
Connected Components on Distributed Memory MachinesArvind Krishnamurthy, Steven Lumetta,David E. Culler, and Katherine YelickComputer Science DivisionUniversity of California, Berkeley �AbstractIn this paper, we describe an implementation of the connected components algorithm ona distributed memory machine. A direct implementation of the PRAM algorithm results inan ine�cient implementation due to the huge number of remote accesses generated by thealgorithm. Instead, we use a hybrid algorithm that invokes the sequential algorithm as a localpreprocessing phase before entering a global phase, which is a modi�ed version of the PRAMalgorithm. We use the Split-C language, which provides the abstraction of a global addressspace, for building the distributed graph data structure. We obtain speedups in the order of 20on a 32 processor CM5 for certain kinds of graphs.1 IntroductionAlthough the asymptotic running times of numerous PRAM algorithms for connected componentshave been studied within the theory community, there have been very few attempts to make useof these algorithms on real parallel machines. The implementations that do exist generally appearonly on shared memory platforms such as the Cray C90 or on SIMD machines such as the CM-2where messages between processors require only a single cycle.The large parallel machines of the future, however, lean towards the distributed memory MIMDmodel, with the machines built using standard fast processors that are loosely coupled using anetwork (e.g., TMC CM-5, Meiko CS-2, Cray T3D, Intel Paragon, IBM SP-1). A straightforwardimplementation of a PRAM algorithm on any of these machines is generally of little use becauseof the high cost of remote accesses and the frequency of such accesses in most PRAM algorithms.A more sophisticated, hybrid, approach is to employ a PRAM algorithm in conjunction with a�This material is based upon work supported under a National Science Foundation Graduate Research Fellowshipand National Science Foundation Infrastructure Grant number CDA-8722788. Any opinions, �ndings, conclusions,or recommendations expressed in this publication are those of the authors and do not necessarily re
ect the views ofthe National Science Foundation. 1

October 3, 1994 { 12 : 43 DRAFT 2standard sequential algorithm, using the latter to manage operations local to each processor andthe former to manage the interaction between processors.In this paper, we explore a set of PRAM algorithms for �nding the connected components of agraph using this hybrid approach. Our selection of algorithms and graphs is based on a study byGreiner [3] of the pragmatic aspects of connected component PRAM algorithms on shared memoryand SIMD platforms. We extend the results to MIMD machines, namely the CM-5, using the Split-C language developed at Berkeley [2]. We discuss the standard PRAM algorithm in section 2, anda simple implementation of the algorithm is presented in section 3. In section 4, we describe thedi�erent optimizations used to improve the running time. In section 5, we present the results fromrunning the program on a CM5, and section 6 compares our results with other implementations ofthe algorithm.2 Basic AlgorithmOur implementation is based on the connected components algorithm presented by Shiloach andVishkin [5]. In this section, we will brie
y describe the di�erent stages of the algorithm. The basicalgorithm requires O(log n) parallel steps and a total of O(m log n) work, where n is the numberof vertices of the graph and m is the number of edges of the graph. We will denote the vertex setby V and the edge set by E in the following discussion.The algorithm starts with the set of n vertices, and repeatedly groups vertices that have edgesbetween them. The algorithm uses two basic operations: pointer jumping and hooking operation.The algorithm maintains a forest of trees, and makes progress either by decreasing the number oftrees in the forest or by decreasing the height of the trees.The pointer jumping operation takes each vertex in the forest, and makes the current grand-parent the new parent of the vertex. This operation decreases the distance from the root of thetree to the leaves, and terminates when the tree becomes a star, which is a tree of depth 1. Theparent of the root of a tree is the root itself, which simpli�es the pointer jumping phase, allowingit to take the form:Parent(v) Parent(Parent(v))The hooking operation hooks a star in the forest to another tree in the forest if the star con-tains a vertex that is adjacent to some vertex in the target tree. This operation appears in two
avors: conditional hooking and unconditional hooking. Let u be a vertex that belongs to a star,and let (u; v) be an edge in the graph. Assume that there is a numbering of the vertices givenby a V alue attribute. Then, the conditional hooking operation sets Parent(Parent(u)) to v if

