
Memory-Intensive Benchmarks: IRAM vs. Cache-Based Machines

Brian R. Gaeke1, Parry Husbands2, Xiaoye S. Li2, Leonid Oliker2,
Katherine A. Yelick1,2, and Rupak Biswas3

1Computer Science Division, University of California, Berkeley, CA 94720
2NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
3NAS Division, NASA Ames Research Center, Moffett Field, CA 94035

Abstract

The increasing gap between processor and memory
performance has led to new architectural models for
memory-intensive applications. In this paper, we use a set
of memory-intensive benchmarks to evaluate a mixed
logic and DRAM processor called VIRAM as a building
block for scientific computing. For each benchmark, we
explore the fundamental hardware requirements of the
problem as well as alternative algorithms and data struc-
tures that can help expose fine-grained parallelism or
simplify memory access patterns. Results indicate that
VIRAM is significantly faster than conventional cache-
based machines for problems that are truly limited by the
memory system and that it has a significant power advan-
tage across all the benchmarks.

1. Introduction

Many high performance applications run well below
the peak arithmetic performance of the underlying ma-
chine, with the inefficiency being often attributed to a lack
of memory bandwidth. In particular, applications involv-
ing sparse matrices, unstructured meshes, sorting, or table
lookups are often said to be bandwidth-limited. In this
paper, we focus on the memory bandwidth problem within
individual processing nodes, and evaluate a novel Intelli-
gent RAM design that mixes logic and DRAM on a single
chip. VIRAM is a vector processor designed for multi-
media applications; it couples on-chip DRAM for high
bandwidth with vector processing to express fine-grained
data parallelism [4]. The peak memory bandwidth of VI-
RAM is 6.4 GB/s, which is 5−10× higher than most
cache-based machines. An early study of processor-in-
memory technology showed that conventional processor
designs did not take advantage of the enormous on-chip
bandwidth [19], whereas the explicit parallelism in vector
instructions could be used for high arithmetic performance
as well as for masking memory latency. Energy consump-
tion and cooling are also concerns for large-scale ma-
chines, and the use of fine-grained parallelism provides
much better energy efficiency than a high clock rate.

In this paper, we compare the performance of several

memory-intensive scientific kernels on VIRAM and other
architectures. The purpose is to: 1) evaluate the general
idea of processor-in-memory chips as a building block for
high performance computing; 2) examine specific features
of the VIRAM processor, which was designed for media
processing, for use in scientific computing; 3) determine
whether on-chip DRAM can be used in place of the more
expensive SRAM-based memory systems of vector super-
computers; and 4) isolate features of the architecture that
limit performance, showing that the issues are more com-
plex than simply memory bandwidth. We treat each
benchmark as a paper-and-pencil description and explore
several alternative algorithms to improve performance.

2. VIRAM Architecture

The VIRAM architecture [4] extends the MIPS instruc-
tion set with vector instructions that include integer and
floating point operations, as well as memory operations
for sequential, strided, and indexed (scatter/gather) access
patterns. The processor has 32 vector registers, each con-
taining up to 32 64-bit values. Logically, a vector opera-
tion specifies that the operation may be performed on all
elements of a vector register in parallel. The current mi-
cro-architecture is divided into 4 64-bit lanes, so a single
vector instruction is executed by the hardware 4 elements
at a time.

Figure 1: Block diagram of VIRAM

The hardware resources devoted to functional units and
registers may be subdivided to operate on 8, 16, 32, or 64-
bit data. When the data width (known as the virtual proc-
essor width) is cut in half, the number of elements per
register doubles, as does the peak arithmetic rate. The
virtual processor width may be set by the application soft-
ware and changed dynamically as different data types are
used in the application. VIRAM contains two integer
functional units and one floating-point unit, and to support
conditional execution, a register of flags can mask indi-
vidual elements during a vector operation.

