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Abstract being the most common measure of network guality. Ven-
dors have accordingly tuned and optimized their systems for
High-end supercomputers are increasingly built out of bandwidth, while software overhead and message latency

commodity components, and lack tight integration betweenhave generally received less attention.
the processor and network. This often results in inefficien- At the same time, however, there is ongoing interest
cies in the communication subsystem, such as high softwardn the scientific application community in using irregular
overheads and/or message latencies. In this paper we usélata structures and communication patterns. In order to im-
a set of microbenchmarks to quantify the cost of this com- prove solution time, accuracy, and/or memory usage, appli-
modification, measuring software overhead, latency, and cation developers often move from dense matrices to sparse
bandwidth on five contemporary supercomputing networks.ones, from structured meshes to unstructured ones, and
We compare the performance of the ubiquitous MPI layer from static algorithms to ones that adapt in space or time.
to that of lower-level communication layers, and quan- These algorithms naturally involve communication of small
tify the advantages of the latter for small message perfor- amounts of data in a demand-driven style, such as retrieving
mance. We also provide data on the potential for various ghost nodes in an unstructured mesh, filling in boundaries in
communication-related optimizations, such as overlapping an adaptive rectangular mesh, or sending events in an event-
communication with computation or other communication. driven simulation. Bulk-synchronous programming models
Finally, we determine the minimum size needed for a mes-with two-sided communication can be used for these algo-
sage to be considered ‘large’ (i.e., bandwidth-bound) on rithms, but at a significant cost in programming complexity,
these platforms, and provide historical data on the soft- since small messages are packed into large ones and point-
ware overheads of a number of supercomputers over theto-point synchronization is replaced by global synchroniza-
past decade. tion.
In this paper we evaluate both small and large mes-
sage performance on five contemporary supercomputing
1. Introduction networks. Using the LogP [3] model (and its extension for
) ) ~ large message types, LogGP [1]) as a starting point for our
Over the past ten years, improvements in communica-tests and analysis, we offer a number of contributions:
tion latency and the software overhead of communication
on high-end machines have lagged far behind the exponen- o e describe a set of network benchmarks for measur-
tial increases in processor performance. One reason for this  ing bandwidth, latency, and software overhead, which

trend is that most current large-scale parallel machines are e have implemented over a wide variety of network
constructed as clusters of workstations or personal comput-  AP|s, including MPI [18], VIPL [13], SHMEM [6],

ers: the commodity PCI buses commonly found in such sys- LAPI [14], E-registers [6], and GM [8].
tems were not designed to support parallel computation, and
provide a lower level of hardware integration between the
CPU/memory and networking subsystems than was char-
acteristic of the custom-designed parallel machines built in
the early 90’s. Also, the emergence of MPI as the dominant
parallel programming model has focused attention on mes- e Using our results, we examine various application
sage passing performance, with large message bandwidth  speedups that can be achieved via network-related

e We provide data from these benchmarks for both small
and large message performance on many of the super-
computer networks in use today, and compare the per-
formance of MPI to that of lower-level network APIs.



System Network Bus to NIC & One-sided, reliable CPU type Non-MPI network
bandwidth network hardware APIs benchmarked
Cray T3E Proprietary (Z;%p&eézgc) Yes 4i?pl\r/1laHZ SHMEM, E-registers
IBM RS/6000 SP SP Switch 2 ?ZXéBb/L;Z o No ?,zw';i LAPI
IBM Netfinity cluster Myrinet 2000 (ggel I?/Izé?ssec) Yes P8e6niil'\1/|r:1-|lzll GM
PC cluster G(igsg:ifrmgg?)et (ggzl I?/ﬁ?(?fec) No P(lehztisxn VIPL

Table 1. Systems Evaluated

optimizations, such as overlapping computation with eral interest to parallel application developers, particularly

communication, pipelining messages, and the use ofthose whose applications may use ‘small’ messages. We
message packing. also hope this work may influence the benchmarking trends
of hardware/software vendors to focus more attention on

software overhead and latency, and encourage their mini-
mization in the design of future systems. As our data shows,

the current level of support for these parameters in the mar-
ketplace is quite varied, and their historical trends are not

nearly as encouraging as those for most other aspects of
'computer performance.

e We provide a historical portrait of the trends in small
message performance over the past 10 years.

