Modern Parallel Languages

Kathy Yelick

http://lwww.eecs.berkeley.edu/~yelick/cs294-f13

>

A
reeeoeee] !

BERKELEY LAB

HPC: From Vector Supercomputers to

__Massively Parallel Systems 4-~500
500
Programmed by ' Single Proc.
S “annotating” M SMP
serial programs M Constellation
0 300 M Cluster
£ " MPP
»
$200
Programmed by
completely rethinking
algorithms and
100 :
software for parallelism
industrial use
0 N < O © M~ 0
e O O O O O
222222

Q >
e A
%
(- RR Q/DO/4N e e
R
oW
3 1

BERKELEY LAB

A Brief History of Languages

* When vector machines were king
- Parallel “languages” were loop annotations (IVDEP)
- Performance was fragile, but there was good user support

* When SIMD machines were king
- Data parallel languages popular and successful (CMF, *Lisp, C*, ...)
- Quite powerful: can handle irregular data (sparse mat-vec multiply)
- Irregular computation is less clear (multi-physics, adaptive meshes,
backtracking search, sparse matrix factorization)
* When shared memory multiprocessors (SMPs) were king
— Shared memory models, e.g., OpenMP, Posix Threads, are popular

* When clusters took over
- Message Passing (MPI) became dominant

We are at the mercy of hardware, but we get blamed.

o <AL,
70 &

O
R

-3
A
rrrrrrr |"'|

BERKELEY LAB

Science Across the “Irregularity” Spectrum

Massive Nearest All-to-All Random
Independent Neighbor Simulations access, large
Jobs for Simulations data Analysis
Analysis and
Simulations

Data analysis and simulation

Analytics vs. Simulation Kernels:

Basic statistics Monte Carlo methods
Generalized N-Body Particle methods
Unstructured meshes
Linear algebra Dense Linear Algebra
Optimizations Sparse Linear Algebra
Integrations Spectral methods
Alignment Structured Meshes

‘Lj‘ °»
9. .9) -5- Computing Sciences Area

Programming Challenges and Solutions

Message Passing Programming

Divide up domain in pieces
Each compute one piece
Exchange (send/receive) data

PVM, MPI, and many libraries

8/29/13

Global Address Space Programming

Each start computing
Grab whatever you need whenever

Global Address Space Languages
and Libraries

>

— ,\
reeeoeee] !

BERKELEY LAB

Why Consider New Languages at all?

* Most of work is in runtime and libraries

* Do we need a language? And a compiler?

—If higher level syntax is needed for productivity
« We need a language

—If static analysis is needed to help with correctness
 We need a compiler (front-end)

- If static optimizations are needed to get
performance
 We need a compiler (back-end)
* All of these decisions will be driven by

application need

-3
A
rrrrrrr |"'|

BERKELEY LAB

Libraries vs. Languages

 Use libraries when: clear interface between
operations

-Dense and sparse matrix operations: can be done in
the library

-FFTs and other spectral transforms
* Use compilers when: cannot be captured in a
traditional library
—-Stencils on structured grids (LBMD and Heat)
—-Graph traversal algorithms
« But aren’ t these just higher order functions?
-Yes, but optimization requires they are instantiated

Use an approach that matches the problem

Two Parallel Language Questions

* What is the parallel control model?

LN
S

data parallel dynamic single program
(singe_ thread of control) threads multiple data (SPMD)
* What is the model for sharing/communication?

L receive
store 7 -~
load pd send
shared memory message passing

implied synchronization for message passing, not shared memory

O
=R

A
‘‘‘‘

-3
A
rrrrrrr |"'|

BERKELEY LAB

Task Cost Spectrum

Schedule a set of tasks under one of the following assumptions:

Easy: The tasks all have equal (unit) cost. branch-free loops

h items p bins
Harder: The tasks have different, but known, times. sparse matrix-
I vector multiply
h items p bins
Hardest: The task costs unknown until after execution. GCM, circuits, search

-3
A
rrrrrrr |"'|

BERKELEY LAB

Task Dependency Spectrum

Schedule a graph of tasks under one of the following assumptions:

EFasy: The tasks can execute in any order. .t dependence
* ¢ o free loops

Harder: The tasks have a predictable structure.
matrix

e ® *— . :
*—= o0 . 7 T tEme e computations

*—>= ¢ —=0 ./’V e o 077 W 7N
Yy _ei=e
— TR s T Tae (dense, and some
e e sparse, Cholesky)
wave-front out-tree in-tree generaldag . . programming

balanced or unbalanced

Hardest: The structure changes dynamically (slowly or quickly) search, sparse LU

-3
A
rrrrrrr |'"|

BERKELEY LAB

Task Locality Spectrum

Schedule a set of tasks under one of the following assumptions:

Easy: The tasks, once created, do not communicate. embarrassingly
parallel

Harder: The tasks communicate in a predictable pattern.

unstructured
and structured
grids

regular irregular

Hardest: The communication pattern is unpredictable. discrete event
simulation

-3
A
rrrrrrr |"'|

BERKELEY LAB

Liskov’s Goals of Language Design (circa 1981)

9.