October 3, 1994 { 12 : 43 DRAFT 3V alue(Parent(u)) < V alue(v). The unconditional hooking operation sets Parent(Parent(u)) tov irrespective of the values of the vertices being linked.An invariant is that the parenthood relationship should not contain cycles. The conditionalhooking operation ensures that there are no cycles formed as a result of applying the operation;the same is not true of the unconditional hooking operation. However, the algorithm preventsthe creation of cycles by �rst applying the conditional hooking operation, and then applying theunconditional hooking operation only on those stars that were not hooked in the conditional hookphase. This prevents two stars from linking up with each other since at least one of the stars hashad an opportunity to be attached to the other star during the conditional hooking operation. Theunconditional hooking operation is necessary to obtain log(n) bound on the running time, but isnot necessary for correctness[5].We can now provide the pseudo-code for the algorithm. We assume there is one processor forevery vertex and for every edge in the graph. The processors can therefore be classi�ed into vertexprocessors and edge processors. The algorithm requires concurrent write ability from the PRAMprocessors to execute each step described below in constant time.1. Parent(v) v2. Repeat until there is no change:(a) If u belongs to a star, pick v such that (u; v) 2 E and V alue(Parent(u)) < V alue(v),then Parent(Parent(u)) v.(b) If u belongs to a star and (u; v) 2 E, then setParent(Parent(u)) v.(c) Parent(u) Parent(Parent(u))(d) Value(u) Value(Parent(u))The loop requires O(log n) iterations to terminate. The processors are assumed to execute in alock-step manner. The vertex processors are active during steps 1, 2c, and 2d. The edge processorsare utilized for steps 2a and 2b. The concurrent write requirement is essential for steps 2a and 2bsince any of the edge processors associated with the vertex u can �nd a target tree to hook onto.However, there are no assumptions made about the policy for disambiguating writes to the samelocation.

October 3, 1994 { 12 : 43 DRAFT 43 ImplementationIn this section, we describe our initial attempt at implementing the connected components algo-rithm. Although the �rst implementation proved to be ine�cient, detailing it will facilitate thedescription of our improvements in later sections.The natural implementation of many algorithms on distributed memory machines involves acombination of local and global phases. During the local phases, the algorithm deals only withthose data which reside within the processor's local memory. In the global phases, the algorithmmust address issues that arise when some data resides in the memory of remote processors andmust make an e�ort to handle these remote references as e�ciently as possible.Fortunately, we can make use of the Split-C language [2] to simplify our task. Split-C providesthe abstraction of a global address space and simple but powerful data motion primitives, allowingthe programmer to optimize his program in a straightforwardmanner to any degree desired, and oneneed not second guess or work around the compiler. Since Split-C is based on Active Messages [6][7],we can a�ord to use �ne-grained parallelism instead of a more di�cult (and often non-intuitive)coarse-grained approach.When discussing the algorithm, we may refer to pointer objects as being either local or remote,referring to the location of the data item. Distinguishing between these two types of pointers istrivial in Split-C, but it is not necessary|one can choose to treat either as a pointer into the globaladdress space.In addition to the natural
avor of the Split-C language, it has the added advantage of providingdebugging support via the Split-C Debugger [4]. This kind of support is a key factor in writing anykind of program, but is poor in some parallel programming environments.Having brie
y discussed our tools, we can now introduce the algorithm. Although this versionlooks very di�erent from the �nal version, it will aid in understanding the optimizations we madeand introduce the general style of the program. The algorithm follows:1. Each processor performs a sequential connected components algorithm using a Breadth FirstSearch (BFS) on its nodes, ignoring remote edges for the purposes of the search, to producea forest.2. Unlike the sequential version, the structure of the forest on each processor must be maintainedin the parallel version to allow propagation of values in the global phase. To this end, arepresentative node is chosen for each local tree, all remote edges from nodes in the tree aremoved to this representative, and the tree is collapsed into a star.

