
PROCEEDINGS OF THE IEEE, VOL. X, NO. Y, ZZZ 2002 1

Hardware/Compiler Co-development
for an Embedded Media Processor
Christoforos Kozyrakis, David Judd, Joseph Gebis, Samuel Williams,

David Patterson, and Katherine Yelick

Abstract—
Embedded and portable systems running multimedia applications cre-

ate a new challenge for hardware architects. The microprocessor needed
for such systems is a merged general-purpose processor and digital-signal
processor, with the programmability the former and the performance and
power budget of the latter.

This paper presents the co-development of the instruction set, the hard-
ware, and the compiler for the Vector IRAM media processor. A vector ar-
chitecture is used to exploit the data parallelism of multimedia programs,
which allows the use of highly modular hardware and enables implementa-
tions that combine high performance, low power consumption, and reduced
design complexity. It also leads to a compiler model that is efficient both in
terms of performance and executable code size. The memory system for the
vector processor is implemented using embedded DRAM technology, which
provides high bandwidth in an integrated, cost-effective manner.

The hardware and the compiler for this architecture make complemen-
tary contributions to the efficiency of the overall system. This paper ex-
plores the interactions and trade-offs between them, as well as the enhance-
ments to a vector architecture necessary for multimedia processing. We also
decribe how the architecture, design, and compiler features come together
in a prototype system-on-a-chip, able to execute 3.2 billion operations per
second per Watt.

Keywords— multimedia, vector processor, compiler, embedded DRAM,
data parallelism, scalable hardware

I. INTRODUCTION

The trend towards ubiquitous computing will be fueled by
small embedded and portable systems that are able to effectively
run multimedia applications for audio, video, image, and graph-
ics processing [1]. The microprocessor needed for such de-
vices is actually a merged general-purpose processor and digital-
signal processor, with the programmability of the former and the
performance and power budget of the latter. Thus, the challenge
is to develop architectures that lead to efficient hardware imple-
mentations from a performance, power consumption, and com-
plexity standpoint, while providing an effective programming
and code generation environment.

A key to meeting this challenge is the observation that mul-
timedia applications are a rich source of fine-grained, data par-
allelism. Such programs repeat the same set of basic operations
over an input sequence of image pixels, video frames, or audio
samples [2]. Data parallelism provides the opportunity for de-
signing high performance, yet power and complexity efficient
hardware. Since data parallelism is also explicit in the algorith-
mic description of multimedia applications, there is also an op-
portunity for a simple programming model that results in com-

The authors are with the Computer Science Division, Uni-
versity of California, Berkeley, CA 94720-1776, USA. E-mail:
{kozyraki,dajudd,gebis,samw,pattrsn,yelick}@cs.berkeley.edu .

This work was supported in part by the Advanced Research Projects Agency
of the Department of Defense under contract DABT63-96-C-0056, by the Cal-
ifornia State MICRO Program, and by the Department of Energy. IBM, MIPS
Technologies, Cray Inc., and Avanti Corp. have made significant software or
hardware contributions to this work.

pact binary executables.

The current popular approaches to processor architecture, de-
veloped originally for desktop and server systems, fail to exploit
the data parallelism in multimedia applications in order to pro-
vide the combination of performance, power, and complexity
needed for embedded devices. Superscalar processors [3] need
to rediscover parallelism within an inherently sequential instruc-
tion stream. In practice, this limits the number of operations that
can be executed concurrently in order to achieve high perfor-
mance and increases power consumption and design complex-
ity [4]. The latter actually grows in a super-linear fashion with
the number of operations issued in parallel in a superscalar pro-
cessor. Very long instruction word (VLIW) designs [5] require
multiple, long instructions to effectively communicate data par-
allelism to hardware, resulting in increased code size [6]. Both
architectural approaches consume power to fetch and decode
one instruction for every operation to be executed, which is in-
efficient when the same operation is repeated over a stream of
input data.

In this paper we describe the co-design of a microprocessor
and its compiler that take advantage of data parallelism in a high
performance, low power, low complexity system called Vec-
tor IRAM (VIRAM). The key features of VIRAM are: a vector
instruction set architecture (ISA) that explicitly communicates
data parallelism to the hardware in a compact way; an imple-
mentation model that allows one to make performance, power,
and area trade-offs without requiring ISA modifications or in-
creased design complexity; a memory system based on embed-
ded DRAM technology that supports the high memory band-
width needed for media processing in a low power system-on-a-
chip; and a simple compilation model that provides a high level
programming interface. Although the use of vector computing
is well-understood in the scientific computing domain [7], sev-
eral hardware and software changes must be made to match the
characteristics of multimedia computing in embedded devices.

