
Optimization of Sparse Matrix Kernels

for Data Mining

Eun-Jin Im and Katherine Yelick
Computer Science Division

University of California, Berkeley

ejim@cs.Berkeley.EDU, yelick@cs.Berkeley.EDU
Tel: (510)642-1266
Fax: (510)642-5775

Abstract Number: 193

Optimization of Sparse Matrix Kernels for Data
Mining

Eun-Jin Im and Katherine Yelick
Computer Science Division

University of California, Berkeley

Abstract

Many data mining algorithms rely on eigenvalue computations or it-
erative linear solvers in which the running time is dominated by sparse
matrix-vector products. Sparse matrix-vector multiplication on mod-
ern machines often runs one to two orders of magnitude slower than
peak hardware performance, and because of their lack of structure,
the worst performance is often observed for matrices from text re-
trieval and other data mining applications. In this paper we explore
a set of memory hierarchy optimizations for sparse matrix-vector mul-
tiplication, concentrating on matrices that arises in text and image
retrieval. We also consider algorithms that multiply the sparse ma-
trix by a set of vectors, and show that reorganizing the code to take
advantage of multiple vectors can significantly speed up the running
time. These optimization are supported by a code generation and op-
timization system called Sparsity, which automatically tunes sparse
matrix-vector multiplication for a given matrix structure and machine.

1 Introduction

Many data mining algorithms rely on eigenvalue computations or iterative
linear solvers in which the running time is dominated by sparse matrix-
vector products. Sparse matrix operations are slower than their dense matrix
counterparts due to irregular memory access patterns and to indirection
overhead in the sparse data structure. As a result, sparse matrix-vector
multiplication often runs one to two orders of magnitude below the peak
hardware performance. Sparse matrix performance strongly depends on
the nonzero structure of the matrix, with the worst performance often seen
from data mining matrices. We expect this gap between hardware peak and

1

sparse matrix performance to worsen as the relative speed of processors and
memory continues to diverge and the size of data sets to be mined increases.

We have developed a system called Sparsity to automatically generate
an optimized sparse matrix-vector multiplication routine for a given matrix
structure and machine [Im00]. The optimization include register level block-
ing, cache blocking, and blocking across multiple vectors when they exist in
the higher level algorithm. The absolute performance as well as the rela-
tive speedup each optimization is highly dependent on the matrix structure,
which in turn depends on the application domain. Matrices from physical
simulation often contain small dense subblocks or dense bands that can be
used to improve performance. For these matrices, we have shown that reg-
ister blocking is the most effective optimization method. In contrast, the
matrices that arise in data mining applications are quite irregular, and are
instead closer to a random pattern.

In this paper we explore memory hierarchy optimizations for sparse
matrix-vector multiplication on data mining matrices. We will concentrate
on matrices that have been used in text retrieval and face recognition for
algorithms like Latent Semantic Indexing [BDO95], Concept Decomposi-
tion [DM99], and Eigenface Approximation [Li98, Li99]. In particular, we
will show how cache level blocking can be used to significantly improve the
performance of matrices from web document retrieval and face recognition,
while register level blocking, which is highly effective in matrices from phys-
ical modeling, proves to be relatively ineffective. Some of these algorithms
can be organized to multiply the sparse matrix by a set of vectors, and
we will show that reorganizing the code to take advantage of multiple vec-
tors can also significantly improve the running time. These optimization
are supported by Sparsity, which performs automatic optimization selection
and code generation based on a given matrix structure and machine.

The rest of this paper is organized as follows. In section 2, we show three
examples of data mining applications that use sparse matrix-vector multi-
plication and we describe two of Sparsity’s memory hierarchy optimizations
techniques in section 3. These optimizations were selected because they
prove most effective on data mining matrices. Then we show the perfor-
mance improvement on those applications on the UltraSPARC II, Alpha
21164, MIPS R10000 and Pentium III in section 4 and conclude in section 5.

