(N ¢ W N
: A s Ll
ERRRRAAN A O\ e

O TR \ N

Modern Parallel Languages
Kathy Yelick

Lecture 2: Data parallelism (part 1)
NESL

http://www.eecs.berkeley.edu/~yelick/cs294-f13
Rl

BERKELEY LAB

Data parallelism

* No widely-accepted clear definition

» Wikipedia: “data parallelism is typically expressed as a
single thread of control operating on data sets distributed
over all nodes”

» Wikipedia: “But it is said that a data parallel language
has a notion of explicit parallelism too”

» Ask: Data parallelism focuses on distributing the data
across different parallel computing nodes. It contrasts
with task parallelism.

* Microsoft: Data parallelism refers to scenarios in which
the same operation is performed concurrently (that is, in
parallel) on elements in a source collection or array.

P CAL R
7 R
A e O
R A
(0) o33 2
54 '3 H
AT H
S, A
Onpe A LY
1868

Data parallel algorithms / models

* Hillis and Steele

general communications. We call these algorithms
data parallel algorithms because their parallelism
comes from simultaneous operations across large
sets of data, rather than from multiple threads of
control. The intent is not so much to present new

* Blelloch

- ..data-parallel models, the parallel vector models. The
definition is based on a machine that can store a vector
In each memory location and whose instructions operate
on these vectors as a whole—for example, elementwise
adding two equal length vectors. In the model, each
vector instruction requires one “program step”.

;a* KR, A
) |
Bl Q/R/A R N R
7K
O Vil
&Y
bt /568 4

BERKELEY LAB

Our definition for this class

* A (pure) data parallel language has

-A single thread of control, i.e., a serial
semantics, which means all behaviors we can
see In parallel can also be observed in the
serial execution

—|t has operations on aggregate data
structures (collections) to (implicitly) express
parallelism

* These have a limited expressiveness, but clean
and intuitive semantics

* Collections-oriented languages exist

. iIndependent of parallelism ‘
9/3/13 4 f\||$|

BERKELEY LAB

Collection-Oriented Languages

 Languages that support actions on large collections
of data with a single operation

« Examples:
-FORTRAN 90 and arrays
-APL and arrays,
- Connection Machine LISP and xectors
-PARALATION LISP and paralations
-SETL and sets
-Haskell / Miranda features, i.e., comprehensions

 Many of these were developed before parallelism
became “important” (i.e., pre-1980s)

Sipelstein, Jay M. and Blelloch, Guy E., "Collection-oriented

languages" (1990). Computer Science Department. Paper 2006.
http://repository.cmu.edu/compsci/2006 A
L) 9313 5 Rl

BERKELEY LAB

Features in Collection-Oriented Languages

* Unary Apply-to-each, e.g., negate elements of vector A
-Implicit: -A (APL) Tradeoffs?
-Explicit: a-[3,1,4] (CM Lisp) or {-e : ein A} (SETL)

* Non-unary Apply-to-each
-E.g., implicit A+B
-Element correspondence: which elements line up?
-Element extension: adding a scalar to a vector

* Rearranging elements

- E.g., Permute according to a list of indices (source
or target)

* Nesting: can collections contain collections?
 Homogeneity: are all elements of the same type?

Sipelstein, Jay M. and Blelloch, Guy E., "Collection-oriented languages" (1990). Computer S
83 09/3/13 Science Department. Paper 2006. http:/repository.cmu.edu/compsci/2006 6 rrf"ﬁ|“'|

BERKELEY LAB

Examples of collection-oriented languages

FP A = (105 3]
B = [3 4 3 7]
= 3 + 0 + 15 + 21 = 3%

Compute the dot product of two vectors

(/+) o (ax)otrans

APL 4:-[1234]

+/(4 (AL (((p4) - 1)p2)) S T2 243x2tsax2d ol

Evaiuate a polynomial with given coefficients A at vaiue x

CM-Lisp
(let ((1 (length A)) A = [abcadcechbd
(p (a (B+ A —1.0) al)}) = 2

(= (B+ (a* p (alg p)))))

Compute Shannon entropy of A: (i) = ~ ¥ p(i) g p(?)
where p(t) is the probabiiity that i occurs in the input string, for each :.

i Sipelstein, Jay M. and Blelloch, Guy E., "Collection-oriented languages" (1990). Computer N
9/3/13 Science Department. Paper 2006. http://repository.cmu.edu/compsci/2006 7 “f“ﬁﬂ

BERKELEY LAB

More examples

SETL
a := [2..n];
result := {};
loop while #a > 0 do
p := first a;
a := [x in a | (x mod p) /= 0]:
result := result with p’
end;
print result;