We also present the VIRAM-1 microprocessor, a prototype
chip fabricated to demonstrate the viability of this architecture.
Implemented in a mixed logic-DRAM CMOS process, the 130-
million transistor design includes a multimedia vector proces-
sor and 14 megabytes of DRAM. Running at merely 200 MHz
in order to reduce power consumption, the highly parallel de-
sign achieves 3.2 billion 16-bit integer operations per second per
Watt, or 0.8 billion 32-bit floating-point operations per second
per Watt.

This paper is organized around some of the key features or
issues of multimedia applications and how they are supported in
hardware and software. Section II reviews the vector architec-
ture as a model for exploiting fine-grained parallelism and de-

2 PROCEEDINGS OF THE IEEE, VOL. X, NO. Y, ZZZ 2002

scribes the VIRAM implementation approach for scalable vec-
tor processors. Section III discusses the narrow data types and
operations that are common in multimedia and how the vec-
tor architecture can be modified to support them efficiently and
elegantly. Section IV addresses the problems associated with
vectorizing applications with conditional branches. A common
myth about vector architectures is that they require expensive,
SRAM-based memory systems. Section V shows how embed-
ded DRAM can provide the necessary memory bandwidth for
a rich set of memory access patterns. Finally, section VI de-
scribes the implementation of these ideas in the VIRAM-1 pro-
cessor and discusses some of the practical issues involved in its
development.

II. EXPLICIT SUPPORT FOR DATA PARALLELISM

The presence of parallelism in applications is the key to
achieving high performance with all modern microprocessors,
for it allows the hardware to accelerate applications by exe-
cuting multiple, independent operations concurrently [8]. The
most prevalent form of parallelism available in multimedia ap-
plications is data parallelism, as their computationally intensive
kernels repeat the same set of operations over streams of input
data [2].

r2r1

r3

+

add r3,r2,r1

SCALAR
(1 operation)

v1 v2

+

v3 vector
length

vadd.vv v3,v2,v1

VECTOR
(N operations)

Fig. 1. While a scalar instruction specifies a single operation, a vector instruc-
tion describes a set of independent, yet identical, operations on the elements of
two vector registers.

The VIRAM architecture relies on vector processing to ex-
press and exploit the data parallelism in multimedia programs.
Apart from the typical, scalar operations defined in RISC ar-
chitectures, a vector architecture includes arithmetic, load-store,
and logical instructions that operate on vectors, linear arrays of
numbers, as shown in Figure 1. Each instruction specifies a set
of operand vectors, a vector length, and an operation to be ap-
plied element-wise to the vector operands. Operands are stored
in a vector register file, a two dimensional memory array where
each line holds all the elements for one vector. A single vector
instruction specifies a number of identical element operations
on independent input and output data stored in vector registers.
Hence, vector instructions provide a compact description of the
data parallelism available in an application. This description is
explicit, as it directly states that there are no dependences be-
tween the element operations, and hence they can be executed
in parallel.

The roles for the hardware (processor) and the compiler in a
vector architecture are complementary. The compiler discovers

VFU

Vector
Registers

co
nt

ro
l

Vector
Coprocessor

Scalar

Core

MEMORY SYSTEM

Fig. 2. A simplified view of a vector processor with a single functional unit for
arithmetic operations (VFU).

the fine-grain parallelism available in applications, and applies
a set of transformations that allow the use of vector instructions.
The hardware uses the explicit knowledge of parallelism to de-
liver high performance at low power consumption.

A. Exploiting Data Parallelism in Vector Hardware

The hardware required for a vector architecture can be as sim-
ple as the processor shown in Figure 2, where the logic for ex-
ecuting vector instructions is organized as a coprocessor to an
ordinary RISC scalar core. The coprocessor includes the vec-
tor register file and a vector functional unit (VFU) that executes
vector instructions at the rate of one element operation per cy-
cle. Performance can be improved by allocating additional func-
tional units in order to process multiple vector instructions in
parallel. Unlike with superscalar and VLIW architectures, there
is no need to linearly increase the instruction fetch and decode
bandwidth with the number of functional units. Since a single
vector instruction specifies multiple element operations at once,
one instruction is typically sufficient to keep a functional unit
busy for several clock cycles.

We can also exploit the fact that the element operations in vec-
tor instruction are by definition independent, in order to imple-
ment high performance, yet simple vector hardware. As shown
in Figure 3, multiple, identical pipelines or execution datapaths
can be used within a vector functional unit to accelerate the ex-
ecution of a instruction by processing multiple of its element
operations in parallel. Each datapath receives identical control
but different input elements in each clock cycle. Element oper-
ations are independent so there is no need for the dependence
analysis logic used in superscalar processors, whose complex-
ity scales super-linearly with the number of parallel operations.
Element operations are also identical, hence multiple datapaths
can be controlled by a single instruction decoder. A VLIW pro-
cessor, on the other hand, would require a separate instruction
decoder for each datapath it includes. It would also require an
instruction set update and recompilation in order to exploit an
additional datapath. A vector processor can take advantage of
the extra datapath without modifications in the binary code, be-
cause multiple datapaths can be used for executing a single vec-
tor instruction.

