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Abstract

Large-scale parallel machines are incorporating increas-
ingly sophisticated architectural support for user-level mes-
saging and global memory access. We provide a systematic
evaluation of a broad spectrum of current design alternatives
based on our implementations of a global address language
on the Thinking Machines CM-5, Intel Paragon, Meiko CS-
2, Cray T3D, and Berkeley NOW. This evaluation includes
a range of compilation strategies that make varying use of
the network processor; each is optimized for the target ar-
chitecture and the particular strategy. We analyze a family
of interacting issues that determine the performance trade-
offs in each implementation, quantify the resulting latency,
overhead, and bandwidth of the global access operations,
and demonstrate the effects on application performance.

1 Introduction

In recent years several architectures have demonstrated prac-
tical scalability beyond a thousand microprocessors, includ-
ing the nCUBE/2, Thinking Machines CM-5, Intel Paragon,
Meiko CS-2, and Cray T3D. More recently, researchers have
also demonstrated high performance communication in Net-
work of Workstations (NOW) using scalable switched local
area network technology [28, 6, 12]. While the dominant pro-
gramming model at this scale is message passing, the prim-
itives used are inherently expensive, due to buffering and
scheduling overheads [29]. Consequently, these machines
provide varying levels of architectural support for communi-
cation in a global address space via various forms of memory
read and write.

We developed the Split-C language to allow experimen-
tation with new communication hardware mechanisms by
involving the compiler in the support for the global address
operations. GGlobal memory operations are statically typed,
so the Split-C compiler can generate a short sequence of
code for each potentially remote operation as required by
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the specific target architecture. We have developed multi-
ple highly optimized versions of this compiler, employing a
range of code-generation strategies for machines with dedi-
cated “network processors.” In this study, we use this spec-
trum of run-time techniques to evaluate the performance
trade-offs in architectural support for communication found
in several of the current large-scale parallel machines.

We consider five important large-scale parallel platforms
that have varying degrees of architectural support for com-
munication: the Thinking Machines CM-5, Intel Paragon,
Meiko CS-2, Cray T3D, and Berkeley NOW. The CM-5 pro-
vides direct user-level access to the network, the Paragon
provides a network processor (NP) that is symmetric with
the compute processor (CP), the Meiko and NOW provide
an asymmetric network processor that includes the network
interface (NT), and the T3D provides dedicated hardware,
which acts as a specialized NP for remote reads and writes.
Against these hardware alternatives, we consider a variety
of implementation techniques for global memory operations,
ranging from general purpose active message handlers to
specialized handlers executing directly on the NP or in hard-
ware. This implementation exercise reveals several crucial
issues, including protection, address translation, synchro-
nization, responsiveness, and flow-control, which must be
addressed differently under the different regimes and con-
tribute significantly to the effective communication costs in
a working system.

Our investigation is largely orthogonal to the many ar-
chitectural studies of distributed shared memory machines,
which seek to avoid unnecessary communication by exploit-
ing address translation hardware to allow consistent repli-
cation of blocks throughout the system [16, 17, 18, 20],
and operating system studies, which seek the same end by
extending virtual memory support [21, 1, 8]. In these ef-
forts, communication is caused by a single load or store in-
struction, and the underlying hardware or operating system
mechanisms move the data transparently. We focus on what
happens when the communication is necessary. So far, dis-
tributed shared memory techniques have scaled up from the
tens of processors toward a hundred, but many leaders of
the field suggest that the thousand processor scale will be
reached only by clusters of these machines in the foresee-
able future. Our investigation overlaps somewhat with the
cooperative shared memory work, which initiates communi-
cation transparently, but allows remote memory operations
to be serviced by programmable handlers on dedicated net-
work processors [18, 24]. The study could, in principle, be
performed with other compiler-assisted shared memory im-
plementations [31], but these do not have the necessary base
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Figure 1: Structure of the multiprocessor nodes.

of highly optimized implementations on a range of hardware
alternatives.

The rest of the paper is organized as follows. Section 2
provides background information for our study. We briefly
survey the target architectures and the source language.
Section 3 sketches the basic implementation strategies. Sec-
tion 4 provides a qualitative analysis of the issues that arise
in our implementations and their performance impacts. Sec-
tion 5 substantiates this with a quantitative comparison us-
ing microbenchmarks and parallel applications. Finally, Sec-
tion 6 draws conclusions.

2 Background

In this section we establish the background for our study,
including the key architectural features of our candidate ma-
chines and an overview of Split-C.

2.1 Machines

We consider five machines, all constructed with commercial
microprocessors and a scalable, low-latency interconnection
network. The processor and network performance differs
across the machines, but more importantly they differ in
the processor’s interface to the network. They range from
a minimal network interface on the CM-5 to a full-fledged
processor on the Paragon. Figure 1 gives a sketch of the
node architecture on each machine.

Thinking Machines CM-5: The CM-5 [19] has the most
primitive messaging hardware of the five machines. FEach
node contains a single 33 MHz Sparc processor and a con-
ventional MBus-based memory system. (We ignore the vec-
tor units in both the CM-5 and Meiko machines.) The net-
work interface unit provides user-level access to the network.
Fach message has a tag identifying it as a system message,
interrupting user message, or non-interrupting user message
that can be polled from the NI. The compute processor sends

messages by writing to output FIFOs in the NI using un-
cached stores; it polls for messages by checking network sta-
tus registers. Thus, the network is effectively a distributed
set of queues. The queues are quite shallow, holding only
three 5-word messages. The network is a 4-ary fat tree that
has a link bandwidth of 20 MB/sec in each direction.

Intel Paragon: In the Paragon [14], each node contains one
or more compute processors (50 MHz i860 processors) and
an identical CPU dedicated for use as a network proces-
sor. Our configuration has a single compute processor per
node. The compute and network processors share memory
over a cache-coherent memory bus. The network proces-
sor, which runs in system mode, provides communication
through shared memory to user level on the compute pro-
cessor. It is also responsible for constructing and interpret-
ing message tags. Also attached to the memory bus are
2 DMA engines and a network interface. The network in-
terface provides a pair of relatively deep input and output
FIFOs (2KB each), which can be driven by either processor
or by the DMA engines. The network is a 2D mesh with
links operating at 175 MB/s in each direction.