N = 10
= [2 3 5 7]

Find prime numbers with the Sieve of Erastosthenes

FORTRAN 90
R[2:n-1] =
(F[1:n-2]-2*F[2:n-1]+F[3:n])/ {(d*d)

F = [1 2 2 3 4]
R[(2:4] = [-.1 .1 0]

Compute the second derivative of F given a vector of values

Sipelstein, Jay M. and Blelloch, Guy E., "Collection-oriented languages" (1990). Computer

9/3/13

Science Department. Paper 2006. http://repository.cmu.edu/compsci/2006 8 "f':ﬁﬂ

BERKELEY LAB

NESL Goals

« Data-parallelism (based on sequences):
_ Readability
—-Apply functions to sequence — (no races)
—-Operate on sequence (e.g., permute)

e To support complete nested parallelism

- Nested sequences E:Sp;ess’i"e'
- Applying user-defined functions on " (generality)
sequences, including parallel functions |
» Efficient code for SIMD and MIMD machines ' p.formance
« Good for describing parallel algorithms ~ & portability
—Each function has two complexity _ Performance
measures: work and depth, which can transparency
be mapped to a VRAM model

NESL Overview

* Strongly typed g:?eo:;bility
* Functional Performance?
» Strict (vs. Lazy) —

Readability

-E.g., what does this statement do?
print length([2+1, 3*2, 1/0, 5-4]) B

—Is this just an implementation issue? Performance?

-Why do we care?

* Nested Data-parallel

(modularity)

Claim: NESL is for “Hard” Parallel Algorithms

* A theoretical secret for turning serial into parallel

« Surprising parallel algorithms:

If “there is no way to parallelize this algorithm!” ...

... it s probably a variation on parallel prefix!

-3
A
rrrrrrr |"'|

BERKELEY LAB

Outline

A partial list of algorithms that use scans
* Alog n lower bound to compute any function in parallel
* Reduction and broadcast in O(log n) time
 Parallel prefix (scan) in O(log n) time
« Adding two n-bit integers in O(log n) time
« Multiplying n-by-n matrices in O(log n) time
» Inverting n-by-n triangular matrices in O(log? n) time
« Inverting n-by-n dense matrices in O(log? n) time
» Evaluating arbitrary expressions in O(log n) time
» Evaluating recurrences in O(log n) time
« “2D parallel prefix”, for image segmentation (Catanzaro & Keutzer)
« Sparse-Matrix-Vector-Multiply (SpMV) using Segmented Scan
« Parallel page layout in a browser (Leo Meyerovich, Ras Bodik)
« Solving n-by-n tridiagonal matrices in O(log n) time
» Traversing linked lists
« Computing minimal spanning trees
_» Computing convex hulls of point sets...

-3
. ,\
rrrrrrr ""|

9 02070013

BERKELEY LAB

Tricks with Trees
(revisited from CS267)

Some slides from John Gilbert, who
borrowed some from Jim Demmel,
Kathy Yelick ©, Alan Edelman,

and a cast of thousands ...

Parallel Vector Operations

*Vectoradd: z=x+Yy
-Embarrassingly parallel if vectors are aligned

« DAXPY: z=a*x+y (ais scalar)
-Broadcast a, followed by independent * and +

-DDOT: s =xTy = 2 x[j] * y[i]
-Independent * followed by + reduction

Broadcast and reduction

» Broadcast of 1 value to p processors with log p span

Broadcast

A

« Reduction of p values to 1 with log p span
« Takes advantage of associativity in +, *, min, max, etc.

1 3104-63 2

Add-reduction

-3
A
rrrrrrr |'"|

BERKELEY LAB

Example of a prefix

Sum Prefix
Input X =(x1, X2, ..., xn)
Output y=(y1l,y2,...,yn)
Yi = =1 Xj
Example

x=(1,2,3, 4, 5 6, 7, 8)
y=(1,3,86,10, 15, 21, 28, 36)

Prefix Functions-- outputs depend upon an initial string

What do you think?

« Can we really parallelize this?

* |t looks like this kind of code:

y(0) = 0;
fori=1:n
y(i) = y(i-1) + x(i);

* The ith iteration of the loop depends completely on the
(i-1)st iteration.

 Impossible to parallelize, right?

Is there any value in adding, say, 4+5+6+77
If we separately have 1+2+3, what can we do?

Suppose we added 1+2, 3+4, etc. pairwise -- what could
we do?