Our interest in these issues grows out of our work imple-
menting compiler and runtime support for global address
space (GAS) languages, such as Unified Parallel C [23]
Titanium [24], and Co-Array FORTRAN [2]. These lan-
guages combine the convenience of a shared memory styl
of programming with the control over performance of mes-
sage passing. Programmers have full control over how their  The systems and networks measured for this paper in-
data is laid out across processors, and can access this datdude many of those in production use in parallel comput-
via standard mechanisms such as pointer dereferences, aing today, including the Cray T3E, the IBM SP, Quadrics,
ray indexing, omemcpystyle bulk copy calls. This allows  Myrinet 2000, and Gigabit Ethernet (GigE). Table 1 shows
serial programs (including irregular, adaptive programs thata high-level summary of the platforms tested, and some of
are hard to program using explicit, two-sided messaging their key attributes.

APIs) to be parallelized incrementally (with the caveat that ~ The machines range from custom-designed, tightly inte-
initial versions will rely heavily on small message perfor- grated systems like the T3E to loosely coupled commodity
mance). Compilers for GAS languages should be able toPCs connected via network cards running on industry stan-
minimize some of the costs associated with the use of smalldard PCI buses. Reflecting the predominant trend in the su-
messages: as we show in this paper, latency can be hiddepercomputing marketplace, most of the systems follow the
by overlapping communication with computation or other cluster of workstations approach. The T3E is the major ex-
communication. It may also be possible to perform a certain ception, with a network interconnect designed around cus-
amount of message aggregation automatically. Applicationtom E-registers integrated into the memory controller. The
developers can then assess whether (and to what degreeBM SP uses a proprietary GXX bus to its network card that
they wish to hand-code further optimizations at the sourceis faster than the industry-standard PCI bus, but otherwise
code level, using standard techniques like message packingiesembles the remaining systems in its high-level design.
The tradeoffs that this GAS model presents between pro- All of the systems provide one or more user APIs for
gramming complexity and performance will vary between performing one-sided remote memory accesses, in which
applications, and will also depend on network performance. the remote CPU does not need to be explicitly programmed
Our work in this paper is a first step toward understanding by the user to perform a receive and reply to remote re-
the likely performance of GAS languages for various appli- quests. However, not all of the systems support this na-
cations on different supercomputing architectures, and thetively in the network hardware. Those that do mainly use
methods by which they may be optimized. an RDMA (Remote Direct Memory Access) architecture,

While our motivation is the performance of GAS lan- where the CPU sends the parameters for a transfer (includ-
guages, the information in this paper should also be of gen-ing the length and the remote memory address) to the net-

©. Systems evaluated



work card, which then handles the transfer. Again, the T3E transmission-related activity, and is thus unavailable
is an exception in that it transfers data remotely via fixed- for other work.

length E-registers. In both the RDMA and T3E approaches ,  Receive overhead. The same as send overhead, but
the remote CPU is not involved, as the network hardware for the receiving side of a message transmission.
entirely handles servicing the memory request at the remote
end. The systems that lack hardware support for remote g
memory operations instead service requests in software at

the device driver layer: thus, while the user’s code does not
need to perform receive calls, the remote CPU is still in-
volved at the operating system level. One of the networks,
Myrinet 2000, currently performs remote ‘put’ operations G Additional gap per byte as messages increase in size.

The gap, defined as the average time between mes-
sages of minimum size during a large sequence of
message transmissions. Inverting this parameter
gives the maximum number of messages that can be
sent during a given interval.

in hardware but implements remote ‘gets’ in software: for The reciprocal of this parameter is the effective max-
this paper we only benchmark ‘puts’, so it is placed in the imum bandwidth of the network.
hardware supported category. P The number of processors.