Meiko CS-2: The Meiko CS-2 [4] node contains a special-
purpose “Elan” network processor integrated with the net-
work interface and DMA controller. The network processor
is attached to the memory bus and is cache-coherent with
the compute processor, which is a 40 MHz three-way super-
scalar SuperSparc processor. The network processor func-
tions both as a processor and as a memory device, so the
compute processor can issue commands to the network inter-
face and get status back via a memory exchange instruction
at user level. The network processor has a dedicated connec-
tion to the network; however, it has only modest processing
power and no general purpose cache, so instructions and
data are accessed from main memory. The network is com-
prised of two 4-ary fat-trees that have a link-level bandwidth
of 70 MB/sec.
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Figure 2: Handlers are executed on the CP.
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Figure 3: NPs are treated simply as network interfaces.

Cray T3D: The Cray T3D [10] has a sophisticated message
unit, which is integrated into the memory controller, to pro-
vide direct hardware support for remote memory operations.
A node consists of a 150 MHz Alpha 21064 [27] processor,
memory, and a “shell” of support circuitry to provide global
memory access and synchronization. A remote memory op-
eration typically requires a short sequence of instructions,
to set up the destination processor number in an external
address register, issue a memory operation, and then test
for completion, rather than a simple load or store. The shell
also provides a system-level bulk transfer engine, which can
DMA large blocks of contiguous or strided data to or from
remote memories. Processors are grouped in pairs, share
a network interface and block-transfer engine, and all 2-
processor nodes are connected via a three-dimensional torus
network with 300 MB/s links.

Berkeley NOW: The Berkeley-NOW [2] is a cluster of Ul-
traSparc workstations connected together by Myrinet [6].
The CP is a 167 MHz four-way super-scalar UltraSparc pro-
cessor. The Myrinet NI is an I/O card that plugs into the
standard SBus. It contains a 32-bit CISC-based “LLANai”

network processor, DMA engines, and local memory (SRAM).

The CP can access the NP’s local memory through uncached
loads/stores on memory mapped addresses. The NP can
access the main memory through special DMA operations
initiated through the 1/O bus. The Myrinet network is com-
posed of crossbar switches with eight bidirectional ports, and
the switches can be linked to obtain arbitrary topologies.
The network provides a link bandwidth of 80 MB/sec.

2.2 Global address space language

Many parallel languages, including HPF [15], Split-C [13],
CC++ [9], Cid [23], and Olden [7], provide a global address
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Figure 4: Handlers are executed on the NP.
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Figure 5: CP directly injects messages into the network.

space abstraction built from a combination of compiler and
runtime support. The language implementations differ in
the amount of information available at compile time and the
amount of runtime support for moving and caching values.
We consider the problem of implementing a minimalist lan-
guage, Split-C [13], which focuses attention on the problems
of naming, retrieving, and updating remote values.

A program is comprised of a thread of control on each
processor from a common code image (SPMD). The threads
execute asynchronously, but may synchronize through global
accesses or barriers. Processors interact through reads and
writes on shared data. The type system distinguishes local
accesses from global accesses, although a global access may
be to an address on the local processor.

Split-phase (or non-blocking) variants of read and write,
called get and put, are provided to allow the long latency of
a remote access to be masked. These operations are com-
pleted by an explicit sync operation. Another form of write,
called store, avoids acknowledging the completion of a re-
mote write, but rather increments a counter on the processor
containing the target address. This operation supports effi-
cient one-way communication and remote event notification.
Bulk transfer within the global address space is provided
in both blocking and non-blocking forms. In addition to
read and write, atomic read-modify-write operations, such
as fetch-op-store, are supported.

3 Implementations

Global memory operations fundamentally involve three pro-
cessing steps: (1) the processor issues a request, (2) the
request is served on a remote node by accessing memory,
possibly updating state or triggering an event, and (3) a re-
sponse or completion indication is delivered to the request-



ing node. Between these steps, information flows from the
CP through network processors (NPs), network interfaces
(NIs), and memory systems. Consequently, a basic issue in
any implementation is choosing which set of hardware ele-
ments are involved in the transfer and where the message is
handled. In this section, we outline four possible strategies
for implementing global memory operations.

Compute Processor as Message Handler (Proc): In our
first approach, the message handlers are executed on the
CP. In the simplest implementation of this strategy, the CP
injects the message into the network (through the network
interface), and the CP on the remote node receives the mes-
sage, executes the handler, and responds (as shown in Fig-
ure 2 for a remote read operation).

The same basic strategy can be employed with network
processors, using them simply as smart network interfaces
(as shown in Figure 3). The communication between a CP
and an NP on a node occurs through a queue built in shared
memory. The CP writes to the queue, and the NP, which
is constantly polling the queue, retrieves the message from
memory and injects it into the network. The message is re-
ceived by the NP on the remote side, enqueued into shared
memory, and eventually handled by the remote CP, where-
upon a handler executes and initiates a response. In this im-
plementation, the network processor’s task is to move data
between shared memory and the network, guarantee that the
network is constantly drained of messages, and perform flow
control by tracking the number of outstanding messages.

Network Processor as Message Handler (NP): In our next
approach, the message handlers are executed on the NPs
thereby reducing the involvement of the CPs (see Figure 4).
The request initiation is similar to the base implementation;
the CP uses shared memory to communicate the message to
the NP, which injects the message into the network. The NP
on the remote node receives the message, executes the corre-
sponding handler, and initiates a response without involving
the CP. The NP on the requesting node receives the response
and updates state to indicate the completion of the remote
request without involving the CP. This strategy streamlines
message handling by eliminating the involvement of the com-
pute processors.

