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Abstract 
 

The increasing gap between processor and memory 
performance has led to new architectural models for 
memory-intensive applications. In this paper, we use a set 
of memory-intensive benchmarks to evaluate a mixed 
logic and DRAM processor called VIRAM as a building 
block for scientific computing. For each benchmark, we 
explore the fundamental hardware requirements of the 
problem as well as alternative algorithms and data struc-
tures that can help expose fine-grained parallelism or 
simplify memory access patterns. Results indicate that 
VIRAM is significantly faster than conventional cache-
based machines for problems that are truly limited by the 
memory system and that it has a significant power advan-
tage across all the benchmarks. 
 

1. Introduction 

Many high performance applications run well below 
the peak arithmetic performance of the underlying ma-
chine, with the inefficiency being often attributed to a lack 
of memory bandwidth. In particular, applications involv-
ing sparse matrices, unstructured meshes, sorting, or table 
lookups are often said to be bandwidth-limited. In this 
paper, we focus on the memory bandwidth problem within 
individual processing nodes, and evaluate a novel Intelli-
gent RAM design that mixes logic and DRAM on a single 
chip. VIRAM is a vector processor designed for multi-
media applications; it couples on-chip DRAM for high 
bandwidth with vector processing to express fine-grained 
data parallelism [4]. The peak memory bandwidth of VI-
RAM is 6.4 GB/s, which is 5−10× higher than most 
cache-based machines. An early study of processor-in-
memory technology showed that conventional processor 
designs did not take advantage of the enormous on-chip 
bandwidth [19], whereas the explicit parallelism in vector 
instructions could be used for high arithmetic performance 
as well as for masking memory latency.  Energy consump-
tion and cooling are also concerns for large-scale ma-
chines, and the use of fine-grained parallelism provides 
much better energy efficiency than a high clock rate.    

In this paper, we compare the performance of several 

memory-intensive scientific kernels on VIRAM and other 
architectures. The purpose is to: 1) evaluate the general 
idea of processor-in-memory chips as a building block for 
high performance computing; 2) examine specific features 
of the VIRAM processor, which was designed for media 
processing, for use in scientific computing; 3) determine 
whether on-chip DRAM can be used in place of the more 
expensive SRAM-based memory systems of vector super-
computers; and 4) isolate features of the architecture that 
limit performance, showing that the issues are more com-
plex than simply memory bandwidth. We treat each 
benchmark as a paper-and-pencil description and explore 
several alternative algorithms to improve performance.   

2. VIRAM Architecture 

The VIRAM architecture [4] extends the MIPS instruc-
tion set with vector instructions that include integer and 
floating point operations, as well as memory operations 
for sequential, strided, and indexed (scatter/gather) access 
patterns. The processor has 32 vector registers, each con-
taining up to 32 64-bit values. Logically, a vector opera-
tion specifies that the operation may be performed on all 
elements of a vector register in parallel. The current mi-
cro-architecture is divided into 4 64-bit lanes, so a single 
vector instruction is executed by the hardware 4 elements 
at a time.  

 
Figure 1: Block diagram of VIRAM 

 



The hardware resources devoted to functional units and 
registers may be subdivided to operate on 8, 16, 32, or 64-
bit data. When the data width (known as the virtual proc-
essor width) is cut in half, the number of elements per 
register doubles, as does the peak arithmetic rate. The 
virtual processor width may be set by the application soft-
ware and changed dynamically as different data types are 
used in the application. VIRAM contains two integer 
functional units and one floating-point unit, and to support 
conditional execution, a register of flags can mask indi-
vidual elements during a vector operation.  