2

Collection Applied Dimension Nonzeros Density Avg. # of
Algorithm NZs per row

Web Document LSI 10000x255943 3.7M 0.15 % 371
NSF Abstracts CD 94481x 6366 7.0M 1.16 % 74
Face Images EA 36000x 2640 5.6M 5.86 % 155

Figure 1: Sparse Matrices in Data Mining Applications

2 Data Mining Algorithms Using Sparse Matrix
Computations

We first introduce three examples of data mining algorithms in which sparse
matrix-vector multiplication is used: Latent Semantic Indexing, Concept
Decomposition and Eigenface Approximation. The first two are used for
text clustering and retrieval and the third is used for face recognition in
images. In section 4, we use three matrices, one associated with each of
the three algorithms, for measuring the effectiveness of our optimization
techniques; the characteristics of those matrices are summarized in figure
1. It should be noted that these algorithms and matrices are chosen to
be representative of the kinds of problems that use sparse matrix-vector
multiplication for data mining of text and images. Many other algorithms
and data sets exist for data mining, and it is not our intent to compare the
algorithms for quality in this paper.

2.1 Text Retrieval

Document retrieved may be done by literally matching terms in documents
with those of a query. This direct matching may be inaccurate, though,
since there are usually many ways to express a given concept that the literal
terms in a user’s query may not match those of a relevant document. Two
examples of algorithms that address this problems are Latent Semantic In-
dexing [BDO95] and concept decomposition. They address the problems of
lexical matching by using statistically derived conceptual indices instead of
individual words for retrieval.

In LSI, a term-by-document matrix is projected to a smaller dimen-
sional space using by computing the truncated singular value decomposition
SVD [GVL96] of the matrix, and retrieval is performed by projecting the
query onto the same space. According to the literature [BDO95], the bulk of
LSI processing time is spent in computing the truncated SVD of the sparse

3

term-by-document matrix, in which the kernel is a sparse matrix-vector mul-
tiplication. In a blocked version of the SVD computation, a sparse matrix
is multiplied by a number of vectors [BCD+00].

Dhillon and Modka introduced a related idea of concept decomposition
for document clustering [DM99]. Concept decomposition is a matrix ap-
proximation scheme that solves a least-squares problem. It is comparable to
LSI, but has advantages over the truncated SVD in both memory and time.
To calculate concept decomposition, sparse matrix-vector multiplication is
also used, and in this case the multiplication is often performed on multiple
vectors in the range of 5 to 100.

We have collected two term-by-document matrices for demonstration of
our optimization techniques. The first is a was collected from documents on
the web by Inktomi, Inc. The entire matrix (collected a few years ago) is
100K×2560K which does not fit in memory of a single processor. Since our
interest in this paper is on uniprocessor performance, we use the first 10%
of the rows and 10% of the columns and refer to this as a web document
matrix. It is a 10K × 256K sparse matrix with 3,712,489 nonzeros. The
second matrix contains NSF award abstracts since 1990. This is an extended
collection of the NSF matrix used in [DM99] and is a 94481 × 6366 sparse
matrix with 6,979,420 nonzeros.

2.2 Eigenface Approximation (EA)

Eigenvector analysis is widely used for image processing, pattern match-
ing and machine vision. When it is used for face recognition, the algo-
rithm is referred as an “eigenface” computation. Li [Li98, Li99] proposed
a multi-resolution algorithm for calculating primary eigenvectors of a large
set of high resolution images. The algorithm systematically coarsens im-
ages to create a multi-resolution hierarchy of the image set and computes
co-eigenvectors for the coarsest images; it works its way up, and finally re-
covers primary eigenvectors for the original images from their approximate
co-eigenvectors. The algorithm gains substantial speedups over the more
common SVD approach. The original matrix is a dense pixel-by-image ma-
trix, in which each image is linearized to form a column of the matrix.
However, the algorithm is combined with wavelet compression techniques
to further speedup the eigenvector computation, and in the process, some
values in the matrix that are below a given threshold are discarded. The
resulting matrix is sparse, and the algorithm multiplies this sparse matrix
times a set of vectors.

From the code and 2640 face images with resolution 200 × 180 we got

4

from Ren-Cang Li, we have generated a face image matrix whose size is
36000 × 2640 and with 5,569,643 nonzeros. Unlike the other two matrices
from text retrieval, the face image matrix shows a strong distribution pattern
where the top rows are denser and bottom rows are sparser. This is because
the higher resolution images are represented by the top rows and the lower
resolution images are represented by bottom rows. Like the text retrieval
matrices, the image matrix is devoid of dense sublocks or bands.