Apart from improving performance, parallel datapaths can be
used to trade off parallelism for reduced power consumption.

KOZYRAKIS ET.AL.: HARDWARE/COMPILER CO-DEVELOPMENT FOR AN EMBEDDED MEDIA PROCESSOR 3

(a) (b) (c)

Source Elements for Vector Instruction A

Source Elements for Vector Instruction B

Fig. 3. The execution of two vector instructions in a vector processor with 1 (a), 2 (b) or 4 (c) datapaths per functional unit. Each instruction defines 8 element
operations. Increasing the number of datapaths reduces the execution time, as more element operations can be processed concurrently.

Allocating additional datapaths allows the clock frequency for
the processor to be reduced while keeping the throughput of op-
erations almost constant. But a reduction in clock frequency
allows a significant decrease in the power supply voltage [9].
The power dissipation for CMOS circuits is calculated by the
equation:

Power = Capacitance · V oltage2
· Frequency.

Although the capacitance of the extra datapaths cancels the ben-
efits from scaling the frequency, the exponential contribution
of power supply voltage leads to significant reduction in power
consumption. This architectural technique for power reduction
is orthogonal to implementation methods like clock gating and
low power circuit design [10], which can also be used for further
power savings.

The lack of dependence in element operations within a vec-
tor instruction also simplifies the physical implementation of a
vector coprocessor with multiple datapaths per functional unit.
Datapath and register files resources can be organized in vector
lanes, as shown in Figure 4. Each lane contains a datapath for
each functional unit and a vertical partition of the vector regis-
ter file [11]. The elements of each vector register are distributed
across the lanes in a round-robin, interleaved fashion. By stor-
ing in each lane the same set of elements from each vector reg-
ister, no inter-lane communication is necessary to execute the
majority of vector instructions, such as vector additions or mul-
tiplications.

There are several benefits to the modular, lane-based imple-
mentation. A single lane must be designed and verified regard-
less of the number of lanes allocated in the processor. Scal-
ing a vector processor by allocating the proper number of lanes
leads to balanced addition of both register file and execution re-
sources, without requiring re-design of functional units or their
control. A four-lane processor, for example, can store vectors
twice as long and execute twice as many element operations per

cycle as a two-lane processor. Finally, the locality of communi-
cation in a lane-based vector processor, allows hardware scaling
without implications due to the high latency of long, cross-chip
wires in CMOS technology [12].

In summary, the compact and explicit description of data par-
allelism with vector instructions, allows the design of vector
processors in a modular and scalable manner. Trade-offs be-
tween area and performance, or area and power consumption are
possible without the need for binary modifications or additional
instruction issue bandwidth, as it is the case with superscalar
and VLIW designs.

B. Compile-time vectorization

For vector hardware to be useful, it is necessary to be able
to compile multimedia applications, written in high-level lan-
guages such as C and C++, into sequences of vector instructions.

The VIRAM compiler is based on the Cray vectorizing
compiler (PDGCS) for vector supercomputers [15]. Figure 5
presents the compiler flow and the basic tasks performed for
vectorizing C and C++ programs. The main step in automatic
vectorization is to discover loops that are free of loop-carried
dependencies and, therefore, their iterations can be correctly ex-
ecuted in parallel. It is corresponding operations from each iter-
ation that will be grouped together into a single vector instruc-
tion. The compiler computes control and data dependencies for
each inner loop and identifies those that are free of dependen-
cies. It also performs loop restructuring such as interchange or
distribution (splitting) that enable vectorization [13]. Loop in-
terchange, whereby the inner and outer loops are exchanged, is
particularly useful in a loop nest where the inner loop is too short
or does not vectorize due to a dependency; the compiler may in-
terchange the loops so that the outer loop is actually vectorized.

The degree of data parallelism identified by the compiler may
be much larger than that supported by a particular hardware
implementation. The length of a vector register in an imple-

4 PROCEEDINGS OF THE IEEE, VOL. X, NO. Y, ZZZ 2002

03 07 11 15
03 07 11 15
03 07 11 15
03 07 11 15

vr0
vr1
vr2
vr3

+

*

00 04 08 12
00 04 08 12
00 04 08 12
00 1204 08vr0

vr1
vr2
vr3

+

*

01 05 09 13
01 05 09 13
01 05 09 13
01 05 09 13

vr0
vr1
vr2
vr3

+

*

02 06 10 14
02 06 10 14
02 06 10 14
02 06 10 14

vr0
vr1
vr2
vr3

+

*

LANE 0 LANE 1 LANE 2 LANE 3

Fig. 4. The organization of a four-lane vector coprocessor, including two functional units (multiply, add) and four datapaths per unit. The sixteen elements for each
vector register are distributed across the lanes. All four lanes are identical and receive the same control during the execution of vector instructions.