Message Injection by the Compute Processor (Inject): In
this approach, the CP on the requesting node directly in-
jects messages into the network without involving the NP
(as shown in Figure 5). The remote NP receives and ex-
ecutes the message before initiating the response, which is
eventually received and handled by the NP on the request-
ing node. This approach streamlines message injection by
eliminating the NP’s involvement. However, in this strategy,
since both the CP and the NP can inject messages into the
network, the network interface must be protected to ensure
mutually exclusive access.

Message Receipt by either Processor (Receive): Our next
approach differs from the Inject strategy in one aspect; the
compute processors are also allowed to receive and handle
the messages. As with the Inject strategy, the CP directly
injects requests into the network. However, on the remote
node, the request is serviced by either the CP or the NP de-
pending on which processor is available. Similarly, when the
reply comes back, it is handled by either one of the two pro-
cessors on the source node. In the Inject approach, during a

global memory operation, there are three points at which an
NP is involved in a message send/receive while the CP is in-
volved only once. Since interfacing with the NI is typically
expensive, this asymmetry in roles could potentially lead
to a load imbalance during a global communication phase.
The Receive strategy corrects this asymmetry by dynami-
cally balancing the load between the CP and the NP.

We have implemented ten versions of the Split-C lan-
guage. Each version is highly optimized for the underlying
hardware. On the CM-5, which has no network processors,
a sole version exists. All message handlers are executed di-
rectly by the compute processors. On the Meiko and the
NOW, we have an implementation that executes the mes-
sage handlers on the CP and another that executes them on
the NP [25, 26]. The CP does not interact with the network
directly in either case. On the Paragon, we have an im-
plementation for each of the four different message handler
placement strategies discussed in this section. On the T3D,
we have implemented a sole version that handles all remote
memory accesses using the combined memory controller and
network interface [3].

4 Issues and Qualitative Analysis

In this section we present a set of interacting issues that
shape the implementation of global address operations. Our
goal is to identify the hardware and software features that
affect both correctness and performance. This provides a
framework for understanding the performance measurements
in the next section.

There are three dimensions to communication perfor-
mance. The latency of an operation is the total time taken
to complete the operation. If the program must wait until
the operation completes, this is the most important figure of
merit. However, if the program has other work to do, then
the important measure is overhead, which is the processing
time spent issuing and completing a communication event.
If there are many concurrent communication events occur-
ring at the same time, then the time for each event to get
through the bottleneck in the communication system, called
the occupancy or gap, may matter most, since it determines
the effective communication bandwidth. Our perspective is
influenced by the LogP model [11], although we use a dif-
ferent definition of latency, which includes overhead.

We divide the set of implementation issues into three
categories: those that are determined primarily by the ma-
chine architecture, those that are determined by the par-
ticular language implementation, and those that are only
determined by application usage characteristics.

4.1 Architectural issues

We begin with the family of architectural issues in a bottom-
up fashion, starting with the basic factors involved in moving
bits around. We then consider the processors themselves,
and work upwards toward system issues of protection and
address translation.

4.1.1 Interface to the network processor and the network
interface

The interface between a processor and the network is a no-
torious source of software and hardware costs. We consider
two design goals in this section, minimizing overhead and
minimizing latency, which suggest opposing designs.



To minimize latency, we should streamline the communi-
cation process by reducing the number of memory transfers
between processors. One expects the latency to be mini-
mized if requests are issued directly from the CP into the
network, the remote operation is handled and serviced di-
rectly out of the network, and the response is given directly
to the requesting processor.

To minimize the communication overhead for the CP,
the solution is to offload as much work as possible to a sepa-
rate NP. The offloaded work of transferring data into (or out
of) the network involves checking various status indicators,
writing (or reading) FIFOs, and checking that the transfer
was successful. On all five machines this transfer is expen-
sive. Thus, we would expect the reduction in overhead to
be significant as the cost of transfer to the network is traded
off against communication with the NP.

Surprisingly, on the Paragon, the cache coherency pro-
tocol (between the CP and the NP) results in at least four
bus transfers for an eight-word processor-to-NP transfer, at
a cost greater than a processor-to-NT transfer [22]. On the
Meiko, because the NI is integrated into the NP, the CP
can not directly send into the network. Communication be-
tween the processor and NP involves a transfer request be-
ing “written” to the NP with a single exchange instruction,
whereupon the NP pulls the message data directly out of the
processor’s cache and writes it into the network. The NOW
configuration is similar to that of Meiko’s with the NP hav-
ing a dedicated connection to the NI. The difference is that
the CP and the NP do not share memory. Instead, the CP
and the NP communicate through a queue located in the
NP’s local memory, which is accessible to the CP through
memory mapped addresses. On the T3D, crossing the pro-
cessor chip boundary is the major cost of all remote memory
operations [3]; however, the external shell is designed specif-
ically to present the network as conveniently as possible to
the processor.

A correctness issue also arises if the processor injects re-
quests directly into the network and the NP is to handle
requests and inject responses; the network interface must
be protected to ensure mutually exclusive access. This issue
does not arise on the Meiko or NOW, since they do not allow
direct access to the NI from the processor. In our Paragon
implementation, explicit locks are used to guarantee exclu-
sive access.

4.1.2 Relative performance and capability

One of the stark differences in our target platforms is the
processing power and capabilities of the NPs. One expects
performance to improve if handlers are executed on the NP.
However, if the NP is much slower than the processor, as on
the Meiko, then it may be best for the NP to do only simple
operations; it may be faster to have the NP pass complex
requests to the processor than to execute the request itself.
The optimal choice depends not only on the relative speed
of the two processors, but also their relative load; if the pro-
cessor is busy, then the best performance may be achieved
by executing the handler on the slower NP. Of course, the
request must always be passed on to the remote processor
if it demands capabilities not present in the NP. For exam-
ple, the Meiko NP does not directly support floating-point or
byte operations, the NOW NP has no floating point support,
and the T3D shell can only serve remote memory accesses
and very limited synchronization operations.