3 Optimization Methods

The optimization techniques used by the Sparsity system include register
blocking, cache blocking, and blocking across multiple vectors. Register
blocking is effective when the matrices contain a large number of small dense
subblocks, which is not the case for any of the data mining matrices in this
study. In this paper we describe the two optimizations that are effective,
cache blocking and blocking across multiple vectors.

3.1 Cache Blocking Optimization

We first describe an optimization technique for improving cache utilization.
The cost of accessing main memory on modern microprocessors is in the
tens to hundreds of cycles, so minimizing cache misses can be critical to
high performance. The basic idea is to reorganize the matrix data struc-
ture and associated computation to improve the reuse of data in the source
vector, without destroying the locality in the destination vector. In cache
blocking, the set of values in the cache is not under complete control of
the software; hardware controls the selection of data values in each level
of cache according to its policies on replacement, associativity, and write
strategy [HP96]. Because the caches can hold thousands of values, we rear-
range the computation so that a block of values in the matrix are accessed
near each other in time, but retain the sparse structure of the matrix. (In
contrast, register blocking avoids some of the indexing and loop overhead
by filling in dense subblocks to make them uniform, but this is not practical
for cache blocking.)

The only potential reuse of data within a matrix-vector computation is
between the source and destination vectors – each matrix entry is used only
once. For the purpose of this discussion, we assume the matrix is organized
by rows, although a similar optimization could be done for a column-based
layout. An obvious matrix-vector computation for a row-based layout is to
reuse the destination vector across every element of the row (possibly leaving

5

R

Ccache

cache

Figure 2: Cache-blocks in a sparse matrix: The gray areas are sparse
matrix blocks that contain nonzero elements in the rcache × ccache rectangle.
The white areas contain no nonzero elements, and are not stored.

it in a register) while one picks up the source elements on demand. For a
large matrix, especially one with many columns, it is likely that the source
element will not be in cache when it is needed.

The idea of cache blocking optimization is to keep ccache elements of the
source vector x in the cache along with rcache elements of the destination
vector y while an rcache × ccache block of matrix A is multiplied by this
portion of the vector x. The entries of A need not be saved in the cache,
but because this decision is under hardware control, interference between
elements of the matrix and the two vectors can be a problem.

One of the difficulties with cache blocking for such an irregular prob-
lem is determining the block sizes, rcache and ccache. To simplify the code
generation problem and to limit the range of experiments, we start with the
assumption that cache blocks within a single matrix should have a fixed size.
In other words, rcache and ccache are fixed for a particular matrix and ma-
chine. This means that the logical block size is fixed, although the amount
of data and computation may not be uniform across the blocks, since the
number of nonzeros in each block may vary. Figure 2 shows a matrix with
fixed size cache blocks. Note that the blocks need not begin at the same
offsets in each row.

We considered two strategies for cache blocking: The first implemen-
tation, referred to as static cache blocking, involves a preprocessing step to
reorganize the matrix so that each block is stored contiguously in main mem-
ory. In the second implementation, referred to as dynamic cache blocking,
does not involve any data structure reorganization, but changes the order
of computation by retaining a set of pointers into each row of the current
logical block. Although dynamic cache blocking avoids any preprocessing

6

AA
AAA00

AAAA
A

AAAA
A00

AAAA
AAAA

0 0
0 0 0
0
0

0

0 0
0

0
0 0 0

0
0
0

0 0
0
0
0

0

0

0
0

0 0
00

0 0
0 0

0

A

0603

14 17

21

0
22 25 26

30 34

42 43 46 47
A51 54

61 62 65 67

72 73 74 75

00

A A A A A A A00

0

value

col_idx

03 21 22 30

00 3 1 2 6

06

4

14

=
block_ptr

row_start

0 52 2 4 6 11 19 24... ...