C/C++
Front−end

Syntax Analysis
Semantic Analysis

Inlining

PDGS

Loop Restructuring

Data Dependence Analysis

(program dependence graph)
Control Analysis

Vectorization

C/C++ application

Vector loop analysis
Outer loop vectorization
Vector code generation

Optimizations Port Linearization Optimizations

Forward substitution
Use before def analysis

Scalar renaming
Invariant IF hoisting

Loop rotation
Loop peeling

Loop normalization
Last value capture

Loop unwinding

Scalarization
Strength reduction

Loop invariant hoisting
Loop denormalization

Copy propagation
Factorization

Power reduction
Common subexpression elimination

Binary Executable

VIRAM
Back−end

Code Generation
Instruction Scheduling

Register Assignment

Pattern matching

Fig. 5. The VIRAM compilation flow for C and C++ applications. Vectorization
and optimizations are performed using the Cray Program Dependence Graph
Compiler System (PDGCS).

mentation, in other words the maximum number of elements
it can store, is an upper limit to the number of parallel opera-
tions a vector instruction can specify. For any implementation
of the VIRAM architecture, this number is available to software
through a read-only register, called the maximum vector length
(MVL) register. A vectorizable loop is divided by the compiler
to produce two nested loops, with the inner loop executing MVL
iterations and the outer loop incrementing by MVL on each it-
eration. This division to handle longer loops is called strip min-
ing [14]. The inner loop is converted during code generation
into a sequence of vector instructions. Of course, the compiler

can also vectorize loops with fewer than MVL iterations by set-
ting the vector length for the corresponding vector instructions
to a value less than MVL.

The process of vectorization of applications written in high-
level languages is not entirely automatic for most real applica-
tions. For example, the C language semantics allow array argu-
ments to be aliased, multiple addresses for the same object, forc-
ing the compiler to perform expensive inter-procedural pointer
analysis or the programmer to annotate the code to indicate the
arrays are unaliased. We use the latter approach for array ar-
guments and also allow programmers to add other annotations
that convey application specific knowledge and help with vec-
torization. We use the ANSI-standard C, which allows special
comments called pragmas to be used for the programmer anno-
tations. Although some annotations are necessary, experience
from the scientific community has shown that the programming
overhead is quite reasonable, and in particular is much less oner-
ous than manual parallelization or hand-coding in assembly lan-
guage. In addition, these annotations describe algorithmic prop-
erties of the application that are known to the programmers of
multimedia applications.

Figure 6 shows the performance achieved with compiled code
for three single-precision floating-point media kernels. The first
is a 64 × 64 matrix multiplication, the second is a saxpy loop
(Y [i] = aX [i]+b), and the third is a twelve-point finite impulse
response (FIR) filter (Y [i] =

∑
c[k]X [i − k]). Matrix mul-

tiplication and the FIR filter use outer loop vectorization with
programmer annotations. For the FIR filter, the inner loop is
unrolled in the C source code. The bars represent the sustained
performance (Mflops) for a VIRAM processor with one vector
functional unit for floating-point arithmetic and one vector load-
store unit, as measured using a near cycle accurate performance
model. Each of the three bars represents performance for an im-
plementation with 1, 2, 4, or 8 vector lanes respectively with
64-bit datapaths1, running at 200 MHz. The last group of bars
present the peak hardware performance for each configuration.
The graph confirms the compiler’s ability to generate efficient
vectorized code for such media kernels and to utilize most of the
peak hardware performance. In addition, sustained performance
scales well as the number of vector lanes increases, even though

1Two 32-bit floating-point operations concurrently on each 64-bit datapath.

KOZYRAKIS ET.AL.: HARDWARE/COMPILER CO-DEVELOPMENT FOR AN EMBEDDED MEDIA PROCESSOR 5

matmul 64x64 saxpy 4K fir filter hardware peak
0

500

1000

1500

2000

2500

3000

3500
M

F
LO

P
S

1 lane
2 lanes
4 lanes
8 lanes

Fig. 6. Compiled performance in Mflops for three 32-bit floating-point multi-
media kernels.

the same binary executable was used for all configuration2.

III. MULTIMEDIA SUPPORT IN A VECTOR ARCHITECTURE

Vector processors were originally developed and optimized
for supercomputing applications [7], where the typical workload
is scientific computations on double-precision (64-bit) floating-
point numbers. The data parallelism of multimedia applications
is similar to that found in scientific computing. Yet, to enable
efficient vectorization of signal processing and graphics applica-
tions, the VIRAM architecture includes a set of media-specific
features.