The VIRAM implementation includes a simple in-
order MIPS processor with cache, a floating point unit, a
DMA engine for off-chip access, a memory crossbar, and
a vector unit which is managed as a co-processor. Figure 1
shows the major blocks in the chip; the shaded area is a
full memory crossbar, which allows any lane to access any
DRAM bank. The estimated transistor count is over 100
million, while the clock rate is 200MHz and the power
consumption is only 2 Watts. There are 12 MB of on-chip
DRAM organized into 8 banks, and all of the memory is
directly accessible from both scalar and vector instruc-
tions. As an academic research project, some compro-
mises were made to simplify the chip design. There is no
64-bit floating-point capability, and the compiler does not
generate fused multiply-add instructions; so these aspects
of the instruction set specification will be omitted from
further consideration. The resulting peak performance for
VIRAM is 1.6 GFLOPS for 32-bit floating-point opera-
tions, 3.2 GOPS for 32-bit integer operations, and 6.4
GOPS for 16-bit integer operations.

 The variable data widths in VIRAM are common to
other SIMD media extensions such as Intel’s SSE, but
otherwise the architecture more closely matches vector
supercomputers. In particular, the parallelism expressed in
SIMD extensions are tied to the degree of parallelism in
the hardware, whereas a floating-point instruction in VI-
RAM specifies 64-way parallelism while the hardware
only executes 8-way. The advantages of specifying longer
vectors include lower instruction bandwidth needs, a
higher degree of parallelism for memory latency masking,
and the ability to change hardware resources across chip
generations without requiring software changes.

3. Benchmark Applications

Our benchmarks were chosen to stress the limits of a
processor’s memory system, but they represent the kernels
of real applications of interest in large-scale scientific
computing. Most of them are taken from the DARPA Data
Intensive Systems (DIS) stressmark suite [8]. In general,
data-intensive applications are characterized by low
arithmetic operation counts per datum relative to memory
access. Many of the problems are further complicated by
irregular memory access patterns or control structures.

These characteristics often lead to performance scaling
deficiencies when executed in parallel and to memory
bottlenecks on single processors.

Transitive Closure: The first benchmark problem is to
compute the transitive closure of a directed graph in a
dense representation [6]. The code taken from the DIS
reference implementation used non-unit stride [8], but was
easily changed to unit stride. This benchmark performs
only 2 arithmetic operations (an add and a min) at each
step, while it executes 2 loads and 1 store.

GUPS: This benchmark is a synthetic problem, which
measures giga-updates-per-second [9]. It repeatedly reads
and updates distinct, pseudo-random memory locations.
The inner loop contains 1 arithmetic operation, 2 loads,
and 1 store, but unlike transitive, the memory accesses are
random. It contains abundant data-parallelism because the
addresses are pre-computed and free of duplicates.

Sparse Matrix-Vector Multiplication (SPMV): This
problem also requires random memory access patterns and
a low number of arithmetic operations. It is common in
scientific applications, and appears in both the DIS [8]
and NPB [2] suites in the form of a Conjugate Gradient
(CG) solver. We have a CG implementation for IRAM,
which is dominated by SPMV, but here we focus on the
kernel to isolate the memory system issues. The matrices
contain a pseudo-random pattern of non-zeros using a
construction algorithm from the DIS specification [8],
parameterized by the matrix dimension, n, and the number
of nonzeros, m.

Histogram: Computing a histogram of a set of integers
can be used for sorting and in some image processing
problems [8]. Two important considerations govern the
algorithmic choice: the number of buckets, b, and the like-
lihood of duplicates. For image processing, the number of
buckets is large and collisions are common because there
are typically many occurrences of certain colors (e.g.,
white) in an image. Histogram is nearly identical to GUPS
in its memory behavior, but differs due to the possibility
of collisions, which limit parallelism and are particularly
challenging in a data-parallel model.

Mesh Adaptation: The final benchmark is a two-
dimensional unstructured mesh adaptation algorithm [18]
based on triangular elements. This benchmark is more
complex than the others, and there is no single inner loop
to characterize. The memory accesses include both ran-
dom and unit stride, and the key problem is the complex
control structure, since there are several different cases
when inserting a new point into an existing mesh. Starting
with a coarse-grained task parallel program, we performed
significant code reorganization and data preprocessing to
allow vectorization.

Table 1 summarizes the key features of each of our
benchmarks. All are memory-intensive: the number of
arithmetic/logical operations per step of the algorithm
(Ops/step) is never more than the number of memory op-

erations (loads/stores) per step (Mem/step). Most of them
involve some amount of irregular memory access, indi-
cated in the table as indexed, although in the case of
SPMV and histogram, we consider several different algo-
rithms across which the number and nature of indexed
memory operations differ. The table does not capture dif-
ferences in parallelism, which may limit vector length, or
the control irregularity, which leads to less efficient
masked operations.