The networks also differ in whether their hardware pro-
vides reliable delivery of messages (this includes networks
where firmware is used on the NIC to provide reliability).

Most of our parameters are either identical to or only
trivially different from those in the LogP/LogGP models.
Those without such support implement it in software, again We have split their smglg software overhegd parameter into .

separate send and receive components, since these are typi-

at the device driver level. All of the systems that provide callv quite different on networks with hardware suoport for
hardware support for remote memory accesses also provide ya PP

reliable delivery in hardware as well, and vice versa, so f:g\e”if/g]%vr:r?g; Eecﬁzg tgpzeg?;'?gﬁé Icl;]f m@%ﬁicaz? Lc(:) PLFi
these features are perfectly correlated in our sample. . . g 9
authors makes this same extension to the model in [4]). Our
All the networks measured support kernel bypass: user

) ap parameters are identical to those in LogGP. Phma-
programs are allowed to directly access the network hard-g P paral . : . . el
. . rameter is also identical, but since this paper is not con-
ware to avoid the cost of performing one or more system

. . cerned with communication patterns whose performance
calls for each message. The Gigabit Ethernet cluster ac- P b

complishes this by using a brand of card (manufactured depends on number of processors (such as tree-based broad-
b SpsKonnect) ch\t hangVIA [19] drivers supporting the casts, etc.), it does not appear in the remainder of this paper.
VBI/PLyAPI which avoids th tern calls th thr) in grr d We make a more substantive departure from the original
by more éomrﬁonallyouszd I?D-Sgasszd ;f:)t?)colals I?k: Tgé aend LogP/LogGP models in our choice to measure total end-
UDP. Our latency and overhead numbers are thus likely o 0-énd latency EEL) instead of the traditional LogP la-

. ~ 7 tency termL, which refers only to the transport latency of
be better than most other cluster systems running Gigabit Y y P y

Ethernet (furthermore, our SysKonnect machines were di-the network hardware. ‘The LogP/LogGP models assume
! y hat the send overhead, transport latency, and receive over-
rectly connected together, and so our numbers also do no

reflect the delay of going through a GigE hub or switch). s:ﬁgn;mgg?r?:tniﬁ e%f Ea Lmisiagf B{ais;nl?glo?na[igégormed

EEL = o, + L + o, + G % bytes). This assumption, de-
picted in Figure 1, is untenable on some of the networks

The parameters of our performance evaluation are based@*@mined in this paper, at least when nonblocking messag-
on those of the LogP [3] model, which is a well-established ing functions are used (since nonbl_ocklng functions are cru-
approach to modeling small message performance, and ité:'a_I to any parallel program that wishes to overlap compu-
extension to capture large message performance, LogG ation with communication, we have used them throughout

[1]. Our model is quite close to LogGP, but contains certain oar bencrlmmarks).l The call on tr;_?( ||I’1|t|ator’s s||de to ﬁsﬁn'
differences in order to better reflect the observed behaviorschronously complete a send is likely to overlap with the

of the networks tested. The parameters of our version are: ansport of the message, and/or with the call on the re-
ceiver’s side to asynchronously begin the receive, as shown

in Figure 2. On several networks, when MPI is used, we ob-
) . serve that the combined time for the send and receive over-
from the beginning of the send function call to the . . .
. . heads exceed8E' L, so the derived value fak is negative.
receipt of the data on the remote end. This measure,, . : .
. " ~lt is not clear how to measurg if one relaxes the seri-
includes both CPU software overheads and time in _._ . : .
alization assumption and allows for overlap in the model.
the network. : . :
Accordingly, the latency measurements in this paper use
os Send overhead, defined as the amount of time duringonly EE L, with no attempt made to measure the traditional
a message send that the sending CPU is busy withLogP network transport latency parameter.