October 3, 1994 { 12 : 43 DRAFT 53. Beginning with a list of components on each processor, all of which are stars and are markedwith unique values, we use Shiloach and Vishkin's algorithm to handle the global phase ofthe algorithm. We iterate over the following until all nodes are marked as done:(a) If all components on all processors are done, quit.(b) Mark star components with no remaining outside edges as done.(c) Attach star components to other components if the value of the other component islarger. Remove components that have been attached from the component list.(d) Double parent pointers one or more times for all nodes and propagate V alue and doneattributes.(e) Mark components as stars or non-stars. This is done by �rst marking all components asstars, then marking the grandparent of each node as a non-star if it is distinct from theparent of the node.(f) If remote edges exist for a node, and the parent of the node is a star, move the edges tothe parent node.(g) Remove the graph edges of star components that point to nodes with the same value.Note that in the �rst implementation, we ignored the unconditional hooking phase. We addedit later, but whether or not it is needed depends on the structure of the graphs to be used.4 ImprovementsIn this section, we describe techniques to improve the performance of our implementation. Theoptimizations fall into two classes: improving constant factors in the total amount of computationand decreasing the number of non-local references. Our implementation is tuned for distributedmemory machines, showing a factor of 20 improvement over the basic version described in Section 3.4.1 Vertex PruningThe �rst optimization is based on the observation that only the roots of stars need to be consideredin the global phase, since all remote edges in the star have been moved to the root. We can thereforeignore the leaves of the stars throughout the global phase, if we make two changes to the algorithm.First, we modify the hooking operation, which links u to v if (u; v) 2 E and V alue(u) < V alue(v).Instead, we link u to Parent(v). The values at leaf nodes are ignored and therefore need not beupdated during the global phase. This allows the values of the leaves of the trees to be inconsistent

October 3, 1994 { 12 : 43 DRAFT 6since we always examine nodes that are parents. Note that this change results in extra dereferencesduring the hook operation. However, this change allows us to avoid updating the leaves of the starsfound during the local BFS operation. The second modi�cation is the addition of a �nal pointerdoubling operation for the parent and value �elds of these leaf, once the global phase is complete.4.2 Edge ExpansionWe can avoid the extra dereferences introduced by vertex pruning in the hooking phase by edgeexpansion. If (u; v) 2 E, after the local BFS is complete, we replace the edge by (u; Parent(v)).This improves the running time of the algorithm since we pay for the cost of the extra dereferenceonly once, instead of repeatedly following parent pointer links over the many iterations of the globalphase.4.3 Postponing Edge List ConcatenationOur initial implementation concatenated the edges of the leaves to the edge list of its parent atthe end of every pointer doubling phase. There were two problems with this approach. First, thecode required for this operation was complex since it had to handle race conditions where both theparent and the child might be involved in edge-list concatenation operations. The second concernis that to concatenate two edge lists, we need to traverse one of the lists and �nd its last element.Since the edge list concatenation operation occurred at the end of every pointer doubling operation,the algorithm was traversing edge-lists multiple times once for every doubling operation. We canalleviate both these problems by postponing this concatenation operation till the pointer doublingphase of a tree is complete, and the tree gets a star structure. This avoids complex race conditionsas well as repeated traversal of edge-lists.4.4 Checking for Duplicates before Edge-List ConcatenationDuplicate checking is the operation in which we remove edges from vertices that point to othervertices in the same tree. The original algorithm checked for duplicate edges just before the hookoperation. At this stage of the algorithm, all the edges originating from the star are attached tothe root of the star. However, since the edge-list concatenation process results in edge-lists thatare spread across processors, a traversal of an edge-list might result in a huge number of remotereferences. Instead, if we execute the duplicate checking phase ahead of the edge-list concatenationphase, each node in the tree checks for duplicates in its own edge-lists. This improves the likelihoodthat edge-lists are local when checking for duplicates. Also, since the duplicate checking operationis done in a distributed manner by all the nodes in the tree, there is more parallelism.