 Width Mem
access

Data
size

Total
Ops

Ops/
step

Mem/
step

 Transitive 32 unit n2 n3 2 2 ld
1 st

 GUPS 8,16,
32,64

indexed,
unit 2n 2n 1 2 ld,

1 st

 SPMV 32 indexed,
unit

2m +
2n 2m 2 3 ld

 Histogram 16,32 indexed,
unit n + b n 1 2 ld,

1 st

 Mesh 32 indexed,
unit 1000n N/A N/A N/A

Table 1. Key features of benchmarks

4. Benchmarking Environment

As a comparison for the VIRAM design, we chose a
set of commercial microprocessor systems. Most of these
are high-end workstation or PC processors, but we also
included a low power Pentium III for comparison. Details
of the systems are show in Table 2.

 SPARC
IIi

MIPS
R10K P III P 4 Alpha

EV6

Make Sun
Ultra 10

Origin
2000

Intel Mo-
bile Dell Compaq

DS10
Clock 333MHz 180MHz 600MHz 1.5GHz 466MHz

L1 16+16KB 32+32KB 32KB 12+8KB 64+64KB
L2 2MB 1MB 256KB 256KB 2MB

Mem 256MB 1GB 128MB 1GB 512MB

Table 2. Cache-based machines in our study

The VIRAM chip is scheduled for fabrication in early

2002, so performance reported here is based on a cycle-
accurate simulator of the chip. The compiler is based on
Cray’s vectorizing C compiler, which has been developed
with over 20 years of experience in vectorization. The
compiler performs several loop transformations and al-
lows users to assert that a loop is free of dependencies.
This is important for loops with indexed memory opera-
tions that may not be provably vectorizable. The VIRAM

version has its own backend that generates a mixture of
MIPS scalar instructions and VIRAM vector instructions.
While the machine-independent vectorizer is quite sophis-
ticated, the code generator has not gone through the kind
of rigorous performance tuning that one would expect
from a commercial compiler. In particular, there are cases
in which the compiler generates extra boundary checks
and redundant loads, and we note two instances below
where we somewhat hand-tuned the code.

5. Memory Bandwidth

The best-case scenario for both caches and vectors is a
unit stride memory access pattern, as found in the transi-
tive closure benchmark. In this case, the main advantage
for IRAM is the size of its on-chip memory, since DRAM
is denser than SRAM. VIRAM has 12 MB of on-chip
memory compared to 10s of KB for the L1 caches on the
cache-based machines. IRAM is admittedly a large chip,
but this is partly due to being an academic research pro-
ject with a very small design team—the 2-3 orders of
magnitude advantage in on-chip memory size is due pri-
marily to the memory technology.

0

200

400

600

800

1000

VIR
AM

R10
K

P-III P4
Spa

rc
EV6

M
O

PS

100 vertices
200 vertices
300 vertices
400 vertices
500 vertices

Figure 2. Performance of Transitive Closure

Figure 2 shows the performance of the transitive clo-
sure benchmark. Results confirm the expected advantage
for VIRAM on a problem with abundant parallelism and a
low arithmetic/memory operation ratio. Performance is
relatively insensitive to graph size, although VIRAM per-
forms better on larger problems due to the longer average
vector length. The Pentium 4 has a similar effect, which
may be due to improved branch prediction because of the
sparse graph structure in our test problem.

6. Address Generation and Memory Conflicts

 A more challenging memory access pattern is one with
either non-unit strides or indexed loads and stores (scat-
ter/gather operations). The first challenge for any ma-
chine is generating the addresses, since each address
needs to be checked for validity and for collisions. VI-
RAM can generate only 4 addresses per cycle, independ-

ent of the data width. For 64-bit data, this is sufficient to
load or store a value on every cycle, but if the data width
is halved to 32-bits, the 4 64-bit lanes perform arithmetic
operations at the rate of 4 32-bit lanes, and the arithmetic
unit can more easily be starved for data. In addition, de-
tails of the memory bank structure can become apparent,
as multiple accesses to the same DRAM bank require ad-
ditional latency to charge the DRAM. The frequency of
these bank-conflicts depends on the memory access pat-
tern and the number of banks in the memory system.