© NSOk wODN=~O

. Well-define semantics (a requirement, not just a goal)
Simplicity: easy to learn; minimality of concepts
Generality: computationally complete
Expressibility
Writability
Readability

Efficiency of compiler and programs (implementable)
Uniformity, economy of concepts,

Familiarity (consistent with common notation)
Orthogonality

10.Extensible and (maybe) subsetable

1

~.12.Machine independent (portable)

(C) srans '

1. Secure (safe)

MacLennan’s Principles of Language Design

Abstraction: Information about implementations should be hidden from use;
recurring patterns should be reusable.

Orthogonality: Independent functions should be controlled by independent
mechanisms.

Portability: Avoid features or facilities that are dependent on a particular machine or
a small class of machines.

Automation: Automate mechanical, tedious, or error-prone activities.

Redundancy: Have a series of defenses so that if an error isn’t caught by one, it will
probably be caught by another.

Transparency: Expensive things should look expensive.
Localized Cost: Users should only pay for what they use; avoid distributed costs.

Consistency: Regular rules, without exceptions, are easier to learn, use, describe,
and implement. Similar things should look similar; different things different.

Security: No program that violates the definition of the language, or its own intended
structure, should escape detection.

Simplicity: A language should be as simple as possible. There should be a
minimum number of concepts, with simple rules for their combination.

Adapted from MacLennan’s Programming Language Design Principles

Rules for Language Adoption

e Community with need
e Significant advantage (performance or productivity)
e Incremental adoption path (interoperability)
—-Not the whole shebang!
e Portability
e Familiarity
—Consider C, C++, Java history
e Access to powerful libraries!

15

Top Goals of Parallel Language Design

« Performance
—-Control
—-Locality
—Parallelism and synchronization features
« Portability (main goal of productivity)
* Productivity (expressiveness, simplicity,...)
* Familiarity

e Others?

P AL
S "o9
A i O
H:l" 7\
L0) 8/29/13 16
AzC. .7 H
RN e AT
SN 247
1868

To Virtualize or Not

« The fundamental question facing in parallel
programming models is:

What should be virtualized?

« Hardware has finite resources
— Processor count is finite
- Registers count is finite
- Fast local memory (cache and DRAM) size is finite
- Links in network topology are generally < n?

* Does the programming model (language+libraries)
expose this or hide it?

- E.g., one thread per core, or many?

 Many threads may have advantages for load balancing, fault
tolerance and latency-hiding

« But one thread is better for deep memory hierarchies
* How to get the most out of your machine?

-3
A
rrrrrrr |"'|

BERKELEY LAB

Programming Model Research: Early 90s

« Data-parallel languages

- Fine-grained parallelism, similar to vectorization, with hard
compiler problem to map to coarse-grained machines

- Examples: HPF, pC++, NESL

e Task parallel

- Especially for divide-and-conquer problems with little inherent
locality

— Small compilers with sophisticated runtime systems
- Examples: CILK, Charm++

» Object-oriented parallel languages
— Computation follows data
- Examples: CC++, CA

* Global address space languages
— Small compilers and lightweight runtimes
- Examples: Split-C, PCP, AC, F--

-3
A
rrrrrrr |"'|

BERKELEY LAB

What Happened to HPF?

« High Performance Fortran (data parallel)
-Language effort by users, language researchers,
vendors

- Ambitious goals: tried to address many domains

« Dense linear algebra: block-cyclic data layouts (index
overhead)

« Sparse, unstructured problems: irregular layouts

- Compiler performs difficult mapping for coarse-
grained machines
« Kennedy: “10-15 years for compiler technology to mature”

—-Abandoned in the U.S. after O(5 years)
-Seeing some success in Japan/Europe
-Surprising Gordon Bell prize on the Earth Simulator

-3
A
rrrrrrr |"'|

BERKELEY LAB

Bringing Users Along: UPC Experience

1991 Other GASNet-based languages
Active Msgs 1993 2001 2010.
are fast Split-C funding gcc-upc at Intrepid Hybrid MPI/UPC
(DOE)

1992

First AC 1997 2001 2006

(accelerators + First UPC First UPC UPC in NERSC

split memory) Meeting Funding procurement

1992 First Split-C 2003 Berkeley E

(compiler class) 327;féfpég’ é(;(;ZCGASNet Compiler release
* Ecosystem:
- Users with a need (fine-grained random access)
— Machines with RDMA (not full hardware GAS)
— Common runtime; Commercial and free software
- Sustained funding and Center procurements

« Success models:
- Adoption by users: vectors - MPI, Python and Perl, UPC/CAF
- Influence traditional models: MPI 1-sided; OpenMP locality control
-~ Enable future models: Chapel, X10,...

~S
A
rreceee |'"|

BERKELEY LAB

PyGAS: Combine two popular ideas

* Python
—-No. 6 Popular on htip://langpop.com and extensive
libraries, e.g., Numpy, Scipy, Matplotlib, NetworkX

-10% of NERSC projects use Python

« PGAS
—-Convenient data and object sharing

* PyGAS : Objects can be shared via Proxies with operations
Intercepted and dispatched over the network:

num = 1+42%j print pxy.real # shared read
= share (num, from=0) pxy.imag = 3 # shared write

+ Leveraging duck typing: print pxy.conjugate () # invoke
* Proxies behave like original objects.
* Many libraries will automatically work.