October 3, 1994 { 12 : 43 DRAFT 74.5 Unconditional HookingThe unconditional hook operation attaches any star that did not get attached in the earlier condi-tional hook phase. Incorporating the unconditional hook operation in our algorithm, decreases thenumber of iterations the algorithm needs to run, since it increases the number of hooking operationsper iteration. However, since unconditional hooking can be applied only to those stars that didnot get attached in the earlier conditional hook phase, we maintain a stagnant �eld for each root,which gets set after a successful conditional hook.4.6 Synchronous and Asynchronous Pointer DoublingWe experimented with the manner in which the pointer doubling operations are performed. Thestandard approach is for each processor to iterate over the set of vertices that it owns and doublethe parent links for each vertex. The processors synchronize and repeat this process a speci�ednumber of times. Since the processors synchronize at the end of each pointer doubling operation,the depth of the trees decrease by a factor of two for every such operation. The other approachis to reverse the inner and outer loops. Each processor picks a vertex it owns and follows itsparent links for some speci�ed number of times before it picks the next vertex it owns. There isno synchronization in this approach, and each processor traverses its local list of nodes only once,so the cost of each iteration is lower. However, there are no guarantees that the depth of the treedecreases exponentially. We implemented both of these schemes, and studied their performance.Surprisingly, there was little di�erence between the running times of the two approaches. The extraoverhead of synchronizing and traversing the local lists multiple times compensates for the bene�tsobtained from ensuring that the size of the tree decreases by a factor of two every iteration.4.7 Aggressive Pointer DoublingWe also studied the e�ect of varying the number of pointer doublings between two successivehooking phases. The optimal number varied from 3 to 7, depending on the structure of the graph.We then decided to do what we call maximal pointer doubling. The idea is to reduce trees to starsby running the pointer doubling operation as many times as necessary for every iteration of theglobal phase. The resulting execution times were slightly worse, but now the global phase left onlystars and no general trees, which enabled other optimizations. After eliminating the phase in whichtrees are marked as stars, and also eliminating certain conditionals in our code that checked forstars, the resulting program ran faster than the program that did an optimal number of pointerdoublings.

October 3, 1994 { 12 : 43 DRAFT 85 Performance MeasurementsWe made a number of measurements of the optimized algorithm running on a 32 processor CM5.5.1 Graph ConstructionBefore we begin to discuss the actual measurements, we shall spend some time discussing the typesof graphs used. We drew four of the �ve types of graphs used directly from Greiner [3], but the �fthtype given in that work we found to be fairly pointless (the graphs have one connected componentwith high probability), and instead used a modi�ed form of the graph.The �rst two graphs are built on a two dimensional toroidal mesh. Each edge in the mesh ispresent with some �xed probability, either 40% or 60% in our measurements. Since one expects agraph with average degree below 2 to be fairly disconnected and a graph with average degree above2 to be fairly connected, these two percentages outline the boundary region for the two dimensionalgrid. We shall call these graphs 2D40 and 2D60, following the notation given by Greiner. Bothgraphs are best divided among the processors by using the underlying mesh, splitting the meshinto equal chunks, and placing one chunk on each processor.The second two graphs are built in the same fashion on a three dimensional toroidal mesh.The boundary between fairly connected and fairly disconnected graphs falls at 33% in the threedimensional case, so our measurements use edge presence probabilities of 20% and 40%. Thesegraphs will be known as 3D20 and 3D40. The underlying mesh again provides the best method ofpartitioning the graph among processors.The last graph is a derivative of the Tertiary graph given in Greiner. In the Tertiary graph, eachnode picks three neighbors at random using a uniform distribution across all nodes. The averagedegree of the graph is therefore 6, and the minimum degree is 3 (counting self-loops). If one thinksabout the probability that some subset of nodes will be isolated from the rest of the nodes, onequickly sees that the probability of more than one connected component is quite low. This typeof graph did not interest us, since it is better solved by simpler search and mark methods. Wetherefore changed the de�nition to create graphs of average degree 3, denoted AD3, by having eachnode select between 0 and 3 neighbors from a uniform distribution. This results in a less connectedgraph, with about 95,000 components in a typical 1,600,000 node graph.Unfortunately, because of the high probability in the AD3 graph that any edge will be remote(P�1P , where P is the number of processors), it is very hard to solve these graphs e�ciently on adistributed memory machine. This will be apparent in the results.