A. Support for Narrow Data Types

Multimedia algorithms encode audio or video data using nar-
row types, such as 8 and 16 bit values in memory. Arithmetic
operations producing 16 or 32 bit results are typically sufficient
to satisfy any accuracy requirements. The VIRAM architecture
supports arithmetic operations on 64, 32, and 16 bit data types,
and load-store operations on all of these as well as 8 bit values.
A vector register can be considered an array of elements of any
one of these sizes. Multiple narrow elements can be store within
the space for a 64-bit element in every vector register. Similarly,
multiple narrow operations can be executed in every 64-bit dat-
apath in the vector lanes. The width of vector elements and
arithmetic operations is indicated by a control register called the
virtual processor width (VPW). By changing the virtual proces-
sor width from 32 to 16 bits, for example, each vector register
can hold twice as many elements, and each datapath can com-
plete twice as many operations per cycle. In this way, register
file and datapath resources can be fully utilized for any of the
supported data types. Applications that use narrow data or re-
quire lower arithmetic precision can benefit from matching the
virtual processor width to their needs.

The VPW register is under compiler control. To avoid exces-
sive overhead by frequently resetting it, the compiler computes
the virtual processor width on a per loop nest basis, and sets it
as necessary. For each loop nest, it chooses the minimum width
that is wide enough for all of the instructions included. Setting

2The performance for matrix multiplication does not scale well for the case of
8 lanes due to limitations in the memory system modeled.

 decrypt detect convolve compose colorspace
0

500

1000

1500

2000

2500

3000

3500

4000

4500

M
O

P
S

1 lane
2 lanes
4 lanes
8 lanes

Fig. 7. Compiled performance in MOPS for five integer multimedia bench-
marks.

VPW to a value wider than the minimum necessary for a spe-
cific instruction increases its execution time, but does not affect
its correctness. On the other hand, using a VPW narrower than
that needed by a certain instruction would lead to an incorrect
or inaccurate computation.

Figure 7 presents the performance of the VIRAM architec-
ture for a set of integer benchmarks that use narrow data types.
The four implementations in this case have two vector functional
units for integer arithmetic, operate at 200 MHz, and include 1,
2, 4, and 8 vector lanes respectively. The benchmarks are part
of the University of Toronto DSP suite [16]. Decrypt imple-
ments IDEA decryption, while detect performs horizontal and
vertical edge detection on digital images. Convolve implements
image convolution using a 3×3 kernel and compose blends two
images based on an alpha factor. Finally, colorspace performs
RGB to YUV image format conversion. The first two bench-
marks use a mixture of 32 and 16 bit operations, while the other
three use virtual processor width of 16. The results, presented in
sustained MOPS (million operations per cycle), demonstrate the
performance benefits from using narrow data types when possi-
ble. They also show that the performance improvement using a
narrow virtual processor width is orthogonal to that achieved by
scaling the number of lanes in the processor implementation.

It is instructive at this point to compare the VIRAM model
for narrow data types with the SIMD media extensions, such
as the Intel MMX [17] or the PowerPC Altivec [18], which are
widely used with superscalar and VLIW processors. SIMD in-
structions define fixed length, short vector, arithmetic operations
by treating a scalar 64-bit register as a vector of narrower data.
To execute more then four 16-bit operations per cycle, for ex-
ample, a processor with SIMD extensions must be able to issue
more than one instruction per cycle, or the instruction set must
be changed to define operations on longer vectors (more than 64
bits). The vector model of the VIRAM architecture allows im-
plementations to change the number of elements in vector reg-
ister (MVL) or the number of vector lanes allocated, without re-
quiring additional instruction issue bandwidth or instruction set
updates that lead to recompilation. VIRAM also allows the vir-
tual processor width to be independent and possibly wider than
the width of data in memory during load and store operations.

6 PROCEEDINGS OF THE IEEE, VOL. X, NO. Y, ZZZ 2002

Since it is both reasonable and often desirable to load 8-bit val-
ues into registers that hold 16-bit elements, the hardware can
handle any corresponding conversion or alignment issues. In
addition, VIRAM enforces memory address alignment restric-
tions only for elements within a vector and not for the whole
vector. Both features are missing from SIMD extensions lead-
ing to large software overhead for emulating the functionality of
vector load and store instructions. This overhead often masks
the benefits from parallel execution of narrow arithmetic oper-
ations. Finally, using the VPW register to specify the width in
VIRAM reduces the number of unique instruction opcodes used
in the instruction set. SIMD extensions, on the other hand, re-
quire one opcode per operation per data width supported. In
summary, the VIRAM model makes it easier to justify the in-
vestment in vectorizing compiler technology, as the same com-
piler and back-end code generator can be used with a variety of
hardware implementations and the overall performance benefits
are significantly larger [19].

