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Abstract—Linear operators used in iterative methods like
conjugate gradient have typically been implemented either as
“matrix-driven” subroutines backed by explicit sparse or dense
matrices, or as “matrix-free” subroutines that implement spe-
cific linear operations directly (e.g. FFTs). The matrix-driven
approach is generally more portable because it can target widely-
available BLAS libraries, but it can be inefficient in terms of time
and space complexity. In contrast, the matrix-free approach is
more performant because it leverages structure in operations,
but it requires each operator be re-implemented on each new
platform.

To increase performance and portability, we propose a hybrid
approach that represents linear operators as expression trees.
Leaf nodes in the tree are either matrix-free or matrix-driven op-
erators, and interior nodes represent mathematical compositions
(sums, products, transposes) or structural compositions (stacks,
block diagonals, etc.) of the leaf operators. This representation
enables expert-guided reordering and fusion transformations that
can improve performance or reduce memory pressure. We imple-
ment our approach in a domain-specific language called Indigo.
We assess Indigo on image reconstruction problems arising in
four application areas: magnetic resonance imaging, ptychogra-
phy, magnetic particle imaging, and fluorescent microscopy. We
give performance results from vendor BLAS libraries, and we
introduce specializations to Sparse BLAS routines that achieve
near-Roofline performance on multi-core, many-core, and GPU
systems.

I. INTRODUCTION

A number of linear inverse problems arising in computa-
tional imaging can be solved via iterative optimization meth-
ods. Central to these methods is the definition of a “forward
model” linear operator that represents how an intrinsic image
is transformed when observed by an imaging system. When
the forward operator is used in gradient-based methods such
as conjugate gradient, the intrinsic image can be reconstructed
from the acquired scan data. Evaluation of the forward opera-
tor is often the dominant cost in image reconstruction, so com-
putational performance is critical. At odds with the demand for
performance are concerns about extensibility—operators vary
across both imaging domains and problem instances from the
same domain—and portability—practitioners wish to run on a
variety of computational platforms such as multi-core CPUs
and GPUs. It remains a challenge to achieve both portability
and performance for linear operator implementations.

Operator implementations can be classified into two groups.
Early convex optimization frameworks used a “matrix stuffing”
approach that expressed linear transformations as explicit
sparse or dense matrices. This concrete representation is
general enough to express any linear transformation, but it is

suboptimal when operators admit fast algorithms. For example,
the Cooley-Tukey algorithm can compute an n-length FFT in
O(n) space and O(n log n) operations, versus O(n2) space
and O(n2) operations for a general matrix-vector product.
Later work sought to leverage fast algorithms like FFTs in
“matrix-free” implementations that implement linear transfor-
mations via fast subroutines. High-performance libraries for
common linear transformations are generally available, so it
is straightforward to obtain portable performance for single
instances of these operators.

To make the challenge more concrete, consider a magnetic
resonance imaging (MRI) reconstruction task in which we
wish to reconstruct a three-dimensional image representing the
density of protons in a volume. Given a forward operator A, a
vector of scan data y, and a candidate image vector x, we can
use conjugate gradient to solve the system AHAx = AHy for
x. Reconstruction time will be dominated by the evaluation
of the forward operator A, which can be broken down into
two steps. In the first step, the input image is weighted
according to a pre-determined spatial sensitivity map that
models signal attenuation. In the second step, the weighted
image undergoes a centered Fourier Transform implemented
as a transpose-like shift operation, a Fast Fourier Transform
(FFT), and a second shift. A matrix-driven implementation
would compute A as the product of a diagonal matrix S
for sensitivity weighting, a sparse matrix M for shifting,
and a dense FFT matrix F : A = MFMS. In contrast, a
matrix-free implementation would represent the operator as
the composition of subroutines: A(·) = (M◦F ◦M◦ S)(·).
Here, the F routine could be drawn from a standard FFT
library, but theM and S routines are less standard and would
have to be re-implemented on each platform.

Even with fast individual operators, end-to-end performance
remains elusive because forward operators typically comprise
multiple sub-operators arranged in some manner. Substantial
data reuse opportunities exist across operators, so it is insuffi-
cient to optimize them in isolation—we must consider operator
fusion. With matrix-free operators, automatic fusion might be
attainable via static analysis and code generation. However,
this approach is subject to the limitations of static analysis and
requires substantial machinery to implement. Furthermore, it
can be difficult to reason about the performance characteristics
of matrix-free operators because of their abstract representa-
tion.

We seek to combine the matrix-free and matrix-driven
approaches to constructing linear operators. We still leverage



matrix-free subroutines for FFTs and other fast transforms,
but we revisit matrix stuffing for “accessory” transforms
like padding, cropping, blurring, shifting, and element-wise
multiplication. We implement our approach in a language
called Indigo. Indigo simplifies analysis and specialization of
operators because their structure is statically known, and it
aids portability because new platforms must only implement
AXPBY, FFT, and matrix multiplication routines. Indigo op-
erators are also amenable to performance modeling because
the performance characteristics of the underlying subroutines
are well understood. We give a Roofline analysis [34] that
reveals Indigo operators run within a significant fraction
of machine peak, and we describe techniques for directing
future optimization efforts. Indigo is available for download
at https://pypi.python.org/pypi/indigo.