8 16

Figure 3: Storage format of a cache-blocked sparse matrix: In cache
blocking, each block is stored in sparse format, similarly to CSR, using data
structures block ptr, col idx and value. This example matrix has 4, 4 × 4
blocks. The row start array points to the beginning of each row of blocks,
while the block ptr array keeps pointers to the beginnings of individual rows
inside those blocks.

overhead, it incurs significantly more runtime overhead than static cache
blocking [Im00], so use static cache blocking. The practical implication of
this decision is that the matrix storage should be used either throughout an
entire application or at least during a iterative solver to amortize the cost
of reorganization.

In static cache blocking, the sparse matrix is reorganized by changing the
order of the column index array and nonzero elements of the sparse matrix,
and augmenting another array of indices which points to the beginning of
each block. Before reorganization, nonzero elements of each row are stored
sequentially in memory. When the matrix is reorganized for cache blocking,
the rows of the matrix are broken into groups of rcache rows. Within each
group of rows, starting from the column with the nonzero element whose
column index is the smallest, any nonzeros that appear in ccache columns are
grouped in one rectangular area, which is stored similarly to the compressed
sparse row (CSR) format.

The data structures used in a cache-blocked matrix are shown in figure
3. The top level array is called row start and it points to the beginning
of each row of blocks. In the figure, there are two rows of blocks, so the
row start matrix has three entries, the last pointing past the end of the
block ptr array. The block ptr array points to the beginning of each row
within a block, and the col idx and value arrays store the column indices
and values of each nonzero element. The main difference between this and
the CSR format is the extra level of indirection for the blocks.

During multiplication, the nonzero elements are accessed in the order in

7

which they are stored in memory, which is important for preserving spatial
locality in the matrix. Referring back to figure 2, this means that while
processing one gray block, the indices and values in the matrix are accessed
in storage order, and the portions of the x and y vectors that correspond to
that block are accessed repeatedly. The sub-arrays of x and y will sit in the
cache during processing, as long as they both fit and there is no interference
between the two sub-arrays and the matrix entries.

3.2 Optimization for Multiplication by Multiple Vectors

To improve the performance of sparse matrix operations, one can also take
advantage of the fact that there are often multiple vectors being multi-
plied. All of the data mining algorithms in this paper multiply the sparse
matrix times a set of vectors. In scientific computing, it also occurs in prac-
tice when there are multiple right-hand sides in an iterative solver, or in
blocked eigenvalue algorithms, such as block Lanczos [GU77, GLS94, Mar95]
or block Arnoldi [Sad93, LM97]. Another application is image segmentation
in videos, where a set of vectors is used as the starting guess for a subsequent
frame in the video [SM98].

The use of multiple vectors in these problems essentially turns the kernel
into a matrix-matrix multiplication in which the second matrix is small, but
dense. This admits much more potential for memory hierarchy optimizations
than the single vector case, since it increases the number of floating point
operations per matrix element. Matrix-vector multiplication accesses each
matrix element only once, whereas a matrix times a set of k vectors will
access each matrix element k times.

While there is much more potential for high performance with multiple
vectors, the advantage will not be exhibited in straightforward implemen-
tations that organize the computation as single matrix-vector multiplies.
We therefore change the multiplication code to access elements across the
vectors, allowing the matrix elements to be reused.

Our code generator, developed for the Sparsity system, produces code
specifically for register-blocked multiplication for a fixed set of vectors. The
number of vectors is fixed at code generation time and all of the loops fully
unrolled across the vectors. The code generator creates the inner kernels of
a larger computation; if the number of vectors is very large, the loop over
the vectors would be strip-mined, with the resulting inner loop becoming
one of these unrolled loops.