Prefix sum in parallel

Algorithm: 1. Pairwise sum 2. Recursive prefix 3. Pairwise sum

1234 5 6 7 8 9 1011 12 13 14 15 16
NN NN N N N\
3 7 11 15 19 23 27 31

(Recursively compute prefix sums)

3,10 .36 55 78 105 136

\ N6 INS 21w28 3N5 55&6 7&1 105 120 13‘6

7 R
G AT
{4 AR
H S ¢

L0 g 1 9

H K :
A% N
A s
e A LY

186 y

Parallel prefix cost

. What’s the total work?
34 56 78
\/ \/ \/ \/ Pairwise sums
3 11 15
| | | Recursive prefix
3 10 21 36
N ANV ANA Update “odds”
1 3 610152128 36

Parallel prefix cost

. What’s the total work?
34 56 78
\/ \/ \/ \/ Pairwise sums
3 11 15
| | | Recursive prefix
3 10 21 36
N ANV ANA Update “odds”
1 3 610152128 36

N T1(n) =n/2 +n/2+ T1 (n/2) = n+ '|'1 (n/2) =2n — 1

."." CAL/, '..".
&2 Lo
1 o .
B A
H ¥
iH R 21
AzC. .7 H
oA
e N 247
1868

Parallel prefix cost: Work and Span

« What’ s the total work?
1234 56 7 8

\/\/ \VV V\VV Pairwise sums
3 V4 11 15

| | | | Recursive prefix
3 10 21 36
AN /N Update “odds”
1 3 610152128 36
T,(n)=n/2+n2+T,(n/2) = n+T,(n/2) =2n -1
T, .(n)=2logn

Parallelism at the cost of more work (2x)__
(C) 22 Historical: Hillis and Steele algorithm does n reductions

Non-recursive view of parallel prefix scan

 Tree summation: two phases

- up sweep
« get values L and R from left and right child
 save L in local variable Mine
« compute Tmp =L + R and pass to parent

- down sweep
« get value Tmp from parent
« send Tmp to left child
* send Tmp+Mine to right child

Up sweep: Down sweep:
mine = left tmp = parent (rootis 0) 0 6 6
tmp = left + right6 9 right = tmp + mine | 4 N 5
- Pl 6 N - 0 4 6 11
4 5 4 033426 641011112
3 2 1 +X=3 12 0 4 1 1 3

3 1 2 0 4 11 3 3 46 6 10 112
4o ‘ . ‘T’:}m
«) 23 Blelloch algorithm (?)]

BERKELEY LAB

Scan (Parallel Prefix) Operations

« Definition: the parallel prefix operation takes a binary
associative operator ©, and an array of n elements

Ay, 24, Ay, ... A 4]
and produces the array
[Ag, (0© a4), ... (8® a; ©... ©a)]

« Example: add scan of

1,2,0,4,2,1,1,3] is [1,3,3,7,9 10, 11, 14]

Ly O
i AR
H< A o
H < K
> H 24
L\ =B
2N AT
e 5.
186

Any associative operation works

Associative:

A®@b)dc=a®(b®Dc)

Sum (+)
Product (%)
Max
Min

Input: Reals

All (and)
Any (or)

MatMul

Input: Matrices

Input: Bits
(Boolean)

Lexical analysis

Input: Strings

Lexical analysis (tokenizing, scanning)

e Gjven al anguage of: TABLE |. A Finite-State Automaton for Recognizing Tokens
- . Oid Character Read

—Identifiers: string of chars st —
. Lo A B Y Z + - x <> = " GSpace lne
Strings: in double quotes ————————-—-"7-—v
. * — — A Z Z ... 2 Z = » » < < » (Q N N
—OpS +,', ,—,<,>,<—, >= Z Z Z ...2 2 x x x << Q N N
* A A ... A A *» x x» << s+ (Q N N

< A A ... A A *x x x < < =0 N N

= A A ... AA =+ = x < < = (Q N N

Q SS ..SS SSSSSSE S S

s §§ ... § § 8§ S§ S§ S E S S

E EE ...EE » » x<< 2+ § N N

 Lexical analysis

—-Replace every character in the string with the array
representation of its state-to-state function (column).

—-Perform a parallel-prefix operation with @ as the
array composition. Each character becomes an array
representing the state-to-state function for that prefix.

-Use initial state (row 1) to index into these arrays.
() eos13 Hillis and Steele, CACM 1986 26 Rl

BERKELEY LAB

Evaluating arbitrary expressions

 Let E be an arbitrary expression formed from +, -, *, /,
parentheses, and n variables, where each appearance of
each variable is counted separately

« Can think of E as arbitrary expression tree with n leaves
(the variables) and internal nodes labelled by +, -, * and /

* Theorem (Brent): E can be evaluated with O(log n) span,
if we reorganize it using laws of commutativity, associativity
and distributivity

« Sketch of (modern) proof: evaluate expression tree E
greedily by
—collapsing all leaves into their parents at each time step
—evaluating all “chains” in E with parallel prefix

' CAL, '."~.