This paper is organized as follows. Section II presents the
Indigo representation of linear operators. Sections III and IV
describe transformations that the compiler and runtime can
apply to move between mathematically-equivalent operators
with better performance characteristics or smaller memory
footprints. Section V explains how profitable transformations
are selected from the broad set of possible transformations.
Section VI evaluates Indigo on reconstruction tasks from
four imaging modalities on three modern shared-memory
platforms. Section VII compares Indigo to related work and
Section VIII concludes with directions for future work.

II. DOMAIN-SPECIFIC LANGUAGE

Indigo is a domain-specific language for constructing fast,
structured linear operators. Its fundamental object is an
Operator that represents an arbitary linear transformation.
Operators are broadly categorized as MatrixOps, which are
backed by explicit matrices, or MatrixFreeOps, which use
alternate evaluation strategies. MatrixFreeOPs can be further
classified as CompositeOps, which represent arrangements of
Operators, and FastRoutineOps, which call subroutines that
implement fast linear transformations. Operator trees can be
constructed according to the following grammar.

Operator : LeafOp | UnaryOp
| BinOp | NaryOp ;

LeafOp : Identity | FFT
| Matrix | OneMatrix ;

UnaryOp : ‘Adjoint ’ Operator
| ‘KronI ’ Operator
| ‘Scale ’ Operator ;

BinOp : Operator ‘+’ Operator
| Operator ‘×’ Operator ;

NaryOp : ‘BlockDiag ’ ‘(’ Operator+ ‘)’
| ‘VStack ’ ‘(’ Operator+ ‘)’
| ‘HStack ’ ‘(’ Operator+ ‘)’ ;

We describe in detail the set of operators provided by
Indigo.

A. Leaf Operators

To produce an Indigo operator, the application program-
mer first instantiates operators from the MatrixOp and
FastRoutineOp classes. These operators represent leaves
which can be arranged into an operator tree. The most
general class of operators is the MatrixOp, which represents
a matrix implementing any linear transformation. Operators
that can be evaluated via matrix-free methods are classified
as FastRoutineOps. These include FFTs, Identity matrices,
and matrices of ones (OneMatrix).

B. Composite Operators

Application programmers next use CompositeOps to ar-
range sub-operators into an expression tree. CompositeOps
reflect mathematical or structural relationships between op-
erators. Common examples include Product and Sum opera-
tors representing the inner product and sum, respectively, of
child matrices; Adjoint operators representing the conjugate-
transpose of their sub-operator; and Scale operators represent-
ing their child operator scaled by some scalar value. Struc-
tural composite operators include the BlockDiag operator,
which represents sub-operators arranged along a diagonal; the
VStack and HStack operators, which represent vertically and
horizontally stacked sub-operators; and the KronI operator,
which represents the Kronecker product of an identity ma-
trix and its sub-operator. The KronI operator is similar to
a BlockDiag operator, but captures replication of its sub-
operator along the diagonal. Furthermore, evaluation of a
KronI operator is particularly efficient because the matrix-
vector operation

vec(Y ) = (Ic ⊗A) · vec(X)

can be computed as the matrix-matrix operation Y = AX
where A, X , and Y are arbitrary matrices, Ic is a identity
matrix with edge length c, ‘⊗’ is the Kronecker product, and
vec(·) stacks columns of a matrix into a vector.

C. Derived Operators

The previous two subsections presented the operator classes
implemented by Indigo. These classes are general enough
to derive a variety of other operators. Derived operators are
instantiated via factory functions provided by Indigo.

1) Matrix-Stuffed Derived Operators: When no operator
exists for a particular operation, one can be created via matrix-
stuffing. Indigo provides factory routines for building sparse
matrices that perform common operations like element-wise
multiplication, padding, cropping, and blurring. The factory
routines can be parameterized to enhance generality. For
example, the factory routine for building a padding operator
accepts both a pad width and a padding scheme (center-padded
or end-padded). These factory routines all return MatrixOps.

https://pypi.python.org/pypi/indigo


Scientist
HPC

Expert

Structured 
Linear Operator

Backend
Optimized 
Operator

CustomGPU

CUDA

CustomCPU

MKL

Numpy

Platform

GPU

KNL

CPU

Transformation	
Recipe

Fig. 1: To use Indigo, an application programmer constructs
a linear operator using Operator classes provided by Indigo.
The operator is then optimized by a transformation recipe,
written by a performance expert, into a mathematically equiv-
alent operator tree with better performance characteristics.
Finally, the tree is evaluated by an Indigo backend on one
of several computational platforms.

2) Composite Derived Operators: Additional factory rou-
tines implement higher-level functionality by constructing full-
fledged operator trees, rather than single operator instances.
For example, Indigo implements a unitary Fourier Transform
as FFT operator modified by a Scale operator whose scale
factor is informed by the FFT dimensions. Likewise, a cen-
tered FFT is implemented by left- and right-multiplying an
FFT with diagonal matrices that perform FFT-shifts. A non-
uniform Fourier Transform [9] is implemented as a product
of an “apodization” matrix, a centered, unitary FFT, and an
interpolation matrix.