October 3, 1994 { 12 : 43 DRAFT 9Graph Nodes Edges Average Time (sec) Stan. Dev. (sec) SD/Avg.2D40 2,000,000 1,600,000 1.13 0.064 5.69%2D60 2,000,000 2,400,000 1.63 0.12 7.59%3D20 4,000,000 2,400,000 2.59 0.14 5.52%3D40 4,000,000 4,800,000 4.83 0.97 20.1%AD3 1,600,000 2,400,000 9.29 2.8 30.3%Table 1: Variation in Execution TimeSize Nodes Time (sec) Per Node (usec)18x18x18 5,832 0.1451 24.8819x19x19 6,859 0.1711 24.9520x20x20 8,000 0.1960 24.5021x21x21 9,261 0.2319 25.0422x22x22 10,648 0.2559 24.0323x23x23 12,167 0.2900 23.8324x24x24 13,824 0.3308 23.93Table 2: Variation in Time per Node as a Function of Graph Size (on 32 Processors)5.2 Variation Between Graphs of a Single TypeExcept where noted, all of the measurements were averaged over several runs of the algorithm usingdistinct random seeds. Although timings also vary slightly because of non-deterministic behaviorof the algorithm, the variation between graphs in the same class is much more signi�cant.An unforeseen side e�ect of our random number generation led to one of the processors creatinga graph independent of the random seed. Although this practically irrelevant for large numbers ofprocessors, the e�ect of averaging is nulli�ed in the single processor data. We blame this problemin several cases for bumps in our data, where the runs with many processors found graphs on boththe high and low end of the execution time spectrum, but the single processor runs found only asingle graph.Table 1 gives the variation in execution time for large samples of all graph types running on32 processors. Twenty seeds were chosen at random and then fed into the algorithm for eachgraph type. The table shows the size of the graphs, the average time, and the standard deviationin seconds and as a percentage of the average. The variations tend to be larger for more stronglyconnected graphs, but also tend to rise around the boundary regions (where some graphs are mostlyconnected and others are mostly disconnected). The largest variations occur in the AD3 graphs,where the cost of remote references must be factored into the variation in number of references.5.3 Speedup and E�ciency

October 3, 1994 { 12 : 43 DRAFT 10
Speedup (normalized) for 256Knode Graph

Linear

2D40

2D60

3D20

3D40

AD3

Speedup

Processors

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00Figure 1: Speedup (problem size �xed at 256K nodes) for all graphs with processors varying from1 to 32

October 3, 1994 { 12 : 43 DRAFT 11
Efficiency (normalized) for 256Knode Graph

Linear

2D40

2D60

3D20

3D40

AD3

Efficiency

Processors
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00Figure 2: E�ciency (problem size �xed at 256K nodes) for all graphs with processors varying from1 to 32

October 3, 1994 { 12 : 43 DRAFT 12
Scaled Speedup

Linear

2D40 (62500*P)

2D60 (62500*P)

3D20 (125000*P)

3D40 (125000*P)

AD3 (50000*P)

Speedup

Processors

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00Figure 3: Scaled speedup (problem size per node �xed) for all graphs with processors varying from1 to 32

October 3, 1994 { 12 : 43 DRAFT 13
Scaled Efficiency

Linear

2D40 (62500*P)

2D60 (62500*P)

3D20 (125000*P)

3D40 (125000*P)

AD3 (50000*P)

Efficiency

Processors
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00Figure 4: Scaled e�ciency (problem size per node �xed) for all graphs with processors varying from1 to 32