3. Performance parameters

EEL End-to-end latency, i.e., the total time for a message,
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Figure 1. Traditional LogP model Figure 2. Observed behavior on several cur-
rent networks
4. Benchmarks used 4.1. Ping-pong test

This test sends a message of minimal size (8 bytes) to

A set of three benchmarks was used to capture our pa-a remote processor, which receives it and replies with an-

rameters. On each system we ran at least two versions of ther such message. The first processor blocks _for the re-

these benchmarks: a common, portable MP! version andply’ and then repeats the back-and-forth cycle again. A suit-
o : . ’ able number of iterations are performed to amortize timer

one or more versions written using the lower level network . ) . -

API(s) exposed on the machine. On the T3E, both SHMEM gra_mula_rlty. Th_e resulting total time, d|vu_jed_ by the number

and E-registers were used. On .the IBM SP ’the LAP!I inter- of iterations, gives the average round trip time (RTT) for a

face was used. On Quadrics networks thé same SHMEMminimaI message. Dividing this number in half gives the

API as on the ;I'3E was used (the Quac,jrics elan and elan otal time taken to get from a send call on one processor to

APIs [7] were also tested, but as the results were compa- he end of the receive call on its remote counterpart, i.e., the

rable, only the SHMEM numbers are reported here). The end-to-end latency{ E'L) of the network.

Myrinet 2000 tests used GM. The SysKonnect benchmarks4.2. Flood test

used VIPL. Though the low level benchmarks all used the  1ha fiood test measures how often messages of a given

same messaging logic, they did not share a common codgj; can be injected into the network in a sustained fashion.
base_, S0 each implementation was free to _ad_Just its logic tOThe results provide the andG parameters, and by impli-
maximize performance for the given AP within the param- .4tion the network bandwidth. The flood test was run over
eters of the benchmark’s semantics. message sizes ranging from 8 bytes to 128 Kilobytes, using
powers of 2. We hypothesized that some networks might
Tests were run over at least 10,000 messages, to amortizgerform better when given muitipie messages at once: de-
the cost of timer calls. Certain systems generated resultspending on the network hardware and software stack, han-
that were noisy, with outliers skewing strongly on the side dling groups of messages can reduce locking and various
of longer message timings. Since we are interested in theother sources of overhead. To measure this, we ran the
behavior of these networks under optimal conditions, we flood test with various ‘queue depths.” The basic idea of a
used the minimum observed timings over 10 runs or more queue depth is that the benchmark program attempts to keep
on each system. In practice these minimums tended to bey certain number of sends outstanding at any given time by
close to the median on all but the noisiest networks (the hlgh using non-blocking send calls: the number chosen is the
variance of such networks generally appeared to be the requeue deptly. To achieve this, the benchmark initiates
sult of process contention caused by very relaxed schedulsends, waits foy/2 of these messages to complete locally,
ing of user processes). When tests called for a minimumthen issues anoth@f/Q new sends. This pattern of wait-
sized message, one eight bytes in size was used, rather thaﬁg for q/2 CompietionS' then issuing as many new ones,
one of zero bytes, to avoid having the network APIs poten- is done in a loop until all messages are issued. Theglast
tially optimize away messages. For the reasons discussegyorth of outstanding sends is then completed. Finally, the
in the previous section, nonblocking ‘put’ operations were sender waits for a single reply from the receiver, to guaran-
used for all tests. tee that all the messages it sent have actually completed at
the other end. This final message is necessary since most
We now discuss the logic and design of the three bench-non-blocking network APIs only guarantee upon comple-
marks, and how they were used in combination to measuretion that the buffer used to send the message is available for
our parameters. reuse, not that the message has been received on the other
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Figure 3. Send and receive software overheads (o, and o,) superimposed on end-to-end latency
(FEL). For MPI on both the T3E and Myrinet, the sum of the overheads is greater then FEFEL, and so
0s =S+ V and o, = R+ V. For the other configurations o, =S and o, = R.