D. Workflow

To use Indigo, an application programmer constructs an
operator tree by instantiating operator classes. Next, the oper-
ator tree is specialized according to a transformation recipe
written by a performance expert. The optimized operator
is then available for use in the mathematical optimization
routine of the user’s choice. Indigo provides implementations
of the conjugate gradient and FISTA methods [4], though
more are possible. Typically, the mathematical optimization
routines alternate between linear operator evaluations and
BLAS-1 evaluations specific to the particular routine. On
each evaluation, the operator tree is interpreted by an Indigo
backend on CPU, KNL, or GPU platforms. This process is
illustrated in Figure 1.

III. OPERATOR SPECIALIZATION

The Indigo representation of linear operators enables trans-
formations between numerically-equivalent operators that pos-
sess different computational performance and memory foot-
print characteristics. Indigo employs three flavors of operator
specialization: tree transformations, operator realization, and
matrix inspection.

A. Tree Transformations

Indigo operator trees can be reorganized according to com-
mon algebraic principles. These transformations have minimal
immediate effects on performance; however, they can enable
profitable transformations later in the specialization process.

Many CompositeOps admit a distributive property. There
are many such rules—we count up to 504—so we sketch a
few here. The remaining ones can be reasoned about straight-
forwardly. For example, the KronI operator distributes over a
Product:

Ic ⊗ (A ·B) = (Ic ⊗A) · (Ic ⊗B).

Some products of structural operators can be reorganized if the
dimensions of the child operators match. Examples include the
matrix-vector-like operation

BlockDiag(A,B) · V Stack(C,D) = BlockDiag(AC,BD)

or the inner-product-like

HStack(A,B) · V Stack(C,D) = [AB + CD] .

The Sum and Product operators admit an associative property,
which allows tree rotations:

A · (B · C) = (A ·B) · C.

HStack and VStack operators are related by adjoints:

HStack(A,B) = V Stack(AH , BH)H .

Finally, the Adjoint operator admits an inverse:

Adjoint(Adjoint(A)) = A.

It is worth noting that all of these transforms are bi-directional.

B. Realization Transformations

The second major category of specializations is operator
realization, which converts matrix-free operators into explicit
matrices. Many realization transformations seem inadvisable
because they increase the memory footprint and/or inhibit
performance. However, like tree transformations described
previously, they can enable other, more profitable transfor-
mations. Each MatrixFreeOp has an associated realization
transformation, described here. In order to be eligible for
realization, a CompositeOp’s children must all be realized
matrices (MatrixOps).
Product operators are realized via matrix-matrix multipli-

cation. The performance implications of this transformation
depend on the sparsity structure of the underlying matrices,
since the product of two sparse matrices could be more
or less sparse than the original matrices. We’ve found in
practice that realizing Products tends to maintain sparsity
because the sparsity pattern reflects some real-world structure.
One example that illustrates this effect can be found in the
NUFFT, which contains a product of an FFT-shift matrix and
an interpolation matrix—the FFT-shift matrix is diagonal, so
multiplying it by the interpolation matrix yields a new matrix
with identical structure to the original interpolation matrix. We
liken this transformation to operator fusion.

The HStack, VStack, and BlockDiag operators are realized
by assembling a new, larger matrix from the constituent blocks.
Performance and memory footprint are largely unchanged.

The KronI operator is realized by explicitly replicating its
child matrix. The realized matrix is larger by the replication



factor, and immediate performance likely suffers by the same
factor.

The Adjoint operator is realized by explicitly transposing
and conjugating the underlying matrix. This transformation
can have a substantial effect on performance since Indigo
primarily uses a compressed sparse row (CSR) storage format
for sparse matrices. For certain sparsity structures, a CSR
format maintains better temporal locality in the input or output
vectors.

The Scale operator is realized by multiplying all elements
in its child matrix by its scale factor.

It is theoretically possible to realize FFT operators, but
typically impractical to do so on realistic problems because
the resulting matrix would be large and dense. The MRI
application described in Section VI would require 41 petabytes
to store its 3D-FFT matrix.

C. Matrix Inspection

The third major category of specialization is an inspection
step in which Indigo examines the remaining matrices in
search of structural properties that enable faster evaluation
than a general SpMM routine can achieve. In particular,
Indigo checks matrices for properties we term row or column
write exclusivity. Row write exclusivity holds when a matrix
has no more than one nonzero per row (or per column for
column write exclusivity). The presence of write exclusivity
allows matrix multiplication routines to avoid synchroniza-
tion in some operations. More specifically, a sparse matrix
multiplication routine (SpMM) computing the product of an
implicitly-transposed, column-exclusive, CSR-format matrix
needn’t synchronize on accumulations into the output vector
because there won’t be more than one element accumulated.
This optimization is especially important on GPU platforms
where atomics are relatively costly.

The row and column write exclusivity properties are cheap
to discover. Indigo determines if a CSR matrix is row ex-
clusive by a single traversal of the row ptr vector (in Netlib
terminology [1]); a matrix is row exclusive if no adjacent
row pointers differ by more than one element. Determining
column exclusivity is slightly more difficult. Indigo computes
a histogram of column indices (the col ind array) and certifies
exclusivity if no histogram bin has more than one element.
This procedure is similar in cost to one matrix-vector product.
Indigo determines exclusivity information once, as the final
specialization step.