The GUPS benchmark results, shown in Figure 3, high-
lights the address generation issue. Although performance
improves slightly when moving from 64 to 32 bits, after
that performance is constant due to the limits for 4 address
generators. Overall, though, VIRAM does very well on
this benchmark, nearly doubling the performance of its
nearest competitor, the Pentium 4, for 32 and 64 bit data.
In fairness, GUPS was the one benchmark in which we
tidied up the compiler-generated assembly instructions for
the inner loops, which produced a 20-60% speedup.

0

50

100

150

200

250

300

350

VIR
AM

R10
K

P-III P4
Spa

rc
EV6

M
O

PS

64 -b it
32 -bit
16-bit
8-b it

Figure 3. Performance of GUPS

In addition to the MOP rate, it is interesting to observe
the memory bandwidth consumed in this problem. GUPS
achieves 1.77, 2.36, 3.54, and 4.87 GB/s memory band-
width on VIRAM at 8, 16, 32, and 64-bit data widths,
respectively. This is relatively close to the peak memory
bandwidth of 6.4 GB/s.

7. Exploiting Fine-Grained Parallelism

 Nearly all modern processors use fine-grained paral-
lelism for performance, especially to mask memory la-
tency. In VIRAM, the use of parallelism is explicit in the
instruction set, which allows for a simple, low-power im-
plementation, but places the burden of discovering paral-
lelism on the application programmer and compiler. Our
last three benchmarks, SPMV, Histogram, and Mesh,
while ostensibly just as memory-intensive as the first two,
required more work on our part to take advantage of the
on-chip memory bandwidth provided by VIRAM. The
issues are slightly different across the benchmarks: SPMV

is limited by the degree of parallelism, whereas Histogram
and Mesh have parallelism, but not pure data parallelism.
We describe each of these vectorization problems below.

7.1 SPMV

 For our SPMV benchmark, we set the matrix dimen-
sion to 10,000 and the number of nonzeros to 177,782,
i.e., there were about 18 nonzeros per row. The computa-
tion is done in single precision floating-point. The pseudo-
random pattern of nonzeros is particularly challenging,
and many matrices taken from real applications have some
structure that would have better locality, which would
especially benefit cache-base machines [11].

0

100

200

300

400

500

600

VIR
AM

R10
K

P-III P4
Spa

rc
EV6

M
FL

O
PS

CRS
CRS Banded
ELLPACK
ELLPACK (eff)
Seg. Sum

 Figure 4. Performance of SPMV

We consider 4 different algorithms for SPMV, reflect-
ing the best practice for both cache-based and vector ma-
chines. The performance results are shown in Figure 4.
Compressed Row Storage (CRS) is the most common
sparse matrix format, which stores an array of column
indices and non-zero values for each row; SPMV is then
performed as a series of sparse dot products. The per-
formance on VIRAM is better than some cache-based
machines, but it suffers from lack of parallelism. The dot
product is performed by recursive halving, so vectors start
with an average of 18 elements and drop from there. Both
the P4 and EV6 exceed VIRAM performance for this rea-
son. CRS-banded uses the same format and algorithm as
CRS, but reflects a different nonzero structure that would
likely result from bandwidth reduction orderings, such as
reverse Cuthill-McKee (RCM) [7]. This has little effect on
IRAM, but improves the cache hit rate on some of the
other machines.

The Ellpack (or Itpack) format [13] forces all rows to
have the same length by padding them with zeros. It still
has indexed memory operations, but increases available
data parallelism through vectorization across rows. The
raw Ellpack performance is excellent, and this format
should be used on VIRAM and PIII for matrices with the
longest row length close to the average. If we instead

measure the effective performance (eff), which discounts
operations performed on padded zeros, the efficiency can
be arbitrarily poor. Indeed, the randomly generated DIS
matrix has an enormous increase in the matrix size and
number of operations, making it impractical.