The VIRAM implementation includes a simple in-
order MIPS processor with cache, a floating point unit, a 
DMA engine for off-chip access, a memory crossbar, and 
a vector unit which is managed as a co-processor. Figure 1 
shows the major blocks in the chip; the shaded area is a 
full memory crossbar, which allows any lane to access any 
DRAM bank. The estimated transistor count is over 100 
million, while the clock rate is 200MHz and the power 
consumption is only 2 Watts. There are 12 MB of on-chip 
DRAM organized into 8 banks, and all of the memory is 
directly accessible from both scalar and vector instruc-
tions. As an academic research project, some compro-
mises were made to simplify the chip design. There is no 
64-bit floating-point capability, and the compiler does not 
generate fused multiply-add instructions; so these aspects 
of the instruction set specification will be omitted from 
further consideration. The resulting peak performance for 
VIRAM is 1.6 GFLOPS for 32-bit floating-point opera-
tions, 3.2 GOPS for 32-bit integer operations, and 6.4 
GOPS for 16-bit integer operations.   

 The variable data widths in VIRAM are common to 
other SIMD media extensions such as Intel’s SSE, but 
otherwise the architecture more closely matches vector 
supercomputers. In particular, the parallelism expressed in 
SIMD extensions are tied to the degree of parallelism in 
the hardware, whereas a floating-point instruction in VI-
RAM specifies 64-way parallelism while the hardware 
only executes 8-way. The advantages of specifying longer 
vectors include lower instruction bandwidth needs, a 
higher degree of parallelism for memory latency masking, 
and the ability to change hardware resources across chip 
generations without requiring software changes.   

3. Benchmark Applications 

Our benchmarks were chosen to stress the limits of a 
processor’s memory system, but they represent the kernels 
of real applications of interest in large-scale scientific 
computing. Most of them are taken from the DARPA Data 
Intensive Systems (DIS) stressmark suite [8]. In general, 
data-intensive applications are characterized by low 
arithmetic operation counts per datum relative to memory 
access. Many of the problems are further complicated by 
irregular memory access patterns or control structures. 

These characteristics often lead to performance scaling 
deficiencies when executed in parallel and to memory 
bottlenecks on single processors.   

Transitive Closure: The first benchmark problem is to 
compute the transitive closure of a directed graph in a 
dense representation [6]. The code taken from the DIS 
reference implementation used non-unit stride [8], but was 
easily changed to unit stride. This benchmark performs 
only 2 arithmetic operations (an add and a min) at each 
step, while it executes 2 loads and 1 store.  

GUPS: This benchmark is a synthetic problem, which 
measures giga-updates-per-second [9]. It repeatedly reads 
and updates distinct, pseudo-random memory locations. 
The inner loop contains 1 arithmetic operation, 2 loads, 
and 1 store, but unlike transitive, the memory accesses are 
random. It contains abundant data-parallelism because the 
addresses are pre-computed and free of duplicates.  

Sparse Matrix-Vector Multiplication (SPMV): This 
problem also requires random memory access patterns and 
a low number of arithmetic operations. It is common in 
scientific applications, and appears in both the DIS [8] 
and NPB [2] suites in the form of a Conjugate Gradient 
(CG) solver. We have a CG implementation for IRAM, 
which is dominated by SPMV, but here we focus on the 
kernel to isolate the memory system issues. The matrices 
contain a pseudo-random pattern of non-zeros using a 
construction algorithm from the DIS specification [8], 
parameterized by the matrix dimension, n, and the number 
of nonzeros, m. 

Histogram: Computing a histogram of a set of integers 
can be used for sorting and in some image processing 
problems [8]. Two important considerations govern the 
algorithmic choice: the number of buckets, b, and the like-
lihood of duplicates. For image processing, the number of 
buckets is large and collisions are common because there 
are typically many occurrences of certain colors (e.g., 
white) in an image. Histogram is nearly identical to GUPS 
in its memory behavior, but differs due to the possibility 
of collisions, which limit parallelism and are particularly 
challenging in a data-parallel model.  

Mesh Adaptation: The final benchmark is a two-
dimensional unstructured mesh adaptation algorithm [18] 
based on triangular elements. This benchmark is more 
complex than the others, and there is no single inner loop 
to characterize. The memory accesses include both ran-
dom and unit stride, and the key problem is the complex 
control structure, since there are several different cases 
when inserting a new point into an existing mesh. Starting 
with a coarse-grained task parallel program, we performed 
significant code reorganization and data preprocessing to 
allow vectorization.   