IV. RUNTIME OPTIMIZATIONS

The Indigo runtime evaluates an operator tree much like
an interpreter traverses an abstract syntax tree. During eval-
uation, a batch size parameter enables a trade-off between
performance and memory footprint. To understand the effects
of the batch size, consider a scenario in which an operator
is right-multiplied by a dense matrix with N columns. The
runtime can schedule this as one sparse-matrix-times-dense-
matrix (SpMM) on N columns, N SpMVs on 1 column, or
generally N

b SpMMs on b columns. These cases can have very

different memory requirements depending on the structure of
the Indigo operator. If the operator tree contains a Product
node, then memory proportional to b must be allocated to
hold the intermediate result. Similarly, if the tree contains an
FFT, the underlying FFT library might allocate scratch space
proportional to b. In memory-limited settings, it is desirable
to minimize these allocations so the problem instance fits in
memory. To this end, the runtime can use a smaller batch size b
to maintain residency, at the cost of some performance. Batch
sizes can be set at any node in the operator tree.

V. TRANSFORMATION RECIPES

So far, we have described the space of transformations that
can be applied to an operator tree to change its performance
characteristics. It remains an open question how to choose
good transformations that yield fast operators, operators with
small memory footprints, or some balance thereof. Auto-
matic methods guided by heuristics or empirical tuning might
succeed in finding good configurations, but several factors
compound the search problem. First, the optimization space
is highly non-smooth. A good tree is often found by applying
a long series of seemingly pointless or suboptimal transfor-
mations. Second, it’s difficult to enumerate the search space
because the tree transformations are bi-directional, so care
must be taken to identify equivalent, previously-visited points.
Third, many of the transformations cannot be assessed without
performing them. In particular, it’s difficult to predict whether
multiplying two matrices will yield a new matrix that’s faster
or smaller than its predecessors. One could compute the new
matrix via matrix-matrix multiplication, but it significantly
slows down a search procedure.

Indigo instead allows a performance expert to devise a trans-
formation recipe that is applied to operator trees constructed
by an application programmer. A transformation recipe is a
series of imperative statements that perform tree manipulations
such as those described in Section III. Indigo implements
a number of transformations, and new ones can be written
by the user. We have found that transformation recipes are
general enough to cover variation among trees from a partic-
ular application area, so it is not necessary to rewrite them
frequently. They also enable experts to quickly try out new
configurations without substantial programming effort. The
use of transformation recipes does not rule out automatic
techniques, as future transformation recipes could be generated
by an autotuner or heuristic engine.

To illustrate a transformation recipe, we return to our
running MRI example. Recall the operator A := (MFM)S,
which represents the product of a centered FFT and a diagonal
matrix of sensitivity weights. One transformation recipe likely
to yield good performance is:

AssociateSpMats () // yields (M)F (MS)
RealizeProds () // yields (M)F (Z), Z =MS

The first transformation performs tree rotations to group sparse
matrices. In particular, it rotates the second centering matrix
M away from the matrix-free FFT operator F , and toward



ID Platform Peak Flops Memory Bandwidth
CPU Intel Xeon E5-2698 v3 1.4 TFlop/s 144 GB/s
KNL Intel Xeon Phi 7250 3 TFlop/s 464 GB/s
GPU NVIDIA Titan X 10 TFlop/s 360 GB/s

TABLE I: Indigo evaluation platform characteristics. We mea-
sure memory bandwidth via a call to each vendor’s AXPBY
routine. On KNL, our working set is small enough to fit in
MCDRAM, so we cite MCDRAM bandwidth rather than main
memory bandwidth.

the sensitivity weighting matrix S. The second step multiplies
S and M , effectively fusing the sensitivity weighting and
centering operations. Since S is diagonal, M · S is identical
in structure to M . The resulting operator (A′ = MFZ) has
better performance and a smaller memory footprint than the
original A.

VI. PERFORMANCE EVALUATION

We evaluate Indigo on reconstruction problems from four
imaging modalities: magnetic resonance imaging (MRI), pty-
chography, fluorescent microscopy, and magnetic particle
imaging (MPI). Indigo implements five backends that we test
on the CPU, GPU, and KNL platforms described in detail in
Table I. Our backends include:
• numpy : A reference backend implemented on Numpy. It

is portable and compatible with Python debugging tools.
• mkl : A backend implemented on Intel MKL. It runs on

the CPU and KNL platforms.
• cuda : A backend implemented on NVIDIA’s cuFFT and

cuSPARSE libraries. It runs on the GPU platform.
• customcpu : A high-performance backend that im-

plements exclusivity-aware SpMM routines in C and
OpenMP. It uses MKL for its FFTs, and it runs on CPU
and KNL platforms.

• customgpu : A high-performance GPU backend that
implements exclusivity-aware SpMM routines in CUDA.
It uses cuFFT for its FFTs.

We seek to characterize the performance of Indigo as a frac-
tion of the peak performance defined by the Roofline model
[34]. This statistic captures how well our implementation
fulfills the goals of our implementation strategy (i.e. mixing
matrix and matrix-free operators). For the MRI application,
we also assess how well our implementation strategy performs
relative to an optimized matrix-free implementation.