A & O 'O‘9 Q
4 o O
H:l* A
i TRRPArS f ¢

:\) ks A,;‘

O & &Y 4
1868

E.g., Using Scans for Array Compression

» Given an array of n elements
[@p, @4, @y, ... @]
and an array of flags
[1,0,1,1,0,0,1,...]
compress the flagged elements into
[a,, a,, a3, 8, ...]

« Compute an add scan of [0, flags] :
[0,1,1,2,3,3,4,...]

* Gives the index of the it" element in the compressed array

* If the flag for this element is 1, write it into the result
array at the given position

AL,
G2 2o
G AT
oA A
f A’

ig g 28

AzC. .7 H
Ao
STV

1868 y

Segmented Operations

Inputs = Ordered Pairs Change of

(operand, boolean) segment indicated
e.g. (x, T) or (x, F) by switching T/F

+2 (ya T) (ya F)
(x, T) (x+y, T) (¥, F)
(x, F) (¥, T) (x®y, F)

e.g.| 1 2 3 4 5 6 7 8

Result 3 3 7 12 6 7 8

The myth of log n

* The log, n span is not the main reason for the
usefulness of parallel prefix.

Say n =1000000p (1000000 summands per
processor)
- Cost =‘(2000000 adds) lk (log,P message passings)

I

fast & embarassingly parallel
(2000000 local adds are serial for each processor, of course)

Key to implementing NESL Efficiently on Clusters,
MPPs (aka MIMD machines)

G AR
<A 278
L7 3 30
Hz 2H
-G 9
- Oy o
O S Y
156 Y

VRAM Model: Vector Random-Access Machine

* VRAM from Blelloch, similar to PRAM
« Assumes scan operations can be done in O(1) time

 On a PRAM, a scan takes O(log n) time, so could apply
an O(log n) factor to get PRAM complexity

« Assumption: organizing based on vectors makes
complexity analysis easier, examples of performance

—-# Vector (length) O(1)
-Sum(Vector) O(1)
-Permute (Vector, Index Vector) O(1)
-Add O(1)
-Scan (Vector) O(1)
-Max (Vector) O(1)

P AL
G I‘%
1 o
I A
(0) 9313 1
;A]
N Aol
v,v(Gat Y
1868 y

NESL : In a nutshell

Simple Call-by-Value Functional Language
+ Built in Parallel type (nested sequences)
+ Parallel map (apply-to-each)
+ Parallel aggregate operations
+ Cost semantics (work and depth)

Sequential Semantics
Some non-pure features at “top level”

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006

32

NESL : History

Developed in 1990

Implemented on CM, Cray, MPI, and sequentially
using a stack based intermediate language

Interactive environment with remote calls

Over 100 algorithms and applications written -
used to teach parallel algorithms

Mostly dormant since 1997

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006 33

NESL: Parallel Operations on Sequences

» Sequences:
-[1, 2, 9, -3]
-{negate(a): ain [2, -4, -9, 3]} =2 [-2, 4, 9, -5]
* No restrictions on functions that can be applied
-Why does this work?
* Nested parallelism
—flatten ([[2, 1], [7, 3, 0], [4]) = [2, 1, 7, 3, 0, 4]

ST,

GZO SR

5, R

B S8

H A

ASG v‘:.',;v H

R\ Y
On A LY
1668 el

NESL: Parallel Map

A= [3.0, 1.0, 2.0]

B=([[4, 5, 1, 6], [2], [8, 11, 3]]

C = “Yoknapatawpah County’

D = [“the”, “rain”, “in”, “Spain”]
Sequence Comprehensions:

{x + .5 : x in A} -> [3.5, 1.5, 2.5]

{sum(b) : b in B} -> [l6, 2, 22]

{c in C | ¢ < ‘n} -> “kaaaahc”

{w[0] : w in D} -> “tris”

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006 35 f\||A|

BERKELEY LAB

NESL : Aggregate Operations

A= [3.0, 1.0, 2.0]
D = [“the”, “rain”, “in”, “Spain”]
E = [(3,"Italy’), (1,%sun”)]
Parallel write : [‘a] * [int*‘a] -> [‘a]
D<-E -> [“the”,“sun”,“in”,“Italy”]
Prefix sum: (‘a* ‘a->‘a)*‘a*[‘a] -> [‘a]l*‘a
scan(‘+,2.0,A) -> ([2.0,5.0,6.0],8.0)
plus scan (A) -> [0.0,3.0,4.0]

sum (A) -> 6.0

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006 36

NESL: Cost Model

Combining for parallel map:
pexp = {exp(e) : e in A}

Wy (A) = E exp<Al->
pexp (A) maXz 0 exp ("47)