October 3, 1994 { 12 : 43 DRAFT 14Before looking at the basic results of the algorithm, we must mention a few details of the measure-ment process. The graph creation section of the program allowed only for square sections and cubicsections on each processor for the 2D and 3D graphs, respectively. Since we wanted to compareexecution times for any power of 2 processors, we decided to investigate the cost of processing eachnode and decide if we could take a close value and simply scale it linearly. The data in Table 2 showthe results for 3D20 graphs. The cost does not vary more than about 4% over the range shown,and there is no clear trend, so we decided that scaling would be reasonable.Further note that the single processor runs against which speedup is measured include only thetime for the local phase of the algorithm. Although the global phase takes a signi�cant amount oftime even when using only one processor, that time is not relevant to the sequential execution timeof the program.Without further delay, we can examine the speedup for a �xed problem size (262,144 nodes)show in Figure 1. Ignoring AD3 for the moment, we see that the speedups are roughly linear afterdiscounting the overhead in moving from one processor to two. The exception is 3D40, for whichthe chunk owned by each processor has become small enough that the fraction of remote edgesrises signi�cantly and brings down the speedup. AD3 never regains a speedup of 1, but seems tobe headed in that direction, arriving by extrapolation with around 64 processors.Figure 2 shows the e�ciency for the same data set. Again, we see that 2D40, 2D60, and 3D20fall rapidly to a fairly level plateau, while 3D40 continues to decrease. AD3 falls precipitously from1 processor to 4, then levels out.A second de�nition of speedup is for a problem proportional to the number of processors. InFigure 3, we see the results for the graphs using this de�nition and varying numbers of nodes perprocessor (dependent upon graph type). They follow the same pattern as did the previous set, withslightly better values.Finally, in Figure 4, we see the scaled e�ciency for the algorithm on all graph types. Theplateaus in this case are
atter because the fraction of remote edges remains roughly constantacross the graph (with the exception of 1 processor).5.4 Results by Graph TypeAnother interesting feature we have explored is how the connectivity of the graph a�ects theexecution time and e�ciency of the algorithm. In the 2D and 3D graphs, connectivity can beparametrized by the edge presence fraction. In Figure 5, we see the execution time varying as edgepresence varies. The 2D graph runs had 264,992 nodes, but were scaled linearly down to 256K.The 3D graphs had 296,352 nodes and were scaled similarly.

October 3, 1994 { 12 : 43 DRAFT 15
Execution Time for 2D and 3D Graphs by Percent of Edge Presence

2D (256K nodes)

3D (256K nodes)

Time (seconds)

Percent Present

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

0.00 20.00 40.00 60.00 80.00 100.00Figure 5: Execution time as a function of graph connectivity
Speedup for 2D and 3D Graphs by Percent of Edge Presence

linear

2D (normalized)

3D (normalized)

Speedup

Percent Present

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

0.00 20.00 40.00 60.00 80.00 100.00Figure 6: Speedup as a function of graph connectivity

October 3, 1994 { 12 : 43 DRAFT 16
Running Time for Different Graph Sizes

Linear

2D: 40%

2D: 60%

3D: 20%

3D: 40%

AD3

Time (seconds)

Number of Nodes
5

1e-02

2

5

1e-01

2

5

1e+00

2

5

1e+01

2

5

1e+02

3 1e+04 3 1e+05 3 1e+06 3Figure 7: Execution time as a function of graph sizeBoth types of graphs exhibit a sharp increase in execution time near the boundary region wheregraphs change from mostly disconnected to mostly connected. They both peak around 85% edgepresence and then fall o� as more edges are added (probably duplicates). As expected, the graphstake nearly identical times when no edges are present.Figure 6 shows the speedup attained by the algorithm across the range of graph connectivity forthe 2D and 3D graphs. Again, the graphs have been normalized linearly to allow direct comparisonwith the 256K node graphs run on a single processor. We blame the random seed problem for thesmall but sharp
uctuations in the graphs. From the graphs we can see that speedup rises slowlyup to the boundary region in each graph, where it begins a plateau until the edge percent growsquite high. At some point, the ability to spread the local work across the processors overcomesthe diminishing cost of duplicate remote edges, and the speedup rises sharply at around 90 to 95%edge presence. Since a single processor could not �t a 3D, 256K node graph with more than 80%of the edges present, the higher values were obtained using a smaller graph (108K nodes).5.5 Results by Graph Size