To determine the fraction of Roofline peak for our codes, we
compute the arithmetic intensity of our kernels as follows. For
three-dimensional FFTs of shape N3, we expect 5N3 log(N3)
flops (per the FFTW model [10]) and 6N3 elements of
memory traffic (one read and write of the dataset is required
per dimension when no N2 slab fits in cache). For all other
operations (OneMMs, AXPBYs, CSRMMs), we expect them
to run at the STREAM [23] bandwidth: they should read the
input data once and write the data once. We also consider
sparse matrix structure—we account for input elements that
need not be read, and output elements that need not be written.

A. Magnetic Resonance Imaging

MRI is a popular in-vivo imaging modality because of
its excellent soft-tissue contrast, but its use is hindered by
long scan times during which the patient must lie motionless.
Compressed sensing and parallel imaging techniques are being
used to reduce scan times by integer factors, but reconstruction
of the resulting data requires solving a linear inverse problem
in a clinically-acceptable three minutes [19], [30]. A pure
Python implementation can take as long as eight hours to
produce a diagnostic-quality image, so we turn to Indigo to
implement a fast reconstruction code.

1) Background: During a scan, the scanner plays a “pulse
sequence” of radio waves that excite protons or other species
of interest with a particular volume. Additional magnetic fields
induce spatially-varying resonant spinning of the protons,
effectively encoding their position as frequency and aggregate
density as amplitude. One or more inductive coils arranged
around the volume of interest record the emitted signal in sep-
arate receive channels, and a Fourier transform of the channel
data yields spatially-weighted variants of the intrinsic image.
Compressed sensing pulse sequences speed up acquisitions by
collecting fewer measurements than typically necessary. Linear
reconstruction will result in aliasing in the spatially-weighted
images, but the aliasing can later be resolved via knowledge
of the spatial sensitivity of each receive coil and redundancies
in the image statistics. In mathematical optimization setting,
we are looking for an image that most closely transforms into
the aliased images acquired by the scanner.

We use the SENSE operator [25] to model how an image
is transformed and acquired by the scanner. In SENSE, a
candidate image ρ with shape (x, y, z) is first multiplied by
c number of sensitivity maps S of the same dimensions,
yielding an array of channel-images k with shape (c, x, y, z).
Then, each channel-image undergoes a non-uniform Fourier
transform F to yield the acquired data k. Mathematically, the
forward SENSE operation is

ki = FSi · ρ, ∀i ∈ c (1)

and the adjoint operation is

ρ =

c∑
i=1

SH
i ·FH · ki. (2)

Our application code generates a representation of the
SENSE operator in Indigo. Given an NUFFT operator F and
sensitivity maps stuffed into diagonal matrices S, the SENSE
forward operator is expressed in matrix form as

(Ic ⊗F ) · V Stack(S0, S1, ..., Sc).

The corresponding Indigo operator tree is illustrated in Figure
2a. The adjoint operator is implicitly defined at the same
time as the conjugate transpose of the forward operator. When
used with `-1 regularization techniques, the SENSE operator
is sufficient for implementing a reconstruction pipeline for
compressed sensing MRI.
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2) Challenges: The user-defined operator tree (Figure 2a)
is functionally correct but slow to execute for various reasons.
First, evaluating each of the many MatrixOp nodes requires
reading and writing its input and output vectors, which is
expensive in aggregate. We would like to merge some of
the these nodes to avoid intermediate memory traffic, but
the matrix-free FFT node inhibits this transformation. Thus,
we develop a transformation recipe that separates the FFT
from concrete matrices by flattening nested Products and
distributing the KronI operator over its child Products. The
resulting tree is depicted in Figure 2b. Then, we realize VStack
and Product nodes into new MatrixOps. We are left with
two sparse matrices: a grid+ matrix that performs gridding,
shifting, and scaling; and a maps+ matrix that simultaneously
applies sensitivity maps, apodization, padding, and FFT shift-
ing to each coil-image. The resulting tree in shown in Figure
2c.

A performance analysis of the tree in Figure 2c reveals
that the sparse maps+ matrix under-performs because the CSR
storage format inhibits re-use of the input vector. Because the
matrix has 0 or 1 nonzeros per row, and exactly c = 8 nonzeros
per column, a row-wise parallelization (as is typical for CSR
formats) will have difficulty exploiting temporal reuse of the
input vectors. We can remedy this by explicitly conjugate-
transposing the matrix and inserting an adjoint node, yielding
the final tree depicted in Figure 2d. Storing the adjoint matrix
in CSR format is equivalent to storing the original matrix
in compressed sparse column (CSC) storage format, but only
requires that backends implement CSR multiplication routines.

The remaining performance discrepancy arises on GPUs,
where the atomic accumulate operations found in adjoint
CSR multiplication kernels are particularly expensive. Here,
we leverage the row-wise exclusive write property of the
maps+ matrix to dispatch to SpMM multiplication routines that
perform non-atomic accumulations, rather than atomic ones.
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during the specialization process. The operator tree undergoes
four major transformations: reordering, realization, a transpose
of the maps matrix, and discovery of the exclusive write prop-
erty for the transposed maps matrix. Realization is required on
the GPU to fit into the 12GB of available memory, hence we
omit the first two results. We also omit the write exclusivity
result for backends which don’t leverage it. We denote the
region in which operators are fast enough to be clinically
viable with a green background.

This results in a 10× speedup on the adjoint evaluation of the
maps+ matrix, and a 2× speedup overall.