end of the network connection. For some APIs (such as thehead 6,) and the computation exceeds the ga@and the
SHMEM API on the T3E and Quadrics) a ‘quiet’ function total running time for the benchmark is increased. By tak-
is available which provides a similar guarantee that all mes-ing the maximum amount of CPU time that can be ‘hidden’
sages have been delivered. Regardless of which method isvithout increasing the benchmark time, and subtracting it
used to guarantee delivery, for sufficiently largye (typi- from g, the send overhead ) can be inferred. Receive
cally 10,000 or more messages), this final reply or quiet call side overhead, is measured in a similar manner by in-
is amortized away, and dividing the total time by the number serting computation in between the start and completion of
of messages provides the gap paramgtehen minimum non-blocking receive calls. On networks that support re-
sized messages are used. The per-byte gapoah then mote memory accesses in hardware, this works differently,
be calculated by taking the difference betweegand the as no receive calls are used on the receive side: instead the
average times for larger message sizes. computation is done in isolation, followed by a ‘quiet’ call
that guarantees that all messages have been received.

4.3. CPU overlap test

5. Results

The CPU overlap test determines the amount of software .
overhead involved in sending and receiving messages. The5'1' Comparing small message latency
code is identical to the flood test with a message size of 8 The total height of the bars in Figure 3 gives the end-
bytes and a queue depth of one, except that an increasingo-end latency ¥ F L) of the networks we examined for an
amount of computation is gradually inserted into the pro- 8-byte send. Thé& EL is a good indication of how appli-
gram. This computation is placed between the calls thatcations will perform when they block for the completion of
initiate and complete a non-blocking send operation. Suffi- small messages (such as a fetch of a single value for im-
ciently small amounts of computation will not make a dif- mediate use). However, since our tests were written using
ference in the benchmark’s timing for most networks, since nonblocking send APIs (as the overlapping operations we
the call to complete the send would have blocked anyway next discuss require them), a program using blocking func-
(for interfaces where the send overhead is so large as to detions (which typically incur less software overhead) might
termine the inverse throughput, no ‘free’ overlapping com- expect to see slightly loweE E L than reported here. For
putation is possible). As the amount of computation per uniformity we report one half of the round-trip time of the
message is increased, eventually the sum of the send overremote write case, even for networks which also support re-
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Figure 4. Effect of clustering 8-byte sends on Figure 5. Gap and overheads for 8-byte mes-
message gap sages
mote ‘gets’ in hardware. on Quadrics/SHMEM, the two become much closer when

As our results clearly show, the end-to-end latency considering only send side overhead, which is 0.7 usec on
of current high-performance networks varies considerably, Myrinet and 0.4 usec on Quadrics. With5 — 0.7 =
with a factor of ten separating the smallest and largest ob-7.8 usec of potential overlap time on Myrinet/GM, and
served values. These differences are not clearly correlated.7 — 0.4 = 1.3 usec of QuadricssfSHMEM, overlapping
to system bandwidth, nor to the tightness of integration be- has much higher potential on Myrinet/GM.
tween the CPU/memory system and the network interface:
for instance, the IBM SP has much higher latency than the

other SySte(Tfh des?te Eavm? tlrlle fastest bus between the, s generally incur a significant software overhead, and
me(r)nory ar: ehr_1e Wotrh con fro er. fih il this tends to be reflected in higher latencies. This is not sur-
. f most machines, the performance ot the more specia “prising, given that most of the MPI implementations tested
ized layers is better than MPI. This is most pronounced on here are built on top of the other network APIs, and can thus

thﬁ QuidArILCIS. system. t;l'f;e Fxcepttlr?n ISI\/'I[E? I_Il?rl]\/l machine, only add additional costs (the one MPI implementation that
where IS somewnat Slower than - NIS apPEAIS 1,515 the alternative API's latency is the IBM SP’s, which

