
Modern Parallel Languages!

Kathy Yelick

http://www.eecs.berkeley.edu/~yelick/cs294-f13

HPC: From Vector Supercomputers to
Massively Parallel Systems

Programmed by
“annotating”
serial programs

Programmed by
completely rethinking
algorithms and
software for parallelism

25% industrial use 50%

2!8/29/13!

A Brief History of Languages

• When vector machines were king
- Parallel “languages” were loop annotations (IVDEP)
- Performance was fragile, but there was good user support

• When SIMD machines were king
- Data parallel languages popular and successful (CMF, *Lisp, C*, …)
- Quite powerful: can handle irregular data (sparse mat-vec multiply)
- Irregular computation is less clear (multi-physics, adaptive meshes,

backtracking search, sparse matrix factorization)
• When shared memory multiprocessors (SMPs) were king

- Shared memory models, e.g., OpenMP, Posix Threads, are popular
• When clusters took over

- Message Passing (MPI) became dominant

We are at the mercy of hardware , but we get blamed.

Science Across the “Irregularity” Spectrum

Massive
Independent

Jobs for
Analysis and
Simulations

Nearest
Neighbor

Simulations

All-to-All
Simulations

Random
access, large
data Analysis

4!

Data analysis and simulation

Analytics vs. Simulation Kernels:

7 Giants of Data 7 Dwarfs of
Simulation

Basic statistics Monte Carlo methods
Generalized N-Body Particle methods
Graph-theory Unstructured meshes
Linear algebra Dense Linear Algebra
Optimizations Sparse Linear Algebra
Integrations Spectral methods
Alignment Structured Meshes

- 5 -! Computing Sciences Area!

Programming Challenges and Solutions

Message Passing Programming
Divide up domain in pieces
Each compute one piece
Exchange (send/receive) data

PVM, MPI, and many libraries

6!

Global Address Space Programming
Each start computing
Grab whatever you need whenever

Global Address Space Languages
and Libraries

8/29/13!

Why Consider New Languages at all?

• Most of work is in runtime and libraries
• Do we need a language? And a compiler?

- If higher level syntax is needed for productivity
•  We need a language

- If static analysis is needed to help with correctness
•  We need a compiler (front-end)

- If static optimizations are needed to get
performance

•  We need a compiler (back-end)

• All of these decisions will be driven by
application need

Libraries vs. Languages

• Use libraries when: clear interface between
operations
- Dense and sparse matrix operations: can be done in

the library
- FFTs and other spectral transforms

• Use compilers when: cannot be captured in a
traditional library
- Stencils on structured grids (LBMD and Heat)
- Graph traversal algorithms

• But aren’t these just higher order functions?
- Yes, but optimization requires they are instantiated

Use an approach that matches the problem

Two Parallel Language Questions

• What is the parallel control model?

• What is the model for sharing/communication?

 implied synchronization for message passing, not shared memory

data parallel
(singe thread of control)

dynamic
threads

single program
multiple data (SPMD)

shared memory
load
store

send

receive

message passing

Task Cost Spectrum

, search

Task Dependency Spectrum

linear programming

Task Locality Spectrum

unstructured
and structured
grids

Liskov’s Goals of Language Design (circa 1981)

0. Well-define semantics (a requirement, not just a goal)
1.  Simplicity: easy to learn; minimality of concepts
2.  Generality: computationally complete
3.  Expressibility
4.  Writability
5.  Readability
6.  Efficiency of compiler and programs (implementable)
7.  Uniformity, economy of concepts,
8.  Familiarity (consistent with common notation)
9.  Orthogonality
10. Extensible and (maybe) subsetable
11. Secure (safe)
12. Machine independent (portable)

8/29/13! 13!

MacLennan’s Principles of Language Design
•  Abstraction: Information about implementations should be hidden from use;

recurring patterns should be reusable.
•  Orthogonality: Independent functions should be controlled by independent

mechanisms.
•  Portability: Avoid features or facilities that are dependent on a particular machine or

a small class of machines.
•  Automation: Automate mechanical, tedious, or error-prone activities.
•  Redundancy: Have a series of defenses so that if an error isn’t caught by one, it will

probably be caught by another.
•  Transparency: Expensive things should look expensive.
•  Localized Cost: Users should only pay for what they use; avoid distributed costs.
•  Consistency: Regular rules, without exceptions, are easier to learn, use, describe,

and implement. Similar things should look similar; different things different.
•  Security: No program that violates the definition of the language, or its own intended

structure, should escape detection.
•  Simplicity: A language should be as simple as possible. There should be a

minimum number of concepts, with simple rules for their combination.

8/29/13! 14!Adapted from MacLennan’s Programming Language Design Principles

15

Rules for Language Adoption

• Community with need
• Significant advantage (performance or productivity)
• Incremental adoption path (interoperability)

- Not the whole shebang!
• Portability
• Familiarity

- Consider C, C++, Java history
• Access to powerful libraries!

Top Goals of Parallel Language Design

• Performance
- Control
- Locality
- Parallelism and synchronization features

• Portability (main goal of productivity)
• Productivity (expressiveness, simplicity,…)
• Familiarity

• Others?

8/29/13! 16!