3) Performance: The Indigo SENSE operator achieves 91%
of the Roofline peak on the GPU platform, and the reconstruc-
tion task finishes within one minute. Figure 3 illustrates the
performance of the SENSE operator during the transformation
process, and Table II gives the performance breakdown of
the fastest SENSE operator across the suite of platforms. The
CPU and KNL platforms achieve a smaller fraction of peak—
33% and 10%, respectively. We still consider this a worthy
result because two-thirds of the evaluation time is spent in



FFTs SpMMs Overall
Platform GFlops/s %Roofline %Time GFlops/s %Roofline %Time GFlops/s %Roofline Time

CPU Numpy 1 0% 86% 0 1% 14% 1 0% 87,040 ms
MKL 162 41% 31% 1 9% 69% 51 19% 1,321 ms
Custom 157 40% 67% 4 37% 33% 107 39% 743 ms

KNL MKL 213 11% 13% 0 1% 87% 27 2% 1,573 ms
Custom 207 11% 59% 4 8% 41% 124 10% 536 ms

GPU CUDA 934 95% 34% 8 16% 66% 327 44% 205 ms
Custom 932 95% 72% 37 80% 28% 680 91% 114 ms

TABLE II: Performance breakdown of one iteration of the SENSE normal operator for MR image reconstruction (Section
VI-A). The best platform achieves 91% of the Roofline peak. These data suggest the use of explicit sparse matrices isn’t a
significance hindrance since the majority of the evaluation time (59%-72%) is spent in vendor-tuned FFT routines.

the vendor-tuned FFT library (MKL) using FFT dimensions
suggested by the vendor’s tuning script. Assuming the MKL
FFT is well-implemented, and recognizing that optimizing
it is beyond our control, we conclude that our CPU and
KNL backends are achieving a reasonable fraction of peak
performance. On all platforms, our best-performing backend
is within the range of clinical feasibility.

4) Comparison to Matrix-Free SENSE: We can charac-
terize the performance of a fully-matrix-free SENSE imple-
mentation (rather than our hybrid approach) if we make two
assumptions: 1) the intermediate vectors are memory-resident
before and after the FFTs. To do otherwise would be to ignore
re-use in the maps+ and grid+ matrix-free operators, and 2)
the sensitivity maps are incompressible, i.e. they do not permit
more succinct representations than dense arrays, the standard
representation in the field. Given these assumptions, we can
quantify how much faster each operation could be:

• A matrix-free maps+ evaluation still must read the sen-
sitivity map values, but it can infer index data rather
than read it from the sparse matrix data structure. In a
reconstruction with c = 8 channels, each 8-byte maps+
nonzero reads one integer for the column index, 1/8
integer for the row index, and 1/8 input elements, and
writes 1 output element; thus 4.125/(25+4.125) = 14%
of the memory traffic can be avoided. Since maps+
evaluations make up 17% of the iteration time on our
best platform, this would yield a 2.4% overall speedup.

• The FFT operation is matrix-free in both cases and its
performance is identical.

• A matrix-free grid+ operator could generate both indices
and non-zero coefficients on the fly, so the only cost
would be reading and writing the vectors. Since grid+
evaluations comprise only 12% of the overall iteration
time, we conservatively assert that a matrix-free gridding
operator will yield no more than a 12% speedup.

Taken together, these results indicate that the Indigo imple-
mentation strategy can achieve at least 85% of the performance
of an optimal matrix-free implementation. This result can also
be interpreted as the marginal cost of the CSR storage format.
Increasingly specialized storage formats and their associated
evaluation routines can further reduce memory traffic.

B. Magnetic Particle Imaging

Magnetic particle imaging (MPI) is a novel in-vivo imaging
technique that seeks to acquire an image representing the
distribution of a magnetic tracer within a volume of interest
[11]. In a simplified sense, pixel data are acquired in a series
of overlapping panels that represent subsets of the intrinsic im-
age, but panels have their average values removed by physical
effects of the MPI scanner. The reconstruction objective is to
modulate the average value of each panel so their overlapping
sections are consistent. Konkle et al. formulate this as an
optimization problem with a non-negativity constraint [17].
They propose a forward operator A = DS, where S selects
overlapping panels of the image and D computes and subtracts
the average value of each panel. Visually, the operators are

S =



Is · · ·
Ir

Is
Is

Ir
Is

... Is
. . .


,

D =

R . . .
R

 ,
R = Ip − 1

p1.

1 denotes a matrix of ones. Panels contain p pixels, overlap
by s, and r = p− 2s.

In Indigo, we implement the S operator via matrix-stuffing
and the R operator via compositions of MatrixFreeOps. The
MPI operator is different from our other applications because
it doesn’t perform any FFTs. Instead, the forward operator
reduces to an AXPBY, an SpMM (with the S matrix), and
a OneMM. We evaluate the operator on a 1024-by-768 pixel
image divided into 12 panels. Performance results are given in
Table III. The GPU achieves 43% of Roofline peak, indicating
that a 2.3× speedup is possible, but at 1 millisecond per
evaluation further optimization isn’t motivated by application
demands.