4.1.3 Protection

Protection issues arise at each step of a global access op-
eration. The network interface must be protected from in-
correct use by applications. Messages sent by one applica-
tion must arrive only at target remote processes for which
it is authorized. Hosts must continue to extract messages
to avoid network deadlock. Finally, handlers must only ac-
cess storage resources that are part of the application. The
traditional solution in LANs and early message passing ma-
chines was to involve the operating system on sending and
receiving every message (Ncube/2 [29]). This requirement
can be eliminated with more complete architectural support,
described below, and with coarser system measures, such as
gang scheduling of applications on partitions of the machine.

The Paragon has primitive hardware support for protec-
tion. It does not distinguish user and systems messages or
messages from different processes, and there is no safe user-
level access to the NI. Instead of invoking the OS for each
communication operation, protection is enforced by passing
all messages through a shared buffer to the NP, which runs
at system level and provides protection checks, resource ar-
bitration, and continually drains the network. In all but
the base implementation, remote operations are serviced di-
rectly on the NP, which performs protection checks on ac-
cess to user addresses. In the implementations in which
the CP directly injects requests into the NI, there is a pro-
tection loophole; these experiments reflect the performance
that would be possible if the Paragon were to adopt mea-
sures similar to the CM-5 or Meiko.

On the CM-5, the NI attaches a tag to each message so
that user and system messages can be distinguished. The
NI state is divided into distinct user and system regions,
so that the parallel application can only inject messages for
other processes within the application. Gang-scheduling on
a “subtree” of the network is used to ensure that applications
do not interfere with each other. Also, since remote services
are only performed on the processor, the normal address
translation mechanism enforces protection. The NOW also
gang-schedules parallel jobs. It does not support time-slicing
currently, so a parallel program’s traffic is insulated from
others. The control program on the NP is protected from
user tampering, and it performs protection checks on user
supplied addresses.

The Meiko protection mechanism is more sophisticated.
A collection of communicating processes possess a common
communication capability. All messages are tagged with the
capability, which is used to identify the communication con-
text on the NP. This context includes the set of remote nodes
to which the application is authorized to send messages and
the virtual memory segment of the local process that is ac-
cessible to remote processes. Time-slicing the NP processor
allows applications to make forward progress, so arbitrary
user handlers may be run directly on the NP.

The T3D enforces protection entirely through the ad-
dress translation mechanism. If an access is made to an
authorized remote location, the virtual to physical transla-
tion will succeed and the shell will issue a request access to
the designated physical location on the appropriate physical
node. Parallel applications are gang-scheduled on a “sub-
cube” of the machine so they don’t compete for network
resources.

4.1.4 Address translation

A key issue in all of our implementations is how the ad-
dress of a globally accessible location is translated. A global



pointer is statically distinct from a local pointer, so the ad-
dress translation is potentially a joint effort by the compiler-
generated code, the remote handler, and the hardware. If
remote operations are served by the CP, the virtual to phys-
ical translation is performed by the standard virtual mem-
ory mechanism, and page-fault handling is decoupled from
communication. If remote operations are served by the NP,
many alternatives arise.

On the Meiko the user thread on the NP runs in the
virtual address space of the user process. (The NP contains
its own TLB, and its page table is kept consistent with that
used by the processor.) Thus, the address translation on
request issue is the same as for the Proc strategy.

On the Paragon, if the message handler is run on the NP,
it Tuns in kernel mode. In the current version of OSF/AD,
it executes directly in the physical address space. Thus, all
accesses to user address space are translated and checked in
software on the NP. In principle a TLLB could be used to ac-
celerate this translation, but since the nodes are potentially
time-sliced, the NP would still need to check that it con-
tained a mapping for the target process of the message and
adjust its mapping or emulate the context as appropriate.
The remote page-fault issue arises as well, but the message
is explicitly aborted by the handler.

On the NOW, since the NP is attached to the I/O bus,
it can access main memory only through valid 1/O space
addresses. However, since the /O bus supports only 28-bit
addresses, only a portion of the user’s address space can be
mapped into the I/O space at any given time. Consequently,
if an access is made to an address that is not currently part
of the 1/O space, the NP passes the request to the compute
processor.

The T3D takes a completely different approach in that
the virtual address is translated on the processor that issues
the request. The page tables are set up so the result of the
address translation contains the index of a remote processor
in a small, external set of registers and a physical address on
that node. It is possible that a valid address for the remote
node causes an address fault on the node issuing the request,
if the remote node has extended its address space beyond
that of the requester. The language implementation avoids
this problem by coordinating memory allocation. No paging
is supported.

4.1.5 DMA support

All of the issues above come together in DMA support for
bulk transfer operations. On the Paragon and Meiko, DMA
offers much greater transfer bandwidth than small messages.
The Paragon operates on physical addresses and has a com-
plex set of restrictions for correct operation, so it must be
managed at kernel level. To improve overall network uti-
lization, the NP fragments large transfers into page sized
chunks. The Meiko provides more sophisticated DMA sup-
port by allowing the user to specify arbitrary sized transfers
on virtual addresses. The DMA engine is part of the NP and
automatically performs address translation and fragments
the transfer into 512 byte chunks, which are interleaved with
other traffic. The T3D “block transfer engine” operates on
physical addresses and is only accessible at kernel level, so
the cost of a trap is paid on startup. On the NOW, a bulk
transfer requires the participation of two DMA engines; the
host DM A moves data between main memory and the NP’s
local memory, while the NI DMA is responsible for moving
data between the NP’s local memory and the network. Tt
operates in the 1/O address space and requires an additional

copy to (or from) the user space.

4.2 Language implementation issues

We now turn to the family of issues at the language imple-
mentation level, given that the network processor can exe-
cute handlers and has specific architectural characteristics
that can be fully exploited.