8

Processor Clock L2 cache DGEMV DGEMM
(MHz) size (MFLOPS) (MFLOPS)

MIPS R10000 200 2 MB 67 322
UltraSPARC II 250 1 MB 100 401
Pentium III 450 512 KB 87 328
Alpha 21164 533 96 KB 83 550

Figure 4: Summary of Machines

4 Performance Improvement of Sparse Matrix-Vector
Multiplication on Matrices from Data Mining
Applications

We have applied the two optimizations, cache blocking and blocking across
multiple vectors, to the three sparse matrices described in section 2. We
also applied a third optimization which is the combination of the first two.
Our experiments are run on four modern microprocessors, a 200 MHz MIPS
R10000, a 250MHz SUN UltraSPARC II,a 450MHz Intel Pentium III, and a
533 MHz Compaq Alpha 21164. The machines are summarized in figure 4.
It shows processors’ clock speed and L2 cache size along with performance of
optimized dense BLAS routines for comparison. The BLAS routines in the
table are dense matrix-vector multiplication (DGEMV) and dense matrix-
matrix multiplication (DGEMM), both for double-precision floating point
numbers. They are measured for dense 1000 × 1000 matrices. We have
used vendor-supplied hand-optimized BLAS libraries (SCSL and Sun Per-
formance libraries) for the R10000 and UltraSPARC, we have used auto-
matically tuned BLAS routines for the Pentium III and Alpha 21164, based
on the ATLAS BLAS-generation system [WD]. The DGEMV is an upper
bound on the expected performance for sparse matrix-vector multiplication,
while DGEMM is an upper bound for the multiple vector case.

Figures 6 – 8 show the performance of sparse matrix-vector multiplica-
tion on the web document matrix, the NSF abstract matrix, and the face
recognition matrix. Each group of bars shows the performance of one ma-
chine, which are ordered from left to right as: R10000, UltraSPARC II,
Pentium III and Alpha 21164. In each group, the leftmost bar shows the
raw performance before optimization, and next two bars show the perfor-
mance after cache blocking and with multiple vectors, respectively. The
last bar shows the performance of combined optimizations. The speedups
of combined optimizations are summarized in figure 5. Overall, the speedup

9

Matrix MIPS R10000 UltraSPARC II Pentium III Alpha 21164
Web Document 3.8 5.9 2.0 2.7
NSF Abstract 2.9 1.3 1.6 1.3
Face Images 4.7 5.1 2.6 4.5

Figure 5: Speedup of Sparse Matrix-Vector Multiplication

 R10000 UltraSPARC Pentium III Alpha 21164
0

10

20

30

40

50

60

70
Web Document Matrix

M
FL

O
PS

raw performance
cache blocking
multiple vector
cache+multi.

Figure 6: Performance of Sparse Matrix Vector Multiplication on
the Web Document Matrix

is in the range of 1.3 – 5.9.
Note that the vertical scales of three graphs are different, the perfor-

mance on a web document matrix being smallest, and the performance on a
face recognition matrix being largest. From figure 1, we can see the density
of those matrices are in the same order; the density of the web document
matrix is smallest (0.15 %) and face recognition is largest (5.86 %). As the
matrix becomes denser, there is more spatial/temporal locality of access in
the operation, so even the raw performance is better on denser matrices.

The second observation is that cache blocking improves the performance
on web document matrix, but does not exhibit noticeable speedup for the
NSF abstract matrix and the face recognition matrix. This is clearly due
to the matrix size, and in particular, the number of columns in the matrix.
The web document matrix has almost 100x more columns than the other

10

 R10000 UltraSPARC Pentium III Alpha 21164
0

10

20

30

40

50

60

70

80

90

100
NSF Abstract Matrix

M
FL

O
PS

raw performance
cache blocking
multiple vector
cache+multi.

Figure 7: Performance of Sparse Matrix Vector Multiplication on
the NSF Abstract Matrix

 R10000 UltraSPARC Pentium III Alpha 21164
0

50

100

150

200

250
Face Recognition Matrix

M
FL

O
PS

raw performance
cache blocking
multiple vector
cache+multi.

Figure 8: Performance of Sparse Matrix Vector Multiplication on
the Face Recognition Matrix

11

Processor L2 cache Block Size Block Size
size for Single Vector for 10 vectors

MIPS R10000 2 MB 10000x 65536 10000x 4096
UltraSPARC II 1 MB 10000x 32768 10000x 2048
Pentium III 512 KB 10000x 16384 10000x 4096
Alpha 21164 96 KB 10000x 4096 10000x 2048

Figure 9: Chosen Cache Block Sizes for Web Document Matrix

two matrices, and combined with its low density, the likelihood that a source
vector element will be in cache when it is needed is very low. Although these
matrices are somewhat constrained in size, the importance of cache blocking
is likely to increase when mining larger datasets. The number of rows in
these matrices, which represents the number of keywords or pixels, is not
likely to increase with the data set, but the number of columns, which is the
number of documents or images, is very likely to grow.