t(? be due to higher Io_cklng overhead: we report data for js not build on top of LAPI, and which benefits from lower
smgle-threaded MPI I|bre_1ry, t_)Ut LAPI currently_has only a locking overheads, as described above). However, networks
threaq-safe |mplementat|on (if the benchmark IS run on thewhich depart from the classic LogP assumption of the seri-
.SP .W'th a thread—se}fe version of the MP! library, its latency alization of overhead costs can display much lower latencies
is higher than LAPT's). than LogP would predict. For example, the T3E’s relatively
5.2. Potential for overlapping computation low MPI latency is mainly due to the overlap of its send
and receive overheads: if these were executed serially, its
EFEL would be over 12 microseconds. One side effect of
this lower latency is that very little computational overlap is
possible during messaging. On some networks, particularly

The results also help explain thHeE L differences be-
tween MPI and the other network layers. MPI implemen-

When optimizing communication, a standard technique
is to overlap the communication with computation. Figure 3
shows the potential for latency hiding by superimposing the

send and receive overhead on the end-to-end laténEy) ) . .
Myrinet, the cost of using MPI instead of a lower-level API

bars from Figure??. On most systems, the total latency is . th ‘hidden’ - latenci imilar. but th
more than the sum of the send and receive overheads, witS thus a ‘hidden-one: latencies are simiiar, but the oppor-

the remainder shown in the figure as ‘Other.’ In the MPI tunity for computational overlap is greatly reduced.
layers for both the T3E and Myrinet, however, the com-  Another trend highlighted by the data is the significant
bined send and receive overhead exceed$itRd. (so the improvement that hardware support for one-sided remote
total send overhead, for example, is the sum of the ‘Send’ memory operations tends to make for both latency time and
component and the ‘Send & Receive Overlap’ componentssoftware overhead. In particular, the receive overhead for
on the chart). the networks with hardware support for remote operations
These results show the potential benefits of overlapping(the T3E, Quadrics, and Myrinet) is effectively zero. For
communication with computation. For example, while the an application in which processors are acting equally as
EFEL of Myrinet/GM is 8.5 usec compared to 1.7 usec senders and receivers, the amount of computational over-



lap possible is given b EL — (o5 + o,-), and so machines The cumulative effect of figures 4 and 5 suggests that

with zero receive overhead have a large advantage. using lower-level, one-sided network APIs is advantageous
. . L for parallel applications which frequently send small mes-
5.3. Potential for overlapping communication sages: the latencies and software overheads incurred by

Another strategy for optimization is to overlap commu- €ach message tend to be considerably lower than when MPI
nication with more communication. Rather than filling idle 1S used. Furthermore, they generally provide more potential
CPU time with computation, as in the previous section, it for reducing the cost of communication via overlapping ei-
can be used to send additional messages. Figure 4 showther _communicatio_n or computation. While the ideal strat-
the gap () for 8-byte message from our flood test, which €9y iS probably still to coalesce small messages whenever
pushes multiple messages into the network as quickly asPossible, this can be difficult in applications where each
possible. On each machine, we vary the queue depth ( Processor is communicating with many targets. The ability

parameter, which indicates the number of messages that arf? OPtimize communication through overlap is very promis-
simultaneously awaiting transmission. ing in the context of optimizing GAS compilers, since some

As predicted, for some networks and APIs, clustering ©f these languages allow applications programmer to ex-
messages results in greater efficiency, as evidenced by th&licitly indicate that overlapping or reordering accesses is
reduction in the gap agis increased. This is most notable €92l [23].
on Quadrics/MPI, Myrinet/GM, and both GigE layers. On
these machines, communication overlap is especially valu-
able, because it not only masks end-to-end latency but also A third type of communication optimization is to aggre-

5.5. Large message performance

reduces it. gate small messages into large ones. Estimating the cost
) of such a transformation involves a detailed understanding
5.4. Using both types of overlap concurrently of factors (such as memory system performance) which are

