Lisp or, lambda: The ultimate softwaretool. In Conference Record of the 1982 ACM Sym-posium on Lisp and Functional Programming, pages114{122.[22] Jonathan A. Rees, Norman I. Adams IV, and JamesR. Meehan. The T manual, fourth edition. YaleUniversity Computer Science Department, January1984.[23] Jonathan Rees and William Clinger, editors. Therevised3 report on the algorithmic language Scheme.In ACM SIGPLAN Notices 21(12), pages 37{79, De-cember 1986.[24] John Reynolds. De�nitional interpreters for higherorder programming languages. In ACM ConferenceProceedings, pages 717{740. ACM, 1972.

[25] Guy Lewis Steele Jr. and Gerald Jay Sussman. Therevised report on Scheme, a dialect of Lisp. MIT Ar-ti�cial Intelligence Memo 452, January 1978.[26] Guy Lewis Steele Jr. Rabbit: a compiler for Scheme.MIT Arti�cial Intelligence Laboratory Technical Re-port 474, May 1978.[27] Guy Lewis Steele Jr. Common Lisp: The Language,second edition. Digital Press, Burlington MA, 1990.[28] Gerald Jay Sussman and Guy Lewis Steele Jr.Scheme: an interpreter for extended lambda calcu-lus. MIT Arti�cial Intelligence Memo 349, December1975.[29] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Language The-ory. MIT Press, Cambridge, 1977.[30] Texas Instruments, Inc. TI Scheme Language Ref-erence Manual. Preliminary version 1.0, November1985.

48 Revised5 SchemeALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS,KEYWORDS, AND PROCEDURESThe principal entry for each term, procedure, or keyword islisted �rst, separated from the other entries by a semicolon.! 5' 8; 26* 22+ 22; 5, 42, 13; 26,@ 13- 22; 5-> 5... 5; 14/ 22; 5< 21; 42<= 21= 21; 22=> 10> 21>= 21? 4` 13abs 22; 24acos 23and 11; 43angle 24append 27apply 32; 8, 43asin 23assoc 27assq 27assv 27atan 23#b 21; 38backquote 13begin 12; 16, 44binding 6binding construct 6boolean? 25; 6bound 6caar 26cadr 26call 9call by need 13call-with-current-continuation 33; 8, 34, 43call-with-input-file 35call-with-output-file 35call-with-values 34; 8, 43call/cc 34car 26; 42

case 10; 43catch 34cdddar 26cddddr 26cdr 26ceiling 23char->integer 29char-alphabetic? 29char-ci<=? 29char-ci<? 29char-ci=? 29char-ci>=? 29char-ci>? 29char-downcase 29char-lower-case? 29char-numeric? 29char-ready? 36char-upcase 29char-upper-case? 29char-whitespace? 29char<=? 29char<? 29char=? 29char>=? 29char>? 29char? 29; 6close-input-port 36close-output-port 36combination 9comma 13comment 5; 38complex? 21; 19cond 10; 15, 43cons 26constant 7continuation 33cos 23current-input-port 35current-output-port 35#d 21define 16; 14define-syntax 17de�nition 16delay 13; 32denominator 23display 37do 12; 44dotted pair 25dynamic-wind 34; 33#e 21; 38

Index 49else 10empty list 25; 6, 26eof-object? 36eq? 18; 10equal? 19equivalence predicate 17eqv? 17; 7, 10, 42error 4escape procedure 33eval 35; 8even? 22exact 17exact->inexact 24exact? 21exactness 19exp 23expt 24#f 25false 6; 25floor 23for-each 32force 32; 13gcd 23hygienic 13#i 21; 38identi�er 5; 6, 28, 38if 10; 41imag-part 24immutable 7implementation restriction 4; 20improper list 26inexact 17inexact->exact 24; 20inexact? 21initial environment 17input-port? 35integer->char 29integer? 21; 19interaction-environment 35internal de�nition 16keyword 13; 38lambda 9; 16, 41lazy evaluation 13lcm 23length 27; 20let 11; 12, 15, 16, 43let* 11; 16, 44let-syntax 14; 16letrec 11; 16, 44letrec-syntax 14; 16

library 3library procedure 17list 27list->string 30list->vector 31list-ref 27list-tail 27list? 26load 37location 7log 23macro 13macro keyword 13macro transformer 13macro use 13magnitude 24make-polar 24make-rectangular 24make-string 30make-vector 31map 32max 22member 27memq 27memv 27min 22modulo 22mutable 7negative? 22newline 37nil 25not 25null-environment 35null? 26number 19number->string 24number? 21; 6, 19numerator 23numerical types 19#o 21; 38object 3odd? 22open-input-file 36open-output-file 36optional 3or 11; 43output-port? 35pair 25pair? 26; 6peek-char 36port 35port? 6

50 Revised5 Schemepositive? 22predicate 17procedure call 9procedure? 31; 6promise 13; 32proper tail recursion 7quasiquote 13; 26quote 8; 26quotient 22rational? 21; 19rationalize 23read 36; 26, 39read-char 36real-part 24real? 21; 19referentially transparent 13region 6; 10, 11, 12remainder 22reverse 27round 23scheme-report-environment 35set! 10; 16, 41set-car! 26set-cdr! 26setcar 42simplest rational 23sin 23sqrt 24string 30string->list 30string->number 24string->symbol 28string-append 30string-ci<=? 30string-ci<? 30string-ci=? 30string-ci>=? 30string-ci>? 30string-copy 30string-fill! 31string-length 30; 20string-ref 30string-set! 30; 28string<=? 30string<? 30string=? 30string>=? 30string>? 30string? 30; 6substring 30symbol->string 28; 7symbol? 28; 6syntactic keyword 6; 5, 13, 38

syntax de�nition 17syntax-rules 14; 17#t 25tail call 7tan 23token 38top level environment 17; 6transcript-off 37transcript-on 37true 6; 10, 25truncate 23type 6unbound 6; 8, 16unquote 13; 26unquote-splicing 13; 26unspeci�ed 4valid indexes 30; 31values 34; 9variable 6; 5, 8, 38vector 31vector->list 31vector-fill! 31vector-length 31; 20vector-ref 31vector-set! 31vector? 31; 6whitespace 5with-input-from-file 35with-output-to-file 35write 37; 13write-char 37#x 21; 39zero? 22