C. Ptychography

Ptychography is an imaging modality which uses patterns
from diffracted light to reconstruct an image of an object [20].
In X-ray ptychography, X-rays are shined through an object, ψ,
with some illumination pattern ω. The X-rays shine through
the object to land on a detector, such as a CCD sensor. A
number of diffraction samples a(i) are gathered by shining the



AXBPYs SpMMs OneMMs Overall
Platform %Peak %Time %Peak %Time %Peak %Time %Peak Time

CPU Numpy 3% 16% 4% 31% 1% 53% 2% 91.43 ms
Custom 34% 21% 30% 55% 17% 23% 26% 6.71 ms

KNL Custom 4% 32% 6% 48% 5% 20% 5% 7.10 ms
GPU Custom 34% 36% 69% 38% 23% 27% 43% 1.05 ms

TABLE III: Performance breakdown of one iteration of the Magnetic Particle Imaging (MPI) reconstruction operator (Section
VI-B). Fraction of peak data are with respect to the Roofline peak for each respective operation. We omit results from the
MKL and CUDA backends which don’t implement the OneMM routine (a multiplication by a matrix of ones). The results
indicate that Indigo achieves a modest fraction of peak (e.g. 43% on the GPU). It is likely possible to attain better performance
(up to 2.3× on the GPU), but the current performance is sufficient to meet application needs.

FFTs SpMMs Overall
Platform %Peak %Peak %FFTs %Peak Time

CPU Numpy 1% 2% 39% 1% 1,549 ms
MKL 53% 59% 19% 56% 22 ms

KNL MKL 13% 5% 10% 9% 35 ms
GPU CUDA 92% 61% 34% 76% 6 ms

TABLE IV: Performance breakdown of one iteration of the
Ptychography reconstruction operator (Section VI-C). Fraction
of peak data are with respect to the Roofline peak for each
respective operation.

X-ray beam at the object from different angles. The diffraction
of the X-rays can be described by the equation

a = |FQψ∨|

where ψ∨ is a vector holding a linearized version of the object
being imaged, Q is an operator which extracts frames from
the image and scales them by the illumination ω, F is a
Kronecker product (IK ⊗F ) of K two-dimensional Fourier
transforms, and a is a vector holding a linearized version of
the diffraction samples captured during the experiment. We can
refer to frames extracted from the image ψ∨ as z = Qψ∨.

The full update step is given by

zi+1 = Q(QHQ)−1QHFHdiag(a)
Fzi
|Fzi|

.

Note that this includes the nonlinear term |Fzi|. Since non-
linearity is beyond the domain of Indigo, we instead represent
the update operator as two separate linear operators bridged by
a nonlinear operation. The linear operators can be optimized
separately, and we are free to pick arbitrary nonlinear code to
execute between them.

In order to achieve high performance, we construct a
transformation recipe that shifts the tree to fold FH ’s FFT
scaling matrix into diag(a) and combines (QHQ)−1 with
QH . Table IV shows the performance of this solution. Since
matrix structure does not benefit from the exclusive write
optimization, we do not list numbers for the custom backends.
We achieve the best result, 76% of Roofline peak, on the GPU,
followed by 56% of Roofline peak on the CPU. Our KNL
version runs faster than the CPU version, but only achieves
9% of Roofline peak. The GPU version is 274 times faster
than when executed in NumPy.

D. Phase-Space Fluorescent Microscopy

Phase-space fluorescent microscopy enables 3D reconstruc-
tion of fluorescence by leveraging the position and angular
information of light. Biologists often want to study the activity
of a 3D creature or cells in vivo, hence the need to capture a 3D
video. Both the fast acquisition of the phase-space information
and fast 3D reconstruction from the data are important in
order to visualize the sample. In recent work [18], multiplexed
phase-space imaging aims to tackle this challenge. The slow
mechanical scanning or angle scanning part is replaced by
applying multiplex codes in the angular space (pupil). An
image is captured for each of the codes while the sample is
uniformly illuminated by a steady laser source, and the 3D
sample is reconstructed from those images.

In the phase-space forward operator, a 3D volume is split
into multiple 2D depth planes. Then, each plane is padded
around the edges, Fourier-transformed, and multiplied by a
kernel related to a multiplex code and the corresponding depth
(kernels are precomputed). The depth planes corresponding to
a single code are summed, inverse Fourier-transformed, and
cropped, yielding the images received by the microscope.

To devise a high-performance operator, our transformation
recipe groups SpMatrices in the operator tree, aggressively
realizes CompositeOps, and stores one of the two sparse
matrices in a diagonal storage format and the other in CSR
format. Our recipe reduces the phase-space operator to two
batch FFTs interleaved with two SpMMs. We evaluate the
high-performance operator on a reconstruction problem with
five 10242 planes and 29 detection codes. Table V gives the
operator’s performance on each of our test platforms. On the
GPU, Indigo achieves 47% of the Roofline peak and 186×
the performance of the Numpy backend. Further optimization
isn’t motivated by the application, but we expect more tailored
matrix storage formats would yield speedups in the future.