Table 1 summarizes the key features of each of our 
benchmarks. All are memory-intensive: the number of 
arithmetic/logical operations per step of the algorithm 
(Ops/step) is never more than the number of memory op-



erations (loads/stores) per step (Mem/step). Most of them 
involve some amount of irregular memory access, indi-
cated in the table as indexed, although in the case of 
SPMV and histogram, we consider several different algo-
rithms across which the number and nature of indexed 
memory operations differ. The table does not capture dif-
ferences in parallelism, which may limit vector length, or 
the control irregularity, which leads to less efficient 
masked operations. 

 

 Width Mem 
access 

Data 
size 

Total 
Ops

Ops/ 
step

Mem/ 
step 

 Transitive 32 unit n2 n3 2 2 ld 
1 st 

 GUPS 8,16, 
32,64 

indexed, 
unit 2n 2n 1 2 ld, 

1 st 

 SPMV 32 indexed, 
unit 

2m + 
2n 2m 2 3 ld 

 Histogram 16,32 indexed, 
unit n + b n 1 2 ld, 

1 st 

 Mesh 32 indexed, 
unit 1000n N/A N/A N/A 

Table 1.  Key features of benchmarks 

4. Benchmarking Environment 

As a comparison for the VIRAM design, we chose a 
set of commercial microprocessor systems.  Most of these 
are high-end workstation or PC processors, but we also 
included a low power Pentium III for comparison. Details 
of the systems are show in Table 2. 

 

 SPARC 
IIi 

MIPS 
R10K P III P 4 Alpha 

EV6 

Make Sun 
Ultra 10 

Origin 
2000 

Intel Mo-
bile Dell Compaq 

DS10 
Clock 333MHz 180MHz 600MHz 1.5GHz 466MHz 

L1 16+16KB 32+32KB 32KB 12+8KB 64+64KB
L2 2MB 1MB 256KB 256KB 2MB 

Mem 256MB 1GB 128MB 1GB 512MB 

Table 2. Cache-based machines in our study 
 
The VIRAM chip is scheduled for fabrication in early 

2002, so performance reported here is based on a cycle-
accurate simulator of the chip. The compiler is based on 
Cray’s vectorizing C compiler, which has been developed 
with over 20 years of experience in vectorization. The 
compiler performs several loop transformations and al-
lows users to assert that a loop is free of dependencies. 
This is important for loops with indexed memory opera-
tions that may not be provably vectorizable.  The VIRAM 

version has its own backend that generates a mixture of 
MIPS scalar instructions and VIRAM vector instructions. 
While the machine-independent vectorizer is quite sophis-
ticated, the code generator has not gone through the kind 
of rigorous performance tuning that one would expect 
from a commercial compiler. In particular, there are cases 
in which the compiler generates extra boundary checks 
and redundant loads, and we note two instances below 
where we somewhat hand-tuned the code. 

5.  Memory Bandwidth 

The best-case scenario for both caches and vectors is a 
unit stride memory access pattern, as found in the transi-
tive closure benchmark. In this case, the main advantage 
for IRAM is the size of its on-chip memory, since DRAM 
is denser than SRAM.  VIRAM has 12 MB of on-chip 
memory compared to 10s of KB for the L1 caches on the 
cache-based machines.  IRAM is admittedly a large chip, 
but this is partly due to being an academic research pro-
ject with a very small design team—the 2-3 orders of 
magnitude advantage in on-chip memory size is due pri-
marily to the memory technology.   
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Figure 2. Performance of Transitive Closure 

Figure 2 shows the performance of the transitive clo-
sure benchmark. Results confirm the expected advantage 
for VIRAM on a problem with abundant parallelism and a 
low arithmetic/memory operation ratio. Performance is 
relatively insensitive to graph size, although VIRAM per-
forms better on larger problems due to the longer average 
vector length.   The Pentium 4 has a similar effect, which 
may be due to improved branch prediction because of the 
sparse graph structure in our test problem. 