To Virtualize or Not

•  The fundamental question facing in parallel
programming models is:

 What should be virtualized?
•  Hardware has finite resources

-  Processor count is finite
-  Registers count is finite
-  Fast local memory (cache and DRAM) size is finite
-  Links in network topology are generally < n2

•  Does the programming model (language+libraries)
expose this or hide it?
-  E.g., one thread per core, or many?

•  Many threads may have advantages for load balancing, fault
tolerance and latency-hiding

•  But one thread is better for deep memory hierarchies
•  How to get the most out of your machine?

Programming Model Research: Early 90s

• Data-parallel languages
- Fine-grained parallelism, similar to vectorization, with hard

compiler problem to map to coarse-grained machines
- Examples: HPF, pC++, NESL

• Task parallel
- Especially for divide-and-conquer problems with little inherent

locality
- Small compilers with sophisticated runtime systems
- Examples: CILK, Charm++

• Object-oriented parallel languages
- Computation follows data
- Examples: CC++, CA

• Global address space languages
- Small compilers and lightweight runtimes
- Examples: Split-C, PCP, AC, F--

What Happened to HPF?

• High Performance Fortran (data parallel)
- Language effort by users, language researchers,

vendors
- Ambitious goals: tried to address many domains

•  Dense linear algebra: block-cyclic data layouts (index
overhead)

•  Sparse, unstructured problems: irregular layouts
- Compiler performs difficult mapping for coarse-

grained machines
•  Kennedy: “10-15 years for compiler technology to mature”

- Abandoned in the U.S. after O(5 years)
- Seeing some success in Japan/Europe
- Surprising Gordon Bell prize on the Earth Simulator

Bringing Users Along: UPC Experience

• Ecosystem:
- Users with a need (fine-grained random access)
- Machines with RDMA (not full hardware GAS)
- Common runtime; Commercial and free software
- Sustained funding and Center procurements

• Success models:
- Adoption by users: vectors à MPI, Python and Perl, UPC/CAF
- Influence traditional models: MPI 1-sided; OpenMP locality control
- Enable future models: Chapel, X10,… 20!
!

1991
Active Msgs
are fast

1992 First Split-C
(compiler class)

1992
First AC
(accelerators +
split memory)

1993
Split-C funding
(DOE)

1997
First UPC
Meeting

“best of” AC,
Split-C, PCP

2001
First UPC
Funding

2003 Berkeley
Compiler release

2001
gcc-upc at Intrepid

2006
UPC in NERSC
procurement

2002 GASNet
Spec

2010
Hybrid MPI/UPC

Other GASNet-based languages

PyGAS: Combine two popular ideas

• Python
- No. 6 Popular on http://langpop.com and extensive

libraries, e.g., Numpy, Scipy, Matplotlib, NetworkX
- 10% of NERSC projects use Python

• PGAS
- Convenient data and object sharing

• PyGAS : Objects can be shared via Proxies with operations
intercepted and dispatched over the network:

•  Leveraging duck typing:
•  Proxies behave like original objects.
•  Many libraries will automatically work.

num = 1+2*j
 = share(num, from=0)

print pxy.real # shared read
pxy.imag = 3 # shared write
print pxy.conjugate() # invoke

Can Architectures Help Make Programming Easier?

The vicious cycle:
All high end programs
 written in MPI

All machines support
only MPI well

Who is affected:
•  the scientists who are not paid enough to program in MPI

•  the customers who bought hardware and threw away the
performance

Course Goals

• Training in well-defined language design and sufficient
documentation: how to recognize good/bad specs

• Design of a future language, e.g., PyGAS
• Design of future autotuners, aka DSLs
•  Language and compiler support for communication-

avoiding algorithm support
• Priorities based on interests of participants

8/29/13! 23!

24!

Course Mechanics
•  Web page:
 http://www.cs.berkeley.edu/~yelick/cs294-f13

•  Course lectures in 3 parts:
- GP Language overviews: X10, Chapel, Titanium or UPC,…
- Cross-cuts: Memory Consistency, Collectives, Liveness, Array abstractions…
- Presentations by students and auditors on topics of interest: DSLs (SEJITS),

communication avoiding compilers (HBL), Data languages (Hadoop), PyGAS
•  Prerequisites:

- Understanding of parallel (scientific) computing: CS267 or equivalent
- Familiarity with multiple languages and interest in learning more!

•  Grading: This is an advanced graduate class
- Programming assignments in first half of semester
- Final projects

•  Class computer accounts at NERSC (using mp309, CS267 repo)
- Search for “NERSC new user” which should take you to the following URL
- https://nim.nersc.gov/nersc_account_request.php

How to fill out the NERSC Account form

8/29/13! 25!

Data Parallelism

• For next week, read about data parallelism:
• NESL: Nested Data parallelism

- http://www.cs.cmu.edu/~scandal/nesl.html
- http://www.cs.cmu.edu/afs/cs.cmu.edu/project/

scandal/public/papers/CMU-CS-95-170.html
• HTA: Hierarchically Tiled Arrays

- http://polaris.cs.uiuc.edu/hta/
- http://dl.acm.org/citation.cfm?id=1122981

• Chapel (more than just data parallel)
- http://chapel.cray.com
- http://chapel.cray.com/spec/spec-0.93.pdf

In each case the first link is to a web page for the project,
and the send is a specific paper you should read.

8/29/13! 26!