4.2.1 Generality of handlers

If the network processor runs in kernel mode, as on the
Paragon, it can only run a fixed set of “safe” handlers.'
The protection and address translation capabilities of the
Meiko NP make general handlers possible, but its poor per-
formance makes it usable only for highly specialized han-
dlers. Atomic handlers are challenging to implement effi-
ciently on the NP. Expensive locking may be required to
ensure exclusive access to program states by the CP and
NP. Our approach is to always execute the complex atomic
operations on the compute processor to avoid costly locking.

4.2.2 Synchronization

Non-blocking operations, such as get, put, and store require
some form of synchronization event to signal completion.
This is easily implemented with counters, but if operations
are issued by the processor and handled by the NP, then the
counters must be maintained properly with minimal cost for
exclusive access. An efficient solution is to split the counter
into two counters, using one counter for the compute pro-
cessor increments and the other for the network processor
decrements. No race condition can occur since each proces-
sor can only write to one location, and can read both. The
sum of the two counters produces the desired counter value.
Implementing this on the Meiko and the Paragon is best ac-
complished by having each half of the counter in a separate
cache line to avoid false sharing.

4.2.3 Optimizing for specialized handlers

If some of the handlers are to be executed on the NP, they
can be optimized for their task and the specific capabilities
of the NP. On the Paragon, the translations of frequently
accessed variables, e.g., the completion counters, can be
cached for future use. Message formats are specialized for
the NP handlers to minimize packet size. One-way opera-
tions, such as stores, can be treated specially to reduce the
number of reverse acknowledgments needed for flow control.
The Meiko allows for optimizations of a different sort, as
the handler code can be mapped directly onto some special-
ized operations supported by the NP, such as remote atomic
writes [26].

4.3 Application issues

Considering architectural and language implementation is-
sues in isolation, one can construct a solution that attempts
to minimize the latency, overhead, and gap for the individual
global access operations, striking some balance between the
three metrics. However, the effective performance of these
operations depends on how they are actually used in pro-
grams. Two issues that have emerged clearly in this study
are responsiveness and the frequency of remote events.

I This set might be enlarged by using sandboxing or software fault
isolation techniques [5, 30].



CM-5 Meiko Paragon T3D NOW
Feature Operation || (Proc) | Proc NP | Proc NP Inject Receive | (NP) | Proc NP
RT Latency AM 14.0 23 52 20.1  20.1 15.3 12.0 9.6 28.9 17.7
Read 16.5 24.3 329 ] 20.5 15.9 13.2 12.2 0.85 29.5 21.6
Write 14.6 24.3 13.8 | 204 15.3 12.1 12.1 0.98 29.3 194
Overhead Get 6.0 2.6 7.1 5.9 2.4 2.7 3.1 0.40 7.1 2.0
Put 6.1 2.5 4.1 5.0 2.3 2.6 3.1 0.31 7.1 2.1
Store 3.4 1.7 5.4 5.2 2.4 2.7 3.1 2.9 2.6 2.0
Gap Get 6.2 15.5  36.1 8.3 8.4 6.7 8.0 0.40 7.9 9.2
Put 6.0 15.8 21.3 8.5 7.5 6.7 7.3 0.31 7.9 8.8
Store 3.3 13.9 20.8 8.5 7.3 2.9 4.8 2.9 5.8 8.6
Gap (tO 2) Get 6.1 15.7  24.7 9.0 8.4 6.7 7.4 0.40 15.7 184
Put 5.9 15.6  20.1 8.5 7.6 5.7 7.3 0.31 15.7 17.7
Store 3.4 14.0 19.8 8.2 7.5 2.9 3.2 2.9 11.5  11.7
Gap (exchange) Get 9.3 28.4 47.2 | 16.0 13.5 13.2 11.9 0.56 15.7  15.2
Put 9.3 27.8 23.8 | 15.8 12.7 12.4 11.3 0.37 15.7  13.9
Store 7.3 15.4  24.2 | 15.6 14.1 8.0 7.5 4.7 8.9 10.3

Table 1: Basic Split-C' operations, for different versions of Split-C (times in us). Proc indicates the compute processor
implementation, NP the network processor implementation, Inject the implementation where the compute processor directly
injects messages, and Receive where it also directly receives responses.

4.3.1 Responsiveness

The prompt handling of incoming messages is important for
minimizing latency. One way to ensure messages are han-
dled as they arrive is for the message to trigger an inter-
rupt. Unfortunately, few commodity processors have fast
interrupts, so where possible we utilize polling of the net-
work interface. If the CP is responsible for polling and fails
to do so because it is busy in compute intensive operations,
the effective latency can increase dramatically. If remote
operations are handled on the NP, it can be responsive to
these requests, regardless of the activities of the processor.

4.3.2 Frequency of remote events

Remote events are operations where control information is
transmitted to a remote process along with data. The sim-
plest remote event we consider is the signaling store, which
informs the remote processor how much data has been stored
into it by incrementing a counter. Synchronization opera-
tions, such as fetch&add and more general atomic proce-
dures involve more extensive operations within the remote
address space. Many event driven applications use a dis-
tributed task queue model, where communication causes a
new event to be posted on a queue.

If a program invokes very few remote operations, archi-
tectural support for communication has very little impact on
performance. If a program is communication intensive and
if all remote operations are variants of read and write, which
involve only the remote memory and do not interact with
the remote processor, then, unsurprisingly, devoting hard-
ware to serve these operations will improve performance.
However, specific support for simple read and write oper-
ations does little to support remote events, such as stores,
since they are relatively expensive to implement as multiple
operations on the remote memory space. Thus, the latency,
overhead, and gap of these remote event operations varies
significantly across our platforms, but the effective impact
on performance depends on how frequently they are used in
applications, which also varies dramatically.

4.4 Summary

Fach implementation strategy on each platform must ad-
dress the issues raised in this section, it represents a par-
ticular point of balance in the opposing trade-offs present.
In this section, we have examined in qualitative terms how
the available architectural support, the language implemen-
tation techniques, and the program usage characteristics in-
fluence the performance of global access operations. Given
this framework, let us examine the performance obtained on
each of the operations in isolation and the resulting appli-
cation performance.