 
6. Address Generation and Memory Conflicts 

 A more challenging memory access pattern is one with 
either non-unit strides or indexed loads and stores (scat-
ter/gather operations).  The first challenge for any ma-
chine is generating the addresses, since each address 
needs to be checked for validity and for collisions.  VI-
RAM can generate only 4 addresses per cycle, independ-



ent of the data width.  For 64-bit data, this is sufficient to 
load or store a value on every cycle, but if the data width 
is halved to 32-bits, the 4 64-bit lanes perform arithmetic 
operations at the rate of 4 32-bit lanes, and the arithmetic 
unit can more easily be starved for data.  In addition, de-
tails of the memory bank structure can become apparent, 
as multiple accesses to the same DRAM bank require ad-
ditional latency to charge the DRAM.   The frequency of 
these bank-conflicts depends on the memory access pat-
tern and the number of banks in the memory system.   

The GUPS benchmark results, shown in Figure 3, high-
lights the address generation issue.  Although performance 
improves slightly when moving from 64 to 32 bits, after 
that performance is constant due to the limits for 4 address 
generators.  Overall, though, VIRAM does very well on 
this benchmark, nearly doubling the performance of its 
nearest competitor, the Pentium 4, for 32 and 64 bit data.  
In fairness, GUPS was the one benchmark in which we 
tidied up the compiler-generated assembly instructions for 
the inner loops, which produced a 20-60% speedup. 
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Figure 3. Performance of GUPS  

In addition to the MOP rate, it is interesting to observe 
the memory bandwidth consumed in this problem. GUPS 
achieves 1.77, 2.36, 3.54, and 4.87 GB/s memory band-
width on VIRAM at 8, 16, 32, and 64-bit data widths, 
respectively. This is relatively close to the peak memory 
bandwidth of 6.4 GB/s. 

7. Exploiting Fine-Grained Parallelism 

 Nearly all modern processors use fine-grained paral-
lelism for performance, especially to mask memory la-
tency.  In VIRAM, the use of parallelism is explicit in the 
instruction set, which allows for a simple, low-power im-
plementation, but places the burden of discovering paral-
lelism on the application programmer and compiler.  Our 
last three benchmarks, SPMV, Histogram, and Mesh, 
while ostensibly just as memory-intensive as the first two, 
required more work on our part to take advantage of the 
on-chip memory bandwidth provided by VIRAM.   The 
issues are slightly different across the benchmarks: SPMV 

is limited by the degree of parallelism, whereas Histogram 
and Mesh have parallelism, but not pure data parallelism.  
We describe each of these vectorization problems below. 

7.1 SPMV 

 For our SPMV benchmark, we set the matrix dimen-
sion to 10,000 and the number of nonzeros to 177,782, 
i.e., there were about 18 nonzeros per row. The computa-
tion is done in single precision floating-point. The pseudo-
random pattern of nonzeros is particularly challenging, 
and many matrices taken from real applications have some 
structure that would have better locality, which would 
especially benefit cache-base machines [11]. 
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     Figure 4. Performance of SPMV 

We consider 4 different algorithms for SPMV, reflect-
ing the best practice for both cache-based and vector ma-
chines. The performance results are shown in Figure 4. 
Compressed Row Storage (CRS) is the most common 
sparse matrix format, which stores an array of column 
indices and non-zero values for each row; SPMV is then 
performed as a series of sparse dot products. The per-
formance on VIRAM is better than some cache-based 
machines, but it suffers from lack of parallelism. The dot 
product is performed by recursive halving, so vectors start 
with an average of 18 elements and drop from there. Both 
the P4 and EV6 exceed VIRAM performance for this rea-
son. CRS-banded uses the same format and algorithm as 
CRS, but reflects a different nonzero structure that would 
likely result from bandwidth reduction orderings, such as 
reverse Cuthill-McKee (RCM) [7]. This has little effect on 
IRAM, but improves the cache hit rate on some of the 
other machines. 