B. Support for Fixed-Point Arithmetic

Apart from narrow data types, multimedia applications fre-
quently use fixed-point and saturated arithmetic. Fixed-point
operations allow decimal calculations within narrow integer for-
mats, which require less hardware resources or can be processed
faster than floating-point formats. Saturation replaces modulo
arithmetic to reduce the error introduced by overflow in sig-
nal processing algorithms. Architecture and hardware support
for such features is typically found in digital signal processors
(DSPs).

The VIRAM architecture supports both features with a set of
vector fixed-point add, subtract, shift, multiply, and multiply-
add instructions, which enhance the traditional functionality of
these operations with saturation, rounding, and scaling. Figure 8
presents the fixed-point arithmetic model for multiply-add. The
programmable scaling of the multiplication result and the four
rounding modes can support arbitrary fixed-point number for-
mats. By setting the width of both the input and the output data
for the multiply-add operation to be the same, all operands for
this instruction can be stored in regular vector registers. There
is no need for the extended precision registers or accumulators
commonly found in DSPs, and this omission simplifies the use
of these instructions by the compiler. The maximum precision
of calculations can be set by selecting the proper virtual pro-
cessor width. Algorithms with sensitivity to precision can use
data types as wide as 32 or 64 bits, while those with limited sen-
sitivity can use narrower data types to benefit from the higher
number of operations per cycle when processing narrow num-
bers.

Currently, the VIRAM compiler does not generate the fixed-
point instructions, because fixed-point data types and operations
are not included in the semantics of the C programming lan-
guage. Instead, programmers need to access these instructions
using assembly language or intrinsics written on top of the as-
sembly instructions. The language semantics problem for fixed-
point data is not unique to VIRAM. Draft proposals are already
available for extending the ISO standard for the C programming
language in order to address such issues. Once consensus has
been reached and a standard model has been approved, the vec-

torizing compiler should have no difficulty utilizing the fixed-
point instructions of the VIRAM architecture.

C. Vector Element Permutations

Multimedia applications often include reduction or transfor-
mation operations in order to implement kernels such as dot
products or the Fast Fourier Transform (FFT). With traditional
vector architectures, automatic vectorization of such kernels is
impossible, as their description includes loop-carried dependen-
cies. For example, a dot product is described as:

Y =
∑

X [i].

To enable efficient vectorization of such kernels, the VIRAM ar-
chitecture provides a small set of instructions for vector element
permutations.

For the case of dot products, one could introduce an instruc-
tion that performs a complete reduction on the elements of a
vector register. Several such instructions would be necessary in
order to support all useful types of reductions (add, exclusive or,
etc). Instead, VIRAM supports a permutation instruction that
can be used to construct reductions of any type in multi-lane
hardware implementations. This instruction moves the second
half of the elements of a vector register into another register.
By iteratively applying this permutation along with the proper
arithmetic operation for the reduction, the elements of a vector
register can be reduced to a single number while still utilizing
all vector lanes available for as long as possible3. For the case
of FFT, VIRAM supports two vector instructions which perform
left and right butterfly permutations on the elements of a vector
register using a programmable radix [20].

The three vector permutation instructions implement the min-
imum functionality necessary to vectorize dot products and
FFTs. Because of the regularity of their permutation patterns
and the fact that the permutation is separated from the arithmetic
instructions used for the reductions or the transforms, their im-
plementation, both datapath and control, are simple. For most
cases, they require only reading and writing elements within
the vector register file partition of each lane. When inter-lane
communication is required, it can be accommodated with a sim-
ple bus for every two lanes. This bus can also be pipelined if
needed. The permutation instructions could be replaced by a
single, general instruction that can perform any random permu-
tation of vector elements, like the one used in the Altivec archi-
tecture [18]. But such an instruction would require a full cross-
bar to implement, which is difficult to design, control, and scale
with the number of lanes in the design.

To utilize the permutation instructions, the VIRAM compiler
recognizes linear recurrences like the one for reductions for op-
erations like addition, multiplication, minimum and maximum,
as well as logical and bitwise and, or, and exclusive or. For
the add reduction, the generated code sums the vector X using
vector adds until the result vector fits in a single vector register.
At that point it generates a sequence of instructions that repeat-
edly move half of the remaining elements to another register and

3Since each iteration reduces the number of elements in the vector to half,
the very last iterations may not have sufficient elements to exploit all the vector
lanes available.