The cache block sizes are chosen automatically by the Sparsity system
after measuring the performance for block sizes between 32×32 and 128K×
128K that are powers of two. Figure 9 shows the cache block sizes chosen
for each matrix on each machine. Sparsity selects block sizes for which the
number of rows in the cache blocks are larger than 10000, but since that is
the total number of rows in the matrix, it is recorded as 10000 in the table.
The L2 cache sizes are shown together in the graph, and we can see the
relation between the size of cache and the number of columns in the cache
block. It is roughly shown by the following expression.

Number of columns in cache block = Size of cache/(4 ∗ sizeof(double))

The constant 4 may not be the exact number because we have not
searched the space of cache block size exhaustively in the range, but the
expression clearly shows that the width (the number of columns) of cache
block is limited by cache size. This matches the intuition that the aim of
cache blocking is to increase the reuse of source vector elements in the cache.

The table also shows the chosen cache block size for multiplication by 10
vectors with the loop-unrolled code for multiple vectors. The cache block
sizes are chosen in the same way as in the multiplication for the single vector.
The cache block sizes are smaller than that of single vector case, because
(number of columns in cache block) ∗ (number of vectors multiplied)
elements of the source vectors should be kept in cache while the computation

12

is performed.
A separate parameter from the cache block size is the amount of unrolling

across the vectors. We chose 10 total vectors for these experiments because
that is a reasonable number for the algorithms that use multiple vectors. The
multiplication code is unrolled 10 times for the MIPS R10000, UltraSPARC
II and Pentium III, but the same code is unrolled only 3 times for the Alpha
21164. The loop-unrolling factor is also chosen automatically by Sparsity
to optimize performance [Im00]. As discussed in section 3.2, the set of
vectors are strip-mined to be multiplied if the number of vectors are larger
than the loop-unrolling factor, as is the case on the Alpha. In the table, the
widths of cache blocks for single vector are 8 times smaller than the widths
of cache blocks for multiple vectors for those first three processors, and the
ratio is 2 for Alpha 21164 which was unrolled 3 times. The ratio could only
be the power of two’s since we have chosen the cache block size of power of
two’s. The ratios 8 and 2 are close approximations of 10 and 3 which are
loop-unrolling factors for each case.

For the other two matrices, NSF abstract matrix and face image ma-
trix, the cache blocking did not improve the performance because the width
of cache block sizes shown in figure 9 are not much larger than those ma-
trices. So we have chosen cache block sizes to be matrix sizes for those
two matrices. Using an unrolled loop for multiplication improved the per-
formance noticeably for those two matrices. However, the performance of
multiplication with multiple vectors did not speed up for the web document
matrix, because, as discussed earlier, the source vectors are so long that
elements are rarely in cache. We should note that the each of the vectors is
stored contiguously in memory, because that seems to reflect the most likely
application order; if, instead, the ith elements of all vectors were stored con-
tiguously, the multiple vector optimization by itself would probably be more
significant. In the current layout, the best performance for the web matrix
is obtained by combining both optimizations.

5 Conclusion

In this paper, we have introduced two optimization techniques for sparse
matrix-vector multiplication, cache blocking and blocking across multiple
vectors. These two optimizations are especially important for large data
mining matrices. Cache blocking is important when one of the dimensions
is very large, even if the other is significantly smaller. Optimizations like
register blocking were not discussed in detail, because while they are impor-

13

tant for certain scientific applications, they have little effect in data min-
ing [Im00].

These optimizations were applied using our Sparsity toolbox, which
automatically generates optimized sparse matrix-vector code. Sparsity
chooses parameters such as cache block size by searching over a set of pos-
sible candidates and measuring their performance. We demonstrated the
effectiveness of these optimizations for three example sparse matrices taken
from data mining applications. Cache blocking is particularly useful for a
sparse matrix with many columns. Unrolling across multiple vectors is ef-
fective as long as the number of columns is not too large, and if it is the
combination is very effective. We also identified the relationship between
the number of columns in cache block and size of cache. When the multipli-
cation is performed on a set of vectors, the number of columns in the cache
block decreased accordingly.