October 3, 1994 { 12 : 43 DRAFT 17
Speedup for Different Graph Sizes

2D:40

2D:60

3D:20

Speedup

3Number of Nodes x 10
5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

19.00

20.00

21.00

0.00 50.00 100.00 150.00 200.00 250.00Figure 8: Speedup as a function of graph sizeWe now examine the characteristics of the algorithm as the problem size varies. In Figure 7, we�nd the execution time for each graph type as the number of nodes runs from 3,000 up to 2,000,000.The time for the AD3 graphs is roughly linear and about an order of magnitude larger thanany of the other graphs. The linear time is expected, since remote references dominate the cost ofthe algorithm, and the number of remote edges is proportional to the number of nodes in the AD3graph.The 2D and 3D graphs have a slope slightly below the linear slope, again as we expect. Thefraction of remote edges decreases in each case as the number of nodes increases (the surface-to-volume ratio of the section of the graph owned by a processor increases with the number of nodesowned by that processor).The speedup for the 2D graphs and 3D20 as we vary the number of nodes is shown in Figure 8.Unfortunately, the remaining time proved insu�cient to gather the remaining data for this aspectof the algorithm. As expected, the speedup for very small graphs is quite low, but grows rapidlyto a slowly increasing plateau for all of the graph types. The kinks and bends can be attributed tothe problem with the random seed during single processor runs.

October 3, 1994 { 12 : 43 DRAFT 18
Percentage of Edges Remaining After Iterations

2D40 (2M)

2D60 (2M)

3D20 (4M)

3D40 (4M)

AD3 (1.6M)

Percentage Remaining

Iteration

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

0.00 1.00 2.00 3.00 4.00Figure 9: Edges remaining after each iteration (0 corresponds to completion of the local phase)Iteration Components Percent of Final Value0 1,525,032 1602%1 252,240 265%2 100,671 106%3 95,191 100%4 95,190 100%Table 3: Number of Components after Each Iteration on an AD3 Graph5.6 Convergence and Load ImbalanceMost runs of the algorithm converged in about 2 or 3 iterations for the 2D and 3D graphs. AD3graphs took a few more iterations, averaging about 3 or 4. In Figure 9, we see the number ofremote edges remaining after each iteration normalized by the number of remote edges existingimmediately after the local phase (iteration 0). The rate at which edges are removed depends onthe degree of graph connectivity: the mostly unconnected graphs, 2D40 and 3D20, lose over 95% oftheir edges in the �rst iteration; the mostly connected graphs, 2D60 and 3D40, lose between 75%and 90% of their edges in the �rst iteration; and the most strongly connected graph, AD3, losesjust over half of its edges in the �rst iteration, retaining nearly 40% after the second as well.For all but AD3, the number of components after completion of the local phase is within 10% of