On some systems, it may be possible to combine bothbeyond the scope of this paper. It also depends on the size
forms of overlap, first initiating as large a group of clustered Of messages in the application, before and after packing.
messages as is possible, then filling any remaining time with!n the absence of such information, we can still compute
computation. Measuring the degree to which this is possi-an upper bound on the speedup possible from packing, by
ble in practice is difficult, and may be largely limited by calculating the maximum bandwidth achievable for the ag-
an application’s structure: the number of messages avail-9régated message size. This is given by the cost per byte
able for clustering and the amount of computation that can (&) in LogGP.
be performed before the messages are completed will vary Figure 6 shows the two different gap values for each
with a program’s semantics. Also, the size of the messagedietwork: the inverse throughpug)(for small messages,
that are used may change the relative sizes of the commuwhich gives a lower bound on the per-message cost, and
nication gap and software overhead. However, we can getthe inverse bandwidth for large messag@$, (vhich gives
a rough idea of which systems are likely to have extra CPU @ lower bound on the per byte cost. These two values dif-
time available during clustering from figure 5, which com- fer by about three orders of magnitude, so we show the in-
pares the gap between 8-byte messages with the send an¢grse bandwidth in microseconds per kilobyte, rather than
receive software overhead per message. per byte.

This chart is somewhat artificial, in that it uses the = One would expect the inverse bandwidh) ¢o be deter-
bestg obtained from all queue depths tested on each ma-mined primarily by the hardware, rather than varying with
chine, while the overheads were measured only with the communication layer. On most machines this is true, but
1. As a result, on certain platforms (the SP, GigE, and both the IBM and Myrinet show some loss of bandwidth (in-
Myrinet/MPI) the send overhead actually appears to be creasedx) for MPI relative to LAPI and GM, respectively.
higher than the gap, which is impossible: presumably clus- Ignoring these differences, the machines are roughly sorted
tering lowers the send overhead on these systems, much aBy theirG value, with the highest bandwidth machine being
it does the gap, but we have not measured this. Neverthethe T3E, and the lowest being GigE. There is little correla-
less, it is clear that some platforms are more likely to have tion betweenG and the per-message gapwhich varies
CPU time left over for computation during clustering af- between 1 and 10 usecs.
ter the overhead of message traffic is subtracted from the One common question for application performance anal-
gap. Myrinet/GM, Quadrics/SHMEM, and T3E/SHMEM ysis is whether a given application is more sensitive to the
are the clearest cases of this. Since these APIs require ndéatency or the bandwidth of the network. This is the same
CPU activity to receive a message, they are likely to supportas asking whether the average message sent by the appli-
computational overlap even when an application is simula- cation is ‘large’ (bandwidth-bound), or ‘small’ (bound by
neously sending and receiving clusters of messages. fixed per-message costs). Within a context where one is
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clustering messages, the relevant fixed cost per message istroduced the LogP performance model of parallel compu-
the base gap between small messages. Assuming that the tation. Their model is built upon the realization that modern
cost of a message of size is roughlyg + M x G, we parallel systems are essentially comprised of complete com-
can determine the size at which the two terms have equalputers connected by a communication fabric. Culler et al.

weight, i.e.,M = ¢g/G. Any message larger thany G will [4] measured the model’'s parameters for the Intel Paragon,
be dominated by the bandwidth terd/(x G), and canthus  Meiko CS-2 and Myrinet using an approach similar to our
be considered ‘large.’ flood and CPU overlap benchmarks. lanello et al. [10] mea-