Overall, our approach produced speedups between 1.3 and 5.9 on the
three matrices when measured across 4 machines. We believe these opti-
mizations will be increasingly important as memory latency increases rela-
tive to clock rate and as the desired data set size increases. Because of the
complexity of modern memory hierarchies and the difficulty of reorganizing
sparse data structures and computation, we believe that the Sparsity ap-
proach of combining search with the kinds of analytical models derived for
cache block size are a key to helping end users obtain high performance.

6 Acknowledgement

We would like to thank Inderjit Dhillon for providing us an NSF abstract
matrix, Osni Marques for a web document matrix, and Ren-Cang Li for face
database and code for generating wavelet-transformed matrix. And we also
thank them for their insightful discussions.

References

[BCD+00] Z. Bai, T.-Z. Chen, D. Day, J. Dongarra, A. Edelman, T. Erics-
son, R. Freund, M. Gu, B. Kagstrom, A. Knyazev, T. Kowalski,
R. Lehoucq, R.-C. Li, R. Lippert, K. Maschoff, K. Meerbergen,
R. Morgan, A. Ruhe, Y. Saad, G. Sleijpen, D. Sorensen, and
H. Van der Vorst. Templates for the solution of algebraic eigen-
value problems: A practical guide. in preparation, 2000.

14

[BDO95] Michael W. Berry, Susan T. Dumais, and Gavin W. O’Brien.
Using linear algebra for intelligent information retrieval. SIAM
Review, 37(4):573–595, 1995.

[DM99] Inderjit S. Dhillon and Dharmendea S. Modha. Concept decom-
positions for large sparse text data using clustering. Technical
Report RJ 10147, IBM, July 1999. to appear in Machine Learn-
ing.

[GLS94] R. G. Grimes, J. G. Lewis, and H. D. Simon. A Shifted Block
Lanczos Algorithm for Solving Sparse Symmetric Eigenvalue
Problems. SIAM J. Matrix Anal. Appl., 15:228–272, 1994.

[GU77] G. H. Golub and R. Underwood. The Block Lanczos Method
for Computing Eigenvalues. In J. R. Rice, editor, Mathematical
Sotware III, pages 361–377. Academic Press, Inc., 1977.

[GVL96] G. Golub and C. Van Loan. Matrix Computations. Johns Hop-
kins University Press, Baltimore, MD, 3rd edition, 1996.

[HP96] John L. Hennesy and David A Patterson. Computer Architec-
ture: A Quantitative Approach. Morgan Kaufman, second edi-
tion, 1996.

[Im00] Eun-Jin Im. Optimizing the Performance of Sparse Matrix -
Vector Multiplication. PhD thesis, University of California at
Berkeley, May 2000.

[Li98] R.-C. Li. A multi-resolution approach for calculating primary
eigenvectors of a large set of images. Technical Report 98-13,
Department of Mathmatics, University of Kentucky, June 1998.

[Li99] R.-C. Li. Fast partial eigenvalue decomposition with wavelet
transformation for large images, July 1999.

[LM97] R. Lehoucq and K. Maschhoff. Implementation of an implicitly
restarted block Arnoldi method. Preprint MCS-P649-0297, Ar-
gonne National Lab, 1997.

[Mar95] Osni A. Marques. BLZPACK: Decsription and User’s guide.
Technical Report TR/PA/95/30, CERFACS, 1995.

[Sad93] M. Sadkane. A block Arnoldi-Chebyshev method for comput-
ing the leading eigenpairs of large sparse unsymmetric matrices.
Numer. Math., 64:181–193, 1993.

15

[SM98] Jianbo Shi and Jitendra Malik. Motion segmentation and track-
ing using normalized cuts. In International Conference on Com-
puter Vision, January 1998.

[WD] R. Clint Whaley and Jack Dongarra. Automatically tuned linear
algebra software (ATLAS). http://www.netlib.org/atlas.

16