The Ellpack (or Itpack) format [13] forces all rows to 
have the same length by padding them with zeros. It still 
has indexed memory operations, but increases available 
data parallelism through vectorization across rows. The 
raw Ellpack performance is excellent, and this format 
should be used on VIRAM and PIII for matrices with the 
longest row length close to the average. If we instead 



measure the effective performance (eff), which discounts 
operations performed on padded zeros, the efficiency can 
be arbitrarily poor. Indeed, the randomly generated DIS 
matrix has an enormous increase in the matrix size and 
number of operations, making it impractical.   

The Segmented-sum algorithm was first proposed for 
the Cray PVP [5]. The data structure is an augmented 
form of the CRS format and the computational structure is 
similar to Ellpack, although there is additional control 
complexity. We modified the underlying Ellpack algo-
rithm that converts roughly 2/3 of the memory accesses 
from a large stride to unit stride. The remaining 1/3 are 
still indexed references. This was important on VIRAM, 
because we are using 32-bit data and have only 4 address 
generators as discussed above. 

7.2. Histogram 

This benchmark builds a histogram for the pixels in a 
500×500 image from the DIS Specification. The number 
of buckets depends on the number of bits in each pixel, so 
we use the base 2 logarithm (i.e., the pixel depth) as the 
parameter in our study. Performance results for pixel 
depths of 7, 11, and 15 are shown in Figure 5. The first 
five sets are for VIRAM, all but the second (Retry 0%) 
use this image data set.  The first set (Retry) uses the 
compiler default vectorization algorithm, which vectorizes 
while ignoring duplicates, and corrects the duplicates in a 
serial phase at the end [22]. This works well if there are 
few duplicates, but performs poorly for our case. The sec-
ond set (Retry 0%) shows the performance when the same 
algorithm is used on data containing no duplicates.  The 
third set (Priv) makes several private copies of the buckets 
with the copies merged at the end [1]. It performs poorly 
due to the large number of buckets and gets worse as this 
number increases with the pixel depth.   
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Figure 5. Performance of Histogram 

The fourth and fifth algorithms use a more sophisti-
cated sort-diff-find-diff algorithm [16] that performs in-
register sorting. Bitonic sort [3] was used because the 
communication requirements are regular and it proved to 
be a good match for VIRAM's “butterfly” permutation 

instructions, designed primarily for reductions and FFTs 
[23]. The compiler automatically generates in-register 
permutation code for reductions, but the sorting algorithm 
used here was hand-coded. The two sort algorithms differ 
on the allowed data width: one works when the width is 
less than 16 bits and the other when it is up to 32 bits. The 
narrower width takes advantage of the higher arithmetic 
performance for narrow data on VIRAM. 

Results show that on VIRAM, the sort-based and pri-
vatized optimization methods consistently give the best 
performance over the range of bit depths. It also demon-
strates the improvements that can be obtained when the 
algorithm is tailored to shorter bit depths. Overall, VI-
RAM does not do as well as on the other benchmarks, 
because the presence of duplicates hurts vectorization, but 
can actually help improve cache hits on cache-based ma-
chines. We therefore see excellent timings for the histo-
gram computation on these machines without any special 
optimizations. A memory system advantage starts to be 
apparent for 15-bit pixels, where the histograms do not fit 
in cache, and at this point VIRAM's performance is com-
parable to the faster microprocessors.  

7.3. Mesh Adaptation 

This benchmark performs a single level of refinement 
starting with a mesh of 4802 triangular elements, 2500 
vertices, and 7301 edges. In this application, we use a 
different algorithm organization for the different ma-
chines: The original code was designed for conventional 
processors and is used for those machines, while the vec-
tor algorithm uses more memory bandwidth but contains 
smaller loop bodies, which helps the compiler perform 
vectorization. The vectorized code also pre-sorts the mesh 
points to avoid branches in the inner loop, as in Histo-
gram. Although the branches negatively affect superscalar 
performance, presorting is too expensive on those ma-
chines. Mesh adaptation also requires indexed memory 
operations, so address generation again limits VIRAM.  
Figure 6 shows the performance.   
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8. Summary of Benchmark Characteristics 

An underlying goal in our work was to identify the lim-
iting factor in these memory-intensive benchmarks. The 
graph in Figure 7 shows the memory bandwidth used on 
VIRAM and the MOPS rate achieved on each of the 
benchmarks using the best algorithm on the most 
challenging input.  GUPS uses the 64-bit version of the 
problem, SPMV uses the segmented sum algorithm, and 
Histogram uses the 16-bit sort.    