October 3, 1994 { 12 : 43 DRAFT 19Graph Nodes Iteration Components Unhooked Percentage2D40 2,000,000 1 472,538 425 0.090%2D60 2,000,000 1 70,141 157 0.22%3D20 4,000,000 1 1,673,284 1,915 0.11%3D20 4,000,000 2 1,627,463 15 0.00092%3D40 4,000,000 1 251,734 823 0.33%3D40 4,000,000 2 228,101 2 0.00088%AD3 1,600,000 1 1,525,032 47,560 3.1%AD3 1,600,000 2 252,240 6,624 2.6%AD3 1,600,000 3 100,671 25 0.025%Table 4: Fraction of Components Left Stagnant after an Iterationthe �nal number, and decreases rapidly in the �rst two iterations. For AD3 (with 1,600,000 nodes),the data appears in Table 3.One of the biggest problems with most graph algorithms on distributed memory machineslies in managing to partition the graph across processors in such a way that each processor hasan approximately equal amount of work at each stage. For the 2D and 3D graphs, the naturalpartitioning provided by the underlying mesh performs quite well, keeping the variance acrossprocessors small except during the very last iteration (for which the time spent is much smalleranyway).For AD3 graphs, however, there is no underlying topology, but the random nature of thegraph helps to create a fair load balance. Unfortunately, the methods used for hooking in thisalgorithm tend to cause load imbalance fairly early in the AD3 processing, with a factors as highas 2.25 between some processors and the average arising while a signi�cant fraction of edges andcomponents remain. We plan to further optimize the solution of this type of graph as time permits.5.7 Usefulness of Unconditional HookingBefore moving on to compare our results with previous work, we will delve brie
y into an investi-gation of whether or not unconditional hooking is worthwhile.Table 4 shows the results for a large run of each graph type. The fraction of componentsleft stagnant|those with edges remaining which are neither attached to another component norbecome the parent of another component|during an iteration never amounts to even one percentwith the 2D and 3D graphs, but can be quite large in AD3 graphs. Regardless, not identifyingand hooking these stagnant components can lead to an increased number of iterations, thus costingmore time in the end. We agree that unconditional hooking is worthwhile on our random graphs.

October 3, 1994 { 12 : 43 DRAFT 206 Comparison with Earlier WorkThough a lot of research has been done in proposing theoretically optimal algorithms for �ndingconnected components of a graph, not much work has been done in implementing these algorithmse�ciently on parallel machines. Greiner[3] implemented the connected components algorithm onthe Cray C-90 and on the Connection Machine 2. However, the C-90 is a shared bus multiprocessorsystem, and the CM2 is a SIMD machine. These machines are easier to program than distributedmemory MIMD machines, which are however more scalable. Therefore, our work on implementingthe connected components algorithm on the CM5 exposes a new set of concerns and optimizationsthat were non-issues on the C-90 and the CM2.By introducing the optimizations described in Section 4, we have an highly e�cient implemen-tation of the connected components algorithm. For some of the graphs that we studied (2D graphswith 40%), the execution time of our implementation is comparable to the results obtained byGreiner on the C-90. This is highly encouraging considering that our results were obtained on a32-node CM5 without vector units, which is a much cheaper machine.7 ConclusionsWe have implemented the connected components algorithms on a distributed memory machine.We used a hybrid algorithm that combines the important aspects of the sequential and the PRAMalgorithms. By using the Split-C language, which exposes the underlying machine to the program-mer, we were able to enhance the performance of our implementation by treating local and globalsubgraphs separately, by paying attention to locality, and by tolerating remote memory access la-tencies. The resulting implementation is very e�cient and obtains speedups in the order of 20 on32 processor machines.References[1] B. Awerbuch, Y. Shiloach, \New connectivity and MSF algorithms for Ultracomputer andPRAM," International Conference on Parallel Processing, 1983, pp. 175-179.[2] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken,K. Yelick, \Parallel Programming in Split-C," Proceedings of Supercomputing '93, Portland,Oregon, November 1993, pp. 262-273.

October 3, 1994 { 12 : 43 DRAFT 21[3] J. Greiner, \A Comparison of Parallel Algorithms for Connected Components," to appear inthe Symposium on Parallel Algorithms and Architectures 1994.[4] S. Lumetta, \A Debugger for the Split-C Language," available from author.[5] Y. Shiloach, U. Vishkin, \An O(log n) Parallel Connectivity Algorithm," Journal of Algorithms,No. 3, 1982, pp. 57-67.[6] T. von Eicken, D. E. Culler, S. C. Goldstein, K. E. Schauser, \Active Messages: a Mechanismfor Integrated Communication and Computation," Proceedings of the International Symposiumon Computer Architecture, 1992[7] Thinking Machines Corporation, \CMMD Reference Manual," Version 3.0, May 1993.