VII. RELATED WORK

Indigo builds on ideas from domain-specific languages,
sparse linear algebra, and high-performance medical imaging.

a) Domain-Specific Languages: Substantial work has
shown that domain-specific languages are effective tools for
achieving high performance. Examples include Halide for
feed-forward image-processing pipelines [27], Simit for finite-
element simulations [16], Pochoir for stencils [29], Spiral for



FFTs SpMMs Overall
Platform %Peak %Peak %FFTs %Peak Time

CPU Numpy 1% 2% 66% 1% 17.9 s
Custom 65% 36% 25% 43% 482 ms

KNL Custom 8% 7% 35% 7% 597 ms
GPU Custom 56% 41% 39% 47% 96 ms

TABLE V: Performance breakdown of one iteration of
the phase-space microscopy reconstruction operator (Section
VI-D). Fraction of peak data are computed with respect to
the Roofline peak for each operation. The Indigo operator is
within a factor of two of peak performance on the CPU and
GPU platforms using our custom backends.

digital signal processing [26], and Opt for image optimization
problems [8]. These languages share the technique of restrict-
ing generality to aid analysis and transformation.

Domain-specific approaches have also been explored within
the convex optimization community. CVX provides a frame-
work for defining optimization problems which are convex by
construction, and mathematically reduces the problem to target
general solving routines [12]. CVXGEN generates C code
that implements a custom quadratic program solver designed
for use in embedded devices [22]. Chu et al. also explore
code generation for convex problems [7], but focus primarily
on correctness than performance. Cvxflow [36] and ProxI-
maL [14] propose a computation graph structure for convex
problems and reorder the graph to improve performance. Our
work is complementary to these techniques as it provides a
methodology for cross-node optimizations within the subset
of nodes that represent the linear operator.

Our technique of separating the transformation recipe from
the code to be transformed has been explored in other DSLs.
We examine two: CHiLL [2] and Halide [27]. In these
DSLs, the recipes are procedural in nature, but differences
arise in their expressiveness due to considerations from the
application domain and intended platform(s). CHiLL uses
transformation recipes to optimize scientific stencil compu-
tations. The CHiLL compiler ingests loop annotations that
specify loop reordering transformations and application-level
concepts like ghost zones. Halide’s transformation recipes
(“schedules” in Halide parlance) enable transformations to
be applied to kernel objects in an image processing pipeline.
Common Halide transformation include tiling, parallelization,
and vectorization. Recent work on heuristics for scheduling
Halide programs has been promising [24] and affirms the
transformation recipe approach.

b) Sparse Linear Algebra: Indigo’s collection of linear
operators is similar to those provided by the SciPy [15] and
Matlab [21]. Neither of these packages employ transformations
to achieve better performance.

The inspector-executor model is commonly applied to
sparse problems to select good storage formats or tuning
parameters. OSKI [32] uses empirical performance tuning to
select block sizes on a per-platform basis. Sparso [28] exploits
optimization opportunities across sparse matrix operations, but

its implementation in MKL yielded no benefit on our matrices.
The CUDA sparse BLAS library [5] also performs minor
inspection in construction of hybrid ELL+COO matrices. Our
exclusive write property could be easily included in any of
these inspector-executor libraries.

c) High Performance Image Reconstruction: Previous
work has sought to reduce time-to-solution in a variety of
iterative reconstruction problems. One rewarding approach
has been algorithmic modifications that offer different perfor-
mance profiles [33], or that trade accuracy for performance
[3]. Another body of work has focused on fast, ad-hoc
implementations of reconstruction codes; these include Bart
[31], PowerGrid [6], Impatient [35], and Gadgetron [13] for
MRI, and SHARP for ptychography [20].

VIII. DISCUSSION AND CONCLUSION

The paper introduces Indigo, an embedded domain-specific
language for implementing fast image reconstruction codes.
By restricting users to a limited set of concepts (linear op-
erations), Indigo separates concerns about algorithmic spec-
ification and performance optimization and enables portable
performance. We demonstrate Indigo on four applications—
magnetic resonance imaging, magnetic particle imaging, fluo-
rescent microscopy, and ptychography—and show that Indigo
achieves a substantial fraction of peak across a variety of
backends without changes to the source code.

The Indigo approach is not without limitations. First, it
avoids the challenge of automatic optimization by relying on
transformation recipes written by performance experts. To be
widely useful, it might be necessary to have generic recipes
that yield good average performance, or an analysis engine that
can synthesize good recipes. Secondly, real-world reconstruc-
tions can employ an expensive nonlinear regularization like
total variation or locally-low-rank metrics. These fall outside
the domain of Indigo, but they face similar portability and
performance challenges. We wrote our regularization routines
in OpenMP-parallelized C code. Third, construction of Indigo
operators can be unintuitive because it entails programmatic
construction of a abstract syntax trees rather than construction
via a language syntax and parser. Fortunately, mathematical
and visual structure abounds in this domain, and we are
optimistic that better interfaces can facilitate faster and more
correct operator construction.

One final benefit of Indigo is its ability to reduce a collection
of complex, application-specific linear operators to a hand-
ful of low-level mathematical operations (SpMMs, OneMMs,
AXPBYs, and FFTs). This simplifies the task of performance
optimization, which can be informed by extensive work on
fast linear algebra, and enables optimizations developed for
one application can propagate to other applications without
source-level changes. The Indigo representation also allows
performance experts to search for well-performing implemen-
tations faster than if they were developing them from scratch.
Ultimately, Indigo aims to advance the state of science and
medicine by making image reconstruction codes faster and
more widely available.
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