The Segmented-sum algorithm was first proposed for
the Cray PVP [5]. The data structure is an augmented
form of the CRS format and the computational structure is
similar to Ellpack, although there is additional control
complexity. We modified the underlying Ellpack algo-
rithm that converts roughly 2/3 of the memory accesses
from a large stride to unit stride. The remaining 1/3 are
still indexed references. This was important on VIRAM,
because we are using 32-bit data and have only 4 address
generators as discussed above.

7.2. Histogram

This benchmark builds a histogram for the pixels in a
500×500 image from the DIS Specification. The number
of buckets depends on the number of bits in each pixel, so
we use the base 2 logarithm (i.e., the pixel depth) as the
parameter in our study. Performance results for pixel
depths of 7, 11, and 15 are shown in Figure 5. The first
five sets are for VIRAM, all but the second (Retry 0%)
use this image data set. The first set (Retry) uses the
compiler default vectorization algorithm, which vectorizes
while ignoring duplicates, and corrects the duplicates in a
serial phase at the end [22]. This works well if there are
few duplicates, but performs poorly for our case. The sec-
ond set (Retry 0%) shows the performance when the same
algorithm is used on data containing no duplicates. The
third set (Priv) makes several private copies of the buckets
with the copies merged at the end [1]. It performs poorly
due to the large number of buckets and gets worse as this
number increases with the pixel depth.

0

50

100

150

200

250

Retr
y

Retr
y 0

% Priv

Sort
 32

Sort
 16

R10
K

P-III P4
Spa

rc
EV6

M
O

PS

7-bit Input
11-bit Input
15-bit Input

Figure 5. Performance of Histogram

The fourth and fifth algorithms use a more sophisti-
cated sort-diff-find-diff algorithm [16] that performs in-
register sorting. Bitonic sort [3] was used because the
communication requirements are regular and it proved to
be a good match for VIRAM's “butterfly” permutation

instructions, designed primarily for reductions and FFTs
[23]. The compiler automatically generates in-register
permutation code for reductions, but the sorting algorithm
used here was hand-coded. The two sort algorithms differ
on the allowed data width: one works when the width is
less than 16 bits and the other when it is up to 32 bits. The
narrower width takes advantage of the higher arithmetic
performance for narrow data on VIRAM.

Results show that on VIRAM, the sort-based and pri-
vatized optimization methods consistently give the best
performance over the range of bit depths. It also demon-
strates the improvements that can be obtained when the
algorithm is tailored to shorter bit depths. Overall, VI-
RAM does not do as well as on the other benchmarks,
because the presence of duplicates hurts vectorization, but
can actually help improve cache hits on cache-based ma-
chines. We therefore see excellent timings for the histo-
gram computation on these machines without any special
optimizations. A memory system advantage starts to be
apparent for 15-bit pixels, where the histograms do not fit
in cache, and at this point VIRAM's performance is com-
parable to the faster microprocessors.

7.3. Mesh Adaptation

This benchmark performs a single level of refinement
starting with a mesh of 4802 triangular elements, 2500
vertices, and 7301 edges. In this application, we use a
different algorithm organization for the different ma-
chines: The original code was designed for conventional
processors and is used for those machines, while the vec-
tor algorithm uses more memory bandwidth but contains
smaller loop bodies, which helps the compiler perform
vectorization. The vectorized code also pre-sorts the mesh
points to avoid branches in the inner loop, as in Histo-
gram. Although the branches negatively affect superscalar
performance, presorting is too expensive on those ma-
chines. Mesh adaptation also requires indexed memory
operations, so address generation again limits VIRAM.
Figure 6 shows the performance.

0
100
200
300
400
500
600

VIRAM R10K P-III P4 Sparc EV6

M
FL

O
PS

Figure 6. Performance of Mesh Adaptation

8. Summary of Benchmark Characteristics

An underlying goal in our work was to identify the lim-
iting factor in these memory-intensive benchmarks. The
graph in Figure 7 shows the memory bandwidth used on
VIRAM and the MOPS rate achieved on each of the
benchmarks using the best algorithm on the most
challenging input. GUPS uses the 64-bit version of the
problem, SPMV uses the segmented sum algorithm, and
Histogram uses the 16-bit sort.