KOZYRAKIS ET.AL.: HARDWARE/COMPILER CO-DEVELOPMENT FOR AN EMBEDDED MEDIA PROCESSOR 7

* Right
Shift Round

+ Saturate
X

Y

n

shift
amount

W
n

n
Z

n

n

Fig. 8. The VIRAM model for fixed-point multiply-add. All operands (X, Y, Z, W) are vector register elements. Only half of the bits (most or least significant) of
the multiplier inputs are actually used. Shifting and rounding after the multiplication scales the result in the desired fixed-point format.

then add the two registers4. The speedup for vectorized reduc-
tion over the sequential versions is proportional to the number of
vector lanes included in the hardware (see the FIR performance
in Figure 6).

For FFT, there are several algorithmic descriptions one can
use. Instead of recognizing all of them in the compiler, we
provide hand-optimized assembly routines that implement both
fixed-point and floating-point FFTs. Using these routines, a
four-lane, 200 MHz implementation of the VIRAM architecture
can execute 1024 and 256 point single-precision complex FFTs
within 37.0µsec and 9.5µsec respectively [20].

IV. SUPPORT FOR CONDITIONAL EXECUTION

The effectiveness of a vector architecture with multimedia ap-
plications depends on the level of vectorization the compiler can
achieve with them. It is, therefore, important to provide support
for vectorizing loops that contain conditional statements, such
as those resulting from if statements included in the loop body.
Figure 9 presents a simplified version of the loop for the chroma-
key algorithm, which merges two images based on a threshold
value. Due to the conditional statement in the loop, each ele-
ment of A has to be examined separately, and therefore the loop
cannot be vectorized using regular vector arithmetic and mem-
ory operations.

In order to vectorize loops with conditional statements, VI-
RAM supports conditional (predicated) execution [21] for vec-
tor arithmetic and load-store instructions. The architecture de-
fines 16 vector flag registers, each with a single bit element
(mask) for every element in a regular vector register. Virtually
all vector instructions operate under mask control with a flag
register as a source operand. The mask bits are used to spec-
ify if the corresponding element operations should be executed
or not. The elements of a vector flag register can be produced
by loading them directly from memory or with vector compar-
ison and logical operations. This allows creating proper mask
bits even in the case of nested conditional statements. Due to
practical restrictions in with instruction encoding, a single bit
per instruction is used to select between two vector flag regis-
ters for conditional execution. The remaining flag registers can
be utilized using additional instructions, which perform logical
and move operations on flag registers. Figure 9 shows how the
chroma-key loop is vectorized using conditional execution of

4The vectorized loop applies operations in a different order than the sequential
one. The reordering may change the semantics for non-associative operations
with respect to exceptions and may change the lower bits of the result. Yet, this
is not a problem for most applications, especially in multimedia processing.

vector stores. The first store transfers to array C the elements of
A that are less than the threshold, while the second one fills the
remaining elements of C with values from array B.

Masked execution of vector instructions is not the only way to
vectorize conditional statements. Several alternatives exist that
vary in execution efficiency and in hardware complexity [22].
They are based on compressing vectors in order to collect all
the elements for which the conditional holds into contiguous el-
ements of a register. The compression can be implemented with
register-to-register (compress-expand) or indexed memory op-
erations (see Section V). The VIRAM architecture supports all
alternatives. The compiler selects between the strategies for vec-
torizing conditional statements based on a performance model
developed for the Cray machine, which also supports all the al-
ternatives. Masked execution of vector instructions is most com-
monly used, especially for loops that have only a single condi-
tional.

To implement masked operations, the elements of vector flag
registers are distributed across lanes just like the elements of
regular vector registers. Element operations with a mask bit set
to zero can either be skipped or simply ignored by suppressing
any register file or memory updates they generate. Skipping op-
erations can potentially reduce the execution time of a vector
instruction but complicates multi-lane implementations, where
it is desirable to have identical control for all vector lanes. The
VIRAM implementation built in U.C. Berkeley uses the simpler
approach of ignoring updates. This makes conditional execution
trivial to implement, but leads to non-optimal performance for
cases where a sparsely populated vector flag register is used.

In addition to conditional execution, the flag registers in VI-
RAM are used to support software speculation of vector loads
and to handle arithmetic exceptions.

V. MEMORY SYSTEM ARCHITECTURE

Most multimedia applications process large, streaming data
sets with often limited temporal locality [2]. Therefore, the
memory system performance is critical for a media processor.
It must be able to provide high memory bandwidth, while toler-
ating long latencies. The VIRAM architecture supports a high
bandwidth, low power memory system by combining vector
load-store instructions with embedded DRAM technology.