5 Performance Analysis

In this section we present detailed measurements of our ten
implementations to provide a quantitative assessment of the
issues presented in the previous section. We divide our dis-
cussion into four parts. First, we examine the raw commu-
nication performance of active messages and Split-C primi-
tives. We also study bulk synchronous communication pat-
terns, where multiple processors simultaneously exchange
messages. Next, we examine bulk transfers and the achieved
bandwidth. Then we study a microbenchmark that illus-
trates the impact of attentiveness to the network. Finally,
we examine complete applications written in Split-C.

5.1 Performance of Split-C primitives

Table 1 shows the round-trip latency, gap, and overhead for
active messages, as well as get, put, and store operations
under the various implementations. The upper three groups
test a single requester and single remote server. The lower
two involve communication among multiple processors.

Round-trip Latency: To evaluate system impact on latency,
we consider three types of operations, all of which wait for an
acknowledgement of completion. The first is a general active
message, measured for the case of a null handler, and the
others are blocking memory operations, read and write. The
latency measurements exposes two of the issues raised ear-
lier: total round trip time is minimized by avoiding the use of
NPs during injection (thereby reducing memory transfers),



and the use of specialized hardware to support particular
operations significantly improves their performance.

Both the CM-5 and the Paragon show that faster com-
munication is possible when messages are directly injected
into the network. We see that the CM-5 latency is small
compared to other architectures, since the CP directly in-
jects and retrieves messages from the network. The effect of
reducing memory transfers between the CP and the NP is
most clearly seen on the Paragon. On the Paragon, each
implementation improves on the previous versions. The
advantage of Paragon-NP over Paragon-Proc is especially
remarkable given the additional overhead of software ad-
dress translation in Paragon-NP. The further improvement
of Paragon-Inject implies that the benefit of directly inject-
ing into the network outweighs the additional cost of locks,
which are required for mutually exclusive access to the NI.
On the NOW, the NP strategy eliminates the message trans-
fer between the NP and the CP; however, the NP can access
the CP’s memory only through expensive DMA operations
issued over the 1/O bus. The lower latencies for the NP
implementation imply that eliminating the message transfer
more than compensates for the cost of the DMA operation.

The Meiko-NP implementation has higher latencies for
active messages and reads, since the NP is much slower than
the CP. However, the write operation on Meiko-NP is much
faster than the read, since the Meiko has hardware support
for remote write. Similarly, on the T3D, reads and writes
are much faster than active messages, since reads and writes
are directly supported in hardware, while active message
operations must be constructed from a sequence of remote
memory operations [3]. In contrast, the four Proc implemen-
tations of read and write (on the CM-5, Meiko, Paragon, and
NOW) are built using active messages, so they take the time
of a null active message plus the additional time needed to
read or write.

The round-trip measurements on the Paragon also bring
out protection and address translation issues. The Paragon
Proc and Paragon NP implementations show no difference
in latency for active messages, because user supplied han-
dlers cannot be executed on the NP due to inadequate pro-
tection. For the Paragon-NP and Inject versions, reads are
slower than writes because a read reply requires an extra
address translation step for storing the value read into a lo-
cal variable. (In the Receive implementation, the difference
between the read and write costs disappears since the replies

are handled on the CP.)

Overhead: One expects that the overhead when writing di-
rectly to the NI will be greater than if an NP is involved;
surprisingly, this is not always the case. Contrary to expec-
tation, the overhead costs for the NP and the Inject versions
on the Paragon are similar, which implies that it is as effi-
cient to write to the NI as writing to shared memory on this
platform. As expected, the Paragon and the NOW imple-
mentations that use the NP for message handling have much
less overhead, since the CP does not handle the reply. On
the other hand, the Meiko-NP overhead is higher than the
Meiko-Proc, because of an implementation detail. To avoid
constant polling on the NP, the more expensive event mech-
anism is used instead of shared memory flags for handing
off the message to the NP. On the CM-5, we observe that
the sending and receiving overhead accounts for almost all
of the round-trip latency, unlike the other implementations
that involve a co-processor.

Comparing the store overhead to the other results helps
reveal the underlying architecture. As expected, the CM-

5 overhead for gets and puts is almost twice the overhead
for stores, which do not require a reply. On the T3D, the
overhead for gets and puts is almost half the latency for
read and writes, which means that pipelining two or three
operations is sufficient to hide the latency. Unlike other
platforms, stores on the T3D have a much higher overhead,
since the store involves incrementing a remote counter, it
cannot be mapped onto T3D’s hardware read/write primi-
tives; instead, a general purpose active message is used to
implement stores.

Gap: The results for the gap expose the bottlenecks in the
various systems. For the CM-5 and the T3D, the gap is
the same as the overhead, which indicates that the sending
processor is the bottleneck. The higher gap for Meiko-NP
and the NOW-NP implementations show us that the slower
NP is the bottleneck. On the Paragon, the get operation
has a higher gap than puts due to an extra software address
translation made while handling the reply. This behavior
means that the NP on the sending side is the bottleneck. In
the Inject implementation, the cost difference between gets
and puts disappears implying that the NP on the remote
node has become the bottleneck.

Two other observations can be made concerning the gap
results for the Paragon. First, there is no substantial change
in the gap between the Proc and NP implementations in
spite of removing the compute processor from the critical
path. Second, the store gap is lower due to an implementa-
tion optimization that bunches together acknowledgments.
Note that even though the language does not require ac-
knowledgments for stores, they are sent to ensure flow con-
trol in the network (for all versions) and availability of buffer
space (for the Proc version).

It is also interesting to note that the NOW-NP imple-
mentation trades-off gap for latency by having the NP be
responsible for both interfacing with the NI as well as han-
dling the messages. While this approach lowers latency by
eliminating messages transfers between the CP and the NP,
it increases the load on the NP. If we view the various com-
ponents of the system as different stages of a pipeline, the
NP strategy eliminates some of the stages in the pipeline
while increasing the time spent in the longest stage. Conse-
quently, it improves latency at the expense of gap.