Figure 7 shows that the minimum size for a large mes- sure the same parameters for an implementation of Fast
sage varies greatly in the networks under consideration: theMessages [20] running on Myrinet. Further research has
difference is a factor of six from the smallest to the largest extended the LogP model to take into account other factors

crossover size. that influence application performance, and tailor the model
for different communication layers (e.g., MPI) and archi-
6. Historical trends in performance tectures. Alexandrov et al. extend it wifh (LogGP [1]) to

capture the cost of large messages. Moritz and Frank fur-
As our benchmarks have shown, the level of support for ther extend LogGP (LoGPC [17]) to take into account the
small message performance is quite disparate among coneffects of message pipelining and network contention. Al-
temporary high-performance network architectures. Figure Tawil and Moritz [16] use LogGP to analyze the behavior
8, which shows software overheads for message transmispf MP| under the different send protocols mandated by the
sions on various systems over the last decade, demonstrategtandard. Ino et al. tailor the LogGP model (LogGPS [12])
that this variability is part of a historical pattern. to account for the synchronization costs hidden in MPI im-
While most parameters in computing—from CPU speed plementations. Using LogGPS, they are able to determine

to memory latency to hard disk seek time—show at least the threshold where an MPI implementation switches from
gradual improvement over time, software overheads andan asynchronous to a synchronous protocol.

message latencies for network transmissions have exhibited  Our approach in this study of network performance oc-

a comparatively amorphous behavior whose general trenccupies a middle ground between these methodologies. We
is if anything toward worse performance, even by absolute find the parameters of the LogP model to be very useful
measures. While these parameters are unlikely to ever keerpn understanding program performance and also in guiding
pace with the exponential improvements in processor per-program optimizations. However, the increased hardware
formance, we hope that they can at least exhibit a positiveand software complexity of modern systems results in an
trend in the future, and that support for them may become gpservable behavior that does not fit the original model. In
more consistent across vendors. The IIker replacement inparticu|ar’ the assumption that the one-way message |atency
commodity PCs of the aging PCI bus standard in favor of js given by the suni + o, + o,. does not hold for some sys-
newer technologies like Infiniband [11], PCI-X [21], and tems (T3E/MPI and Myrinet/MPI). This is the justification

HyperTransport [9] would be a positive development, for for our choice of theZ EL parameter as a better indication
instance, as the PCI bus is currently a bottleneck for manyof network performance.

of the networks examined here.
8. Future work

7. Related work o . o
There are many directions in which the work in this pa-

Historically, performance assessment of communication per should be extended. The current benchmarks test only
networks has been performed using two different method- message ‘put’ operations; gathering information on the per-
ologies. One school of thought is primarily interested in formance of remote ‘get’ operations has obvious relevance
determining the round-trip latency and large message bandfor operations like prefetching of data. The tests here also
width as indicators of network performance. Dongarra et assume the software overhead costs are fixed, based on test
al. [5] measure latency and bandwidth for a large class of results from 8-byte messages. It would be interesting to
multiprocessor systems: Convex, Cray, IBM, Intel, KSR, know the extent to which these overheads increase with
Meiko, nCUBE, NEC, SGI and TMC using a ping-pong message size (the answers might be different for networks
benchmark. Luecke et al. [15] evaluate the communica- with hardware support for remote transfers versus those
tion performance of Linux and NT clusters, the Cray Origin without it), and/or decrease with clustering (i.e., with the
2000, IBM SP and Cray-T3E. More recently, Petrini et al. ¢ parameter in our flood test). Our tests have all been per-
[22] examine the performance of Quadrics networks using formed either on uniprocessor machines, or on SMPs with
uni- and bi-directional ping benchmarks. only one processor in use. Given that most production clus-

A different school of thought adopts a more detailed ter architectures use SMP nodes, it would be a useful contri-
model of the network performance. In 1993, Culler et al. [3] bution to measure the effect that contention for the network



and other resources has on our parameters. As mentione{iseaborg’), and Myrinet 2000 cluster (‘alvarez’). The ‘Mil-
previously, our estimates for the maximum speedup that canlennium’ PC cluster at U.C. Berkeley was also used for
be attained from message packing are based only on thesome preliminary Myrinet development. Thanks also go to
bandwidth figures for the various networks. A more realis- David Addison and Ashley Pittman of Quadrics, who pro-
tic assessment of the likely speedups attainable would needrided very useful assistance at various points in our bench-
to measure the cost of packing and unpacking aggregatednark development.

messages, which may add significant costs to this strategy.
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