Can Architectures Help Make Programming Easier?

The vicious cycle:

All high end programs
written in MPI

All machines support
only MPI well

Who is affected:

* the scientists who are not paid enough to program in MPI

* the customers who bought hardware and threw away the
performance

-3
A
rrrrrrr ""|

BERKELEY LAB

Course Goals

* Training in well-defined language design and sufficient
documentation: how to recognize good/bad specs

 Design of a future language, e.g., PyGAS
 Design of future autotuners, aka DSLs

« Language and compiler support for communication-
avoiding algorithm support

* Priorities based on interests of participants

ST,
,\«"F "09
45 a0
H:4 A
(L) 8/29/13 23
] ol
RS A
O & &Y
1868

Course Mechanics

* Web page:
http://www.cs.berkeley.edu/~yelick/cs294-f13
» Course lectures in 3 parts:
- GP Language overviews: X10, Chapel, Titanium or UPC,...

— Cross-cuts: Memory Consistency, Collectives, Liveness, Array abstractions...

- Presentations by students and auditors on topics of interest: DSLs (SEJITS),
communication avoiding compilers (HBL), Data languages (Hadoop), PyGAS

* Prerequisites:
- Understanding of parallel (scientific) computing: CS267 or equivalent
- Familiarity with multiple languages and interest in learning more!
» Grading: This is an advanced graduate class
- Programming assignments in first half of semester
- Final projects
» Class computer accounts at NERSC (using mp309, CS267 repo)
— Search for “NERSC new user” which should take you to the following URL
- https://nim.nersc.gov/nersc_account_request.php

-3
A
rrrrrrr |"'|

BERKELEY LAB

How to fill out the NERSC Account form

NERSC New Account Request Form

Please fill out and submit this form to request a new NERSC account to be associated with an existing NERSC repository, project, or share.

If you are already a NERSC user, please contact your project's Principal Investigator to be added to an existing NERSC repository.

If you are nota NERSC user and wish to submit a proposal to create a new NERSC project, please go to "ERCAP Access to new Pls and Pl Proxies. If you are an existing NERSC user and wish to submit a new project proposal,
please do so through NIM.

Account Type: | Standard ™

If you are completely new to NERSC and wish to make an allocation request as a new Principal Investigator (Pl), please go to the “ERCAP Access Request Form for new
Pls and PI Proxies™. You can find the information on submitting an ERCAP request here: NERSC Allocations Overview and Eligibility

First Name: Jane

Middle Initial (optional):

Last Name: Doe

Preferred Username: jdoe (If you do not already have a NERSC enter a prefersd . Maximum of 8 characters.)

Citizenship:

Email Address: Email address is required.

Telephone: Work phone is required. (format: 123-456-7890, non-U.S. users please include country cods)

Organization: USA: University of California Berkeley (if your site is not listed,

click here to add it)

Principle Investigator Kathy Yelick : mp309 - Class Account for UCB CS267 / CS194 "Applications of Parallel Computing” - Proxies:

and repository name: Select the project you wish to be added fo. You can search by Pl name, repository, share name, or expenment, the Project’s descnption or by a Pl Proxy’s name. Be sure to select from the list that
is presented.

Please provide a description of the work you will be doing and the name of the person you will be working with:
(2000 character maximum) 44 charact d. : 1958 characters remaining.

Exploring new parallel programming languages

NERSC Electronic Computer User Agreement form

The following is a list of general computer use policies and security rules that apply to individual users of NERSC. Further information on NERSC security policies and practices can be found on the NERSC
Computer Security page. Principal Investigators are responsible for implementing these policies and procedures in their organization and ensuring that users fulfill their responsibilities.

User Accountability
Users are accountable for their actions. Violations of policy may result in applicable administrative or legal sanctions.
Resource Use

Resources provided by NERSC are to be used only for activities authorized by the Department of Energy (DOE) or the NERSC Director. The use of NERSC resources for personal or private benefitis
prohibited. NERSC resources are provided to users without any warranty. NERSC will not be held liable in the event of any system failure or loss of data. NERSC resources cannot be used for any
military or defense end use or application, or to facilitate any transaction that would otherwise violate U.S. export control regulations.

Data Parallelism

* For next week, read about data parallelism:
« NESL: Nested Data parallelism
- http://www.cs.cmu.edu/~scandal/nesl.html

—http://www.cs.cmu.edu/afs/cs.cmu.edu/project/
scandal/public/papers/CMU-CS-95-170.html

 HTA: Hierarchically Tiled Arrays
—http://polaris.cs.uiuc.edu/hta/
—http://dl.acm.org/citation.cim?id=1122981

« Chapel (more than just data parallel)
—http://chapel.cray.com
—http://chapel.cray.com/spec/spec-0.93.pdf

In each case the first link is to a web page for the project,
__and the send is a specific paper you should read.

RN, ~ N
§<4 AW
() 829113 26

1568ty Lowrence Baito Neona Loty