Gap-2: We can further isolate the system bottleneck by
modifying the gap microbenchmark to issue gets, puts, and
stores to two remote nodes. If an operation can be issued
more frequently when issued to two different nodes, then the
bottleneck for the operation is the processing power of the
remote node; otherwise, it is send side limited. For the CM-
5 and the T3D, we notice that the operations are send side
limited. On the Paragon, the numbers support our earlier
conjecture that the NP on the source node is the bottleneck
in the NP version while the NP on the destination node is the
bottleneck in the Inject and Receive versions. For the Meiko-
NP implementation, the remote NP is the bottleneck for gets
while the NP on the source node is the bottleneck for puts
and stores. Similarly, for the NOW-NP implementation, we
observe that the NP on the source node is the bottleneck for
gets and puts while the NP on the destination node is the
bottleneck for stores.

Gap for Exchange: Our final microbenchmark measures
the gap when two processors issue requests to each other
simultaneously. This test exposes the issues relating to how
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Figure 6: Bandwidth of Split-C bulk get and store operations for our study platforms.

the CP and NP divide up the workload involved in commu-
nication. As expected, for the Proc implementations on the
Paragon and the Meiko, the cost is roughly twice the regular
gap since the compute processor experiences the overhead
for its message as well as for the remote request. Since the
NP and Inject versions allow for the overlapping of resources,
the gap costs increase by less than a factor of two. The
Receive version, where the compute processor receives and
handles messages to share the communication workload with
the NP, performs better than the Inject and NP versions in
spite of incurring the cost of using locks. It is interesting
to observe that the Receive version has higher overhead and
gap when a single node issues fetches from a remote node,
but it performs better for bulk-synchronous communication
patterns, such as exchange.

Conclusion: The latency, overhead, and gap measurements
of the Split-C primitives quantify the combined effects of the
trade-offs discussed in the previous section. In particular, we
can observe the utility of having direct access to the network,
afast NP, and of optimizing the global access primitives onto
available architectural support in the target platform. We
are also able to observe the effect of factors like software
address translation and protection checking.

5.2 Bandwidth for bulk transfers

Figure 6 shows the bandwidth curves for the bulk store and
bulk get operations for the different machines. With the
exception of the CM-5, all our architectures have a DMA
engine to support bulk transfers. The Meiko NP imple-
mentation out-performs Meiko Proc for long messages; for
stores, it achieves 38 MB/s compared to 32 MB/s. This
occurs because the Proc version trades off bandwidth for la-

tency by having the NP continuously poll for new messages
from the CP. While this reduces the latency, it constantly
takes resources from the NP and reduces the bandwidth for
bulk transfers. The NP implementation, on the other hand,
only schedules threads on the NP when needed. All the
Paragon implementations use the same bulk transfer mech-
anism (since the device is complex to control and must be
operated at kernel level) and achieve the same performance:
a maximum bandwidth of 144 MB/s. The CM-5 achieves
only 10 MB/s. The T3D provides two different mechanisms
for bulk transfer, which differ in startup cost and peak band-
width, and thus would be employed in different regimes. The
NOW throughput is limited by the SBus bandwidth.

5.3 Polling granularity

To study the impact of attentiveness on communication per-
formance, we use a microbenchmark where each processor
performs a simple compute/poll loop with the computation
granularity varied based on an input parameter; after each
computation the process may poll for messages. All proces-
sors take turns computing while the remaining processors
request a single data item from the busy processor. The
requesting processors need this data item to make progress.
If this request is not serviced immediately, the requesters
idle, and only a single processor is busy computing at any
given time. However, if the compute granularity is small or
if a NP is used to service requests, the responses come back
immediately, and all processors can work in parallel.
Figures 7 and 8 show the impact of varying the com-
pute granularity on the overall run-time. As expected, not
polling or polling infrequently results in poor performance.
The NP implementation always performs well, because the
NP immediately services requests. For a wide range of gran-



Meiko CS-2 Intel Paragon

Program | Description Problem Size Time (in sec) Problem Size Time (in sec)

Main proc NP Main proc NP
radix Radix sort 8 million keys 35.2 55.4 | 4 million keys 17.3 16.1
sample Sample sort 16 million keys 20.9 25.3 | 4 million keys 7.82 6.80
p-ray Ray-tracer 512x512 tea pot 37.5 38.0 | 512x512 tea pot 85.4 81.5
sampleb | Sample sort, bulk transfers | 16 million keys 7.40 7.43 | 4 million keys 5.63 5.50
radixb Radix sort, bulk transfers 16 million keys 15.3 14.4 | 4 million keys 10.7 10.7
bitonic Bitonic sort 8 million keys 17.0 16.0 | & million keys 24.2 24.2
fftb FFT using bulk transfers 8 million pts 13.6 12.5 | & million pts 6.54 6.30
cannon Cannon matrix multiply 1024x1024 matrix 13.9 12.4 | 1024x1024 matrix 41.5 41.5
mm Blocked matrix multiply 128x128 matrix 29.0 23.2 | 128x128 matrix 47.2 46.1
fft FFT using small transfers 8 million pts 17.5 13.4 | & million pts 8.12 7.04
shell Shell sort 16 million keys 44.7 21.7 | 4 million keys 14.8 14.7
wator N-body simulation of fish 400 fish 139 34 400 fish 104 93.4

Table 2: Run times for various Split-C programs on a 16 processor Meiko CS-2 and an 8 processor Paragon. Run times (in
seconds) for both the main processor and NP implementations are shown in the table.
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Figure 7: Run times per iteration for varying granularity
between polls, on a 16 processor Meiko CS-2.

ularities, polling on the compute processor performs just as
well as the NP implementation. Only when polling occurs
very frequently does the polling overhead become noticeable.