While all of these problems have low operation counts
per memory operation, as shown in Table 1, the memory
and operation rates are quite different in practice. Of
these benchmarks, GUPS is the most memory-intensive,
whereas Mesh is the least. Histogram, SPMV and Transi-
tive have roughly the same balance between computation
and memory, although their absolute performance varies
dramatically due to differences in parallelism. In particu-
lar, although GUPS and Histogram are nearly identical in
the characteristics from Table 1, the difference in parallel-
ism results in a very different absolute performance as
well as relative bandwidth to operation rate.

0
1000
2000
3000
4000
5000
6000

Tran
sit

ive
GUPS

SPMV
Hist

Mes
h

M
B

/s

0
200
400
600
800
1000

M
O

PS

Memory
Bandwidth
Computation
Rate

Figure 7. Memory bandwidth vs. MOPS

9. Power and Performance

Figure 8 shows the summary of performance for each
of the benchmarks across machines. The y-axis is a log
scale, and IRAM is significantly faster than the other ma-
chines on all applications except SPMV and Histogram.

An even more dramatic picture is seen from measuring
the MOPS/Watt ratio, as shown in Figure 9. Most of the
cache-based machines use a small amount of parallelism,
but spend a great deal of power on a high clock rate. In-
deed a graph of Flops per machine cycle is very similar.
Only the Pentium III, designed for portable machines, has
a comparable power consumption of 4 Watts compared to
IRAM’s 2 Watts. The Pentium III cannot compete on
performance, however, due to lack of parallelism.

1

10

100

1000

Tran
sit

ive
GUPS

SPMV
Hist

Mes
h

M
O

PS

VIRAM
R10K
P-III
P4
Sparc
EV6

Figure 8. Performance across machines

0.1

1

10

100

1000

Tr
an

si
tiv

e

G
U

PS

SP
M

V

H
is

t

M
es

h

M
O

PS
/W

at
t

VIRAM
R10K
P-III
P4
Sparc
EV6

Figure 9. Power efficiency

10. Related Work

The VIRAM processor is one example of a system that
uses mixed logic and DRAM [14,15]. Other examples
include the DIVA project [10], the HTMT project [21],
and the Mitsubishi M32R processor [17]. The DIVA pro-
ject is directly addressing the use of this technology in a
multiprocessor, so their focus has been on scalability [10].
The HTMT processor uses fine-grained multi-threading
and forward-looking hardware technology. The support
for control parallelism in HTMT might be an advantage
for the Histogram and Mesh benchmarks, although it re-
quires more complex hardware support.

The Imagine processor does not use embedded DRAM,
but is similar to IRAM in its use of fine-grained data par-
allelism and support for media processing [12]. The

SLIIC group at ISI has done a similar study to ours, in-
cluding the M32R, Imagine, and IRAM, but for a different
set of signal processing and defense applications [20].

11. Conclusions and Future Work

In this work, we used a set of memory-intensive
benchmarks to compare the performance of conventional
cache-based microprocessors to a mixed logic and DRAM
processor called VIRAM. Our experience with these
benchmarks suggest that VIRAM is significantly faster
than conventional processors for problems that are limited
only by DRAM bandwidth and latency, and because VI-
RAM achieves high performance through parallelism
rather than a fast clock rate, the advantages are even larger
if one is interested in building a power-efficient multi-
processor system.

While memory is important in all of our benchmarks,
simple bandwidth was not sufficient. Most of the bench-
marks involved irregular memory access patterns, so ad-
dress generation bandwidth was important, and collisions
within the memory system were sometimes a limitation.
Although the histogram and mesh adaptation problems are
parallelizable, the potential for data sharing even within
vector operations limits performance. The need to stati-
cally specify parallelism also requires algorithms that are
highly regular. In SPMV, this lead to data structure pad-
ding; in mesh adaptation and histogram, there was some
pre-sorting to group uniform data elements together.

Although we have concentrated on the memory sys-
tems within a single node, we believe these results indi-
cate that IRAM would be a reasonable building block for
large-scale multiprocessors. More work is needed to un-
derstand how well a system of IRAM processors would be
balanced, given current networking technology. Finally, of
course, it will be indispensable to re-run our benchmarks
on the real VIRAM hardware once the system is available.

Acknowledgements

The authors would like to thank Hyun Jin Moon and
Hyun Jin Kim for their work on the transitive benchmark,
as well as Christoforos Kozyrakis, David Judd, and the
rest of the IRAM team for their help on this project.