While all of these problems have low operation counts 
per memory operation, as shown in Table 1, the memory 
and operation rates are quite different in practice.  Of 
these benchmarks, GUPS is the most memory-intensive, 
whereas Mesh is the least.  Histogram, SPMV and Transi-
tive have roughly the same balance between computation 
and memory, although their absolute performance varies 
dramatically due to differences in parallelism.  In particu-
lar, although GUPS and Histogram are nearly identical in 
the characteristics from Table 1, the difference in parallel-
ism results in a very different absolute performance as 
well as relative bandwidth to operation rate.   
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9. Power and Performance  

Figure 8 shows the summary of performance for each 
of the benchmarks across machines.  The y-axis is a log 
scale, and IRAM is significantly faster than the other ma-
chines on all applications except SPMV and Histogram.    

An even more dramatic picture is seen from measuring 
the MOPS/Watt ratio, as shown in Figure 9.  Most of the 
cache-based machines use a small amount of parallelism, 
but spend a great deal of power on a high clock rate.  In-
deed a graph of Flops per machine cycle is very similar.    
Only the Pentium III, designed for portable machines, has 
a comparable power consumption of 4 Watts compared to 
IRAM’s 2 Watts.  The Pentium III cannot compete on 
performance, however, due to lack of parallelism.  
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10. Related Work 

The VIRAM processor is one example of a system that 
uses mixed logic and DRAM [14,15]. Other examples 
include the DIVA project [10], the HTMT project [21], 
and the Mitsubishi M32R processor [17].  The DIVA pro-
ject is directly addressing the use of this technology in a 
multiprocessor, so their focus has been on scalability [10].  
The HTMT processor uses fine-grained multi-threading 
and forward-looking hardware technology.  The support 
for control parallelism in HTMT might be an advantage 
for the Histogram and Mesh benchmarks, although it re-
quires more complex hardware support.   

The Imagine processor does not use embedded DRAM, 
but is similar to IRAM in its use of fine-grained data par-
allelism and support for media processing [12].  The 



SLIIC group at ISI has done a similar study to ours, in-
cluding the M32R, Imagine, and IRAM, but for a different 
set of signal processing and defense applications [20].   

11. Conclusions and Future Work 

In this work, we used a set of memory-intensive 
benchmarks to compare the performance of conventional 
cache-based microprocessors to a mixed logic and DRAM 
processor called VIRAM. Our experience with these 
benchmarks suggest that VIRAM is significantly faster 
than conventional processors for problems that are limited 
only by DRAM bandwidth and latency, and because VI-
RAM achieves high performance through parallelism 
rather than a fast clock rate, the advantages are even larger 
if one is interested in building a power-efficient multi-
processor system. 

While memory is important in all of our benchmarks, 
simple bandwidth was not sufficient.  Most of the bench-
marks involved irregular memory access patterns, so ad-
dress generation bandwidth was important, and collisions 
within the memory system were sometimes a limitation.  
Although the histogram and mesh adaptation problems are 
parallelizable, the potential for data sharing even within 
vector operations limits performance. The need to stati-
cally specify parallelism also requires algorithms that are 
highly regular. In SPMV, this lead to data structure pad-
ding; in mesh adaptation and histogram, there was some 
pre-sorting to group uniform data elements together. 

Although we have concentrated on the memory sys-
tems within a single node, we believe these results indi-
cate that IRAM would be a reasonable building block for 
large-scale multiprocessors.  More work is needed to un-
derstand how well a system of IRAM processors would be 
balanced, given current networking technology. Finally, of 
course, it will be indispensable to re-run our benchmarks 
on the real VIRAM hardware once the system is available. 
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