5.4 Split-C programs

Finally, we compare the performance of full Split-C applica-
tions under the NP and Proc implementations on the Meiko
and the Paragon. Table 2 lists our benchmark programs,
along with the corresponding running times for the different
versions of Split-C on the Meiko and Paragon. Figures 9
and 10 display the relative execution times as bar graphs.
The programs were run on a 16 node Meiko CS-2 partition
and an 8 node Paragon. Note that the problem sizes were
different.

On the Meiko, we observe that under the NP strategy
radix and sample run slower while mm, fft, shell, and wator
run significantly faster. The remaining benchmarks generate
similar timings. Radix and sample run slower because they
are communication intensive and use remote events; radix
uses stores to permute the data set on each pass while sample
uses an atomic remote push to move data to its destination
processor. These primitives are substantially slower under
the NP implementation.

Most of the benchmarks have similar run times under the
two implementations. This occurs for two reasons: First,
most of these programs do not overlap communication and
computation to a large degree. Instead, they run in phases
separated by barriers. As a result, the NP cannot exploit its
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Figure 8 Run times per iteration for varying granularity
between polls, on an 8 processor Paragon.

ability to handle communication while the compute proces-
sor computes. Second, much of the communication is done
with bulk operations, and there is only a 20% difference in
bandwidth between the two Split-C implementations.

The program with the largest improvement is wator. In
this program each processor runs through a loop that reads
a data point and then computes on that data. Since the
Proc version only polls when it performs communication,
any requests it receives while it is computing experience a
long delay. The NP implementation, in contrast, can process
requests immediately. This accounts for the large difference
in run-times. To avoid at least some of this delay, the pro-
grammer would have to add polls to the compute routine.
Unfortunately, this program invokes the X-library, the code
for which is not readily accessible for inserting polls.

On the Paragon, almost all of the programs run approxi-
mately at the same rate under both the Proc and NP imple-
mentations of Split-C. The exceptions are the fine grained
communication intensive programs — radix, sample, and
fft — which run faster on the NP implementation because
the underlying communication primitives are more efficient.
The remaining exception is wator, which runs more effi-
ciently under the NP implementation because of the im-
proved responsiveness. As expected, programs that use bulk
transfers do not show much change.
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Figure 9: Run times for our Split-C benchmark programs on
a 16 processor Meiko CS-2, normalized to the running time
of the main processor implementation.
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Figure 10: Run times for our Split-C benchmark programs
on an 8 processor Paragon, normalized to the running time
of the main processor implementation.

5.5 Discussion

The original motivation for an NP was to enable user-level
protected communication without the limitations of gang-
scheduling found on machines such as the CM-5. Protec-
tion is realized by running part of the operating system on
the NP, either in software as on the Paragon, or in hard-
ware as on the Meiko. Having the NP helps decrease the
overhead observed on the compute processor, and thus may
enable overlapping of computation and communication to a
greater degree. On some of the machines, the NP also helps
reduce the gap between messages and improve bulk trans-
fers. An important advantage of the NP is that it improves
the responsiveness.

There are several factors that prevent us from realizing
the full utility of the NP, including limited speed, required
protection, functionality of the NP and address translation,
as well as the synchronization and the shared memory access
cost between main processor and NP. For example, on the
Meiko, the protection check, which involves table lookups, is
expensive, since the NP does not have an on-chip cache. On
the Paragon, the address translation has to be performed
in software. Having the NP do the sending increases the
observed latency as one more step is involved. Just getting
the information from the compute processor to the NP is
already quite expensive, since it involves an elaborate shared
memory protocol. Finally, if the NP is a specially designed
chip, as in the case of the Meiko and the NOW, it is likely

to be much slower than the compute processor.

6 Conclusions

There has been a clear trend in the designs of large scale par-
allel machines towards more sophisticated hardware support

for communication, better user-level messaging capabilities,
and a greater emphasis on global address-based communi-
cation. In many cases, this has led in the direction of ded-
icated network processors; however, there is a great deal of
variation in how specialized these are to the communication
task, how they interface to the processor and the network,
the kind of synchronization support they provide, and the
level of protection they offer.

In this study we evaluate the tradeoffs present in this
large design space by implementing a simple global address
programming language, Split-C, on a range of these architec-
tures and by pursuing a family of implementation strategies,
each fully optimized for the capabilities of the hardware un-
der that strategy. We see quite substantial differences in the
latency, overhead, and gap exhibited on the individual global
access primitives, and the differences are, in hindsight, read-
ily explained. On most of our applications, the differences
between the implementation strategies is less pronounced,
partly because they tend to use primitives that were more
uniform in performance across the strategies and partly be-
cause opposing trade-offs tend to balance out.

The experience of the study and the measurements that
it offers provide some clear design guidelines for the commu-
nication substructure of very large parallel machines, as well
as identifying points where the conclusion is still unclear:

e Imposing a network processor between the applica-
tion program and the network provides a very simple
(although not necessarily inexpensive) means of ad-
dressing the complex requirements of protection, ad-
dress translation, media arbitration, and flow-control
for communication. However, it is important that the
interface between the processor and the network pro-
cessor be efficient. This is not necessarily achieved by
traditional bus-based cache-coherency protocols, since
the idea is to move information from producer to con-
sumer quickly, rather than to hold data close to the
processor that touches it. It does seem to be achievable
by a more specialized network processor integrated
with the network interface.

e There is an advantage to having the network proces-
sor be responsive to the network and service mem-
ory access requests without waiting for the processor.
However, if the network processor is going to do more
than act as an intermediary and sanitize the network
interface, it needs to be powerful enough to do this
job with performance competitive with the processor.
In particular, if the network processor is to provide a
protection model powerful enough to allow its use on
general purpose operations, it should be fast enough
to be effective on those operations.

e The remote memory performance of the T3D and of
certain aspects of the Meiko, show that there are clear
benefits to be obtained through hardware support for
specific operations in the network processor and net-
work interface. However, the application usage charac-
teristics on these large machines will need to stabilize
before it will be possible to determine how these advan-
tages balance against design time, cost, or reductions
in performance elsewhere in the system.
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