This work was supported in part by the Laboratory Di-
rected Research and Development Program of the Law-
rence Berkeley National Laboratory (supported by the
U.S. Department of Energy under contract number DE-
AC03-76SF00098), by DARPA under contract DABT63-
96-C-0056, and by the California State MICRO Program.
The VIRAM chip and compiler were supported by dona-
tions from IBM, Cray, and MIPS.

References
1. Y. Abe. Present Status of Computer Simulation at IPP, in

Proceedings of Supercomputing ’88: vol 2, Science and Ap-
plications, 1988.

2. D.H. Bailey, J. Barton, T. Lasinski, and H.D. Simon (Eds.).
The NAS parallel benchmarks. Tech. Rep. RNR-91-002,
NASA Ames Research Center, Moffett Field, 1991.

3. K. Batcher. Sorting networks and their applications. Proc.
AFIPS Spring Joint Compute Conf., 1968.

4. The Berkeley Intelligent RAM (IRAM) Project, Univ. of
California, Berkeley, at http://iram.cs.berkeley.edu.

5. G.E. Blelloch, M.A. Heroux, and M. Zagha. Segmented
operations for sparse matrix computation on vector multi-
processors. Tech. Rep. CMU-CS-93-173, Carnegie Mellon
Univ., Pittsburgh, 1993.

6. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction
to Algorithms, MIT Press, 1990.

7. E.Cuthill and J. McKee. Reducing the bandwidth of sparse
symmetric matrices. Proc. ACM Natl. Conf., 1969, 157-192.

8. DIS Stressmark Suite, v 1.0. Titan Systems Corp., 2000, at
http://www.aaec.com/projectweb/dis/

9. B.R. Gaeke. GUPS benchmark manual. Univ. of California,
Berkeley, at http://iram.cs.berkeley.edu/~brg/.

10. M. Hall, et al. Mapping irregular applications to DIVA, a
PIM-based data-intensive architecture. Proc. SC99, 1999.

11. E. Im and K.A. Yelick. Optimizing sparse matrix-vector
multiplication for register reuse. Proc. Intl. Conf. on Compu-
tational Science, 2001.

12. B. Khailany, W. J. Dally, S. Rixner, U. J. Kapasi, P.
Mattson, J. Namkoong, J. D. Owens, B. Towles, and A.
Chang. "Imagine: Media Processing with Streams." IEEE
Micro, Mar/April 2001.

13. D.R. Kincaid, T.C. Oppe, and D.M. Young. ITPACKV 2D
user’s guide. Tech. Rep. CAN-232, Univ. of Texas, Austin,
1989.

14. C. Kozyrakis. A media-enhanced vector architecture for
embedded memory systems. Tech. Rep. UCB-CSD-99-1059,
Univ. of California, Berkeley, 1999.

15. C. Kozyrakis, D. Judd, J. Gebis, S. Williams, D. Patterson,
and K. Yelick. Hardware/compiler co-development for an
embedded media processor. Proceedings of the IEEE, 2001.

16. The MathWorks. How do I vectorize my code? Tech. Note
1109, at http://www.mathworks.com.

17. Mitsubishi 32-bit Microcontrollers, at
http://www.mitsubishichips.com.

18. L. Oliker and R. Biswas. Parallelization of a dynamic un-
structured algorithm using three leading programming para-
digms. IEEE Trans. Parallel and Distributed Systems,
11(9):931-940, 2000.

19. D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K.
Keeton, R. Thomas, C. Kozyrakis, K. Yelick. Intelligent
RAM (IRAM): Chips that remember and compute. Proc.
Intl. Solid-State Circuits Conf., 1997.

20. The SLIIC Project, at http://www.east.isi.edu/SLIIC/
21. T. Sterling. A hybrid technology multithreaded (HTMT)

computer architecture for petaflops computing. Jet Propul-
sion Laboratory, Pasadena, 1997, at http://htmt.jpl.nasa.gov.

22. K. Suehiro, H. Murai, Y. Seo. Integer Sorting on Shared-
Memory Vector Parallel Computers. In Proceedings of ICS
’98, 1998.

23. R. Thomas and K.A. Yelick. Efficient FFTs on IRAM. Proc.
Workshop on Media Processors and DSPs, 1999.