Can prove runtime bounds for PRAM:
T = O(W/P + D log P)

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006

function quicksort(S) =
if (#S <= 1) then S
else let
a = S[rand(#S)];
S1 = {e in S e < a};
S2 = {e in S e = a};
S3 = {e in S e > a};
in quicksort(S1l) ++ S2 ++ quicksort(S3);

D =O(n)
W = O(n log n)

38

function quicksort(S) =
if (#S <= 1) then S
else let
a = S[rand(#S)];
S1 = {e in S e < a};
S2 = {e in S e = a};
S3 = {e in S e > a};
R = {quicksort(v) : v in [S1, S3]};
in R[0] ++ S2 ++ R[1l];

D = O(log n)
W = O(n log n)

~
A
30 ol

BERKELEY LAB

Quicksort Example

function quicksort(S) =
if (#S <=1) then S

else let a = S[rand(#S)];

lesser={ein S| e <a};

equal ={ein S | e = a};

greater={e in S | e > a};

R = {quicksort(v) : v in [lesser, greater]};
in R[0] ++ equal ++ R[1];

P57 AL
672 TR
5, * R 4
<A 5%
H £
(0) o33 0
AzC. .7 H
s
Onpe A LY
1868

Example : Representing Graphs

0 I—IZ
1 & o4

Edge List Representation:

[((o,1), (0,2), (2,3), (3,4), (1,3),
(1,0), (2,0), (3,2), (4,3), (3,1)]

Adjacency List Representation:
[(1,21, [0,31, [0,3], [1,2,4], [3]]

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006 41

Example : Graph Connectivity

L = Vertex Labels, E = Edge List
Use hashing to avoid

function randomMate (L, E) = non-determinism
if #£E = 0 then L ’///////
else let -

FL = {randBit(.5) : x in [O:#L]};

H= {(u,v) in E | Fl[u] and not(Fl[v])};

L L <- H;

E = {(L[u],L[v]): (u,v) in E | L[u]\=L[v]};
in randomMate (L,E) ;

D = O(log n)
W = O(m log n)

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006 42 f\IAI

BERKELEY LAB

Lesson 1: Sequential Semantics

-Debugging is much easier without non-determinism

-Analyzing correctness is much easier without non-
determinism

-If it works on one implementation, it works on all
implementations

-Some problems are inherently concurrent—these
aspects should be separated

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006 43 f\IAI

BERKELEY LAB

Lesson 2: Cost Semantics

-Need a way to analyze cost, at least
approximately, without knowing details of the
implementation

-Any cost model based on processors is not going
to be portable - too many different kinds of
parallelism

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006
44

Lesson 3: Too Much Parallelism

Needed ways to back out of parallelism
-Memory problem

-The “flattening” compiler technique was too
aggressive on its own

-Need for Depth First Schedules or other
scheduling techiques

-Various bounds shown on memory usage

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006

45

Limitations

Communication was a bottleneck on machines
available in the mid 1990s and required
“micromanaging” data layout for peak
performace.

Language would needs to be extended

PSCICO Project (Parallel Scientific
Computing) was looking into this

Hard to get users for a new language

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006

46

Relevance to Multicore Architecture

» Communication is hopefully better than across chips

» Can make use of multiple forms of parallelism
(multiple threads, multiple processors, multiple
function units)

* Schedulers can take advantage of shared caching
[SPAAO4]

» Aggregate operations can possibly make use of on-
chip hardware support

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006
47

NESL Overview

FUNCTION name(args) = exp ; JFUNCTION double(a) = 2*a;
IF el THEN e2 ELSE el IF (a > 22) THEN a ELSE 5*a

= h*G-
LET binding* IN exp gﬁTaa’ 3b 6

(o1 - patcorn ez [(a - 23 - o on (2, 1. 91)
[Gattern el | o2 |G (2. 1, 91 (=<6

: a IN [2,1); b IN (7,11])

!
llogical | not or and xor nor nand |
m plusp minusp zercp oddp evenp

+ - * / rem abs max min
lshift rshifc

sgrt isqgrt 1ln log exp expt

sin cos tan asin acos atan

sinh cosh tanh

" btoi code_char char_code '
’ float ceil floor trunc round '
'|
lconstants |51 max_inc minint |

9/3/13

larithmetic

48

BERKELEY LAB