A. Instruction Set and Compiler Support for Memory Accesses

As a complete vector architecture, VIRAM supports three
types of vector load and store instructions: sequential, strided,
and indexed. A sequential load will fetch into a vector register

8 PROCEEDINGS OF THE IEEE, VOL. X, NO. Y, ZZZ 2002

C code:

for (i=0; i<N; i++) {
if (A[i]<threshold) C[i]=A[i];
else C[i]=B[i];

}

VIRAM assembly without outer strip-mining loop:

vld a, a_address # Vector load from array A
vld b, b_address # Vector load from array B
vcmp.lt t, a, threshold # Vector comparison; element i in flag

register t is set if A[i]<threshold
vneg f, t # Negate the result of the comparison and

store it in flag register f
vst a, c_address, t # Vector store under mask t to array C
vst b, c_address, f # Vector store under mask f to array C

Fig. 9. The C and VIRAM assembly code for a simplified version of the chroma-key kernel.

a set of data from consecutive memory locations. A strided load
will fetch data from memory locations separated by a constant
distance (stride). An indexed load uses the elements in a vec-
tor register as pointers to memory locations with the data to be
fetched. The three types of store instructions operate in similar
ways. The width of data in memory can be narrower than that of
elements in vector registers (VPW) and there is no requirement
for the data to be aligned to a memory address that is multiple
of its total vector width.

Each vector memory instruction specifies a set of data ac-
cesses for vector elements. A large number of element trans-
fers can be executed in parallel in order to utilize high mem-
ory bandwidth. The latency for initializing a stream of transfers
can be amortized over all the elements fetched by the instruc-
tion. Hence long memory latencies can be tolerated, as long as
high bandwidth is available. Furthermore, each memory instruc-
tion explicitly specifies its access pattern (sequential, strided, in-
dexed), thus effective prefetching techniques can be utilized.

The use and differences in performance for the three mem-
ory access modes can be demonstrated using the matrix-vector
multiplication routine (MVM):

for (i=0; i<N; i++)
for (j=0; j<N; j++)

Y[i] += M[i][j] * V[j]

By vectorizing the inner loop (j loop), we can execute this code
as a loop of dot products. Every dot product calculates a single
element of the result vector Y [i]. Otherwise, we can vectorize
the outer loop (i loop), in which case the execution proceeds as
a loop of saxpy kernels on the columns of the matrix M. As-
suming the the matrix is laid out in memory by rows, then the
dot product vectorization will require sequential vector loads,
while the saxpy one will use strided accesses. The bandwidth
for strided accesses is typically lower than that for sequential.
Depending on the stride value, multiple addresses may be re-
quired to access the data. Even if the memory system can accept
multiple addresses per cycle, they may lead to conflicts that re-
duce the effective bandwidth [23]. On the other hand, the dot
product version performs reductions which may not be able to

utilize all vector lanes during their last stages. This is only an is-
sue for short reductions, where the cost of the last stages cannot
be efficiently amortized.

 row−dot row−saxpy row−padded column−saxpy
0

100

200

300

400

500

600

700
M

F
LO

P
S

1 lane
2 lanes
4 lanes
8 lanes

Fig. 10. Performance in Mflops for the different versions of the matrix vector
multiplication routine.

Figure 10 presents the performance in Mflops for double-
precision MVM on a 64 × 64 matrix for a 200 MHz VIRAM
processor with one vector functional unit for floating-point op-
erations. The first set of graphs is for a dot-product implemen-
tation with a row-major matrix layout, which uses unit stride
accesses. Not surprisingly, with only 64 elements per vector,
efficiency is somewhat low due the percentage of time spent on
reductions of short vectors. The second set of bars shows the
performance of the saxpy version, where the accesses to the ma-
trix with a stride of 64 (matrix dimension). Padding the rows
of the array with an extra element, leads to a prime stride of
65 that reduces the frequency of memory conflicts. The perfor-
mance for this case is shown with the third group of bars. Fi-
nally, we can use a column-major layout for the matrix. In this
case, vectorizing the outer loop (i loop) leads to a saxpy version
with unit stride accesses. This produces the best performance,
as there are no memory conflicts and no overhead for reductions.
Note that, while is may be attractive to consider only using the

KOZYRAKIS ET.AL.: HARDWARE/COMPILER CO-DEVELOPMENT FOR AN EMBEDDED MEDIA PROCESSOR 9

1 2 4 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
R

el
at

iv
e

P
er

fo
rm

an
ce

Number of Sub−banks per DRAM Bank

Fig. 11. The effect of the number of sub-banks per DRAM bank on the perfor-
mance of a 4-lane VIRAM processor for the IDCT kernel.

column-based layout for this routine, there are other common
multimedia kernels which have the opposite design constraints,
so a row-major layout is preferred for them.

Indexed load and store accesses can be used to vectorize a
sparse version of matrix vector multiplication. In a sparse ma-
trix representation, only the nonzero elements in each row are
actually stored, along with the corresponding indices for the col-
umn. Hence the loop for this kernel includes the statement:

Y [i]+ = M [j] ∗ V [matrix index[j]].

In order to use a dot-product implementation like the one dis-
cussed for the dense case, one has to load a set of indices using
a sequential load, and then use them as a set of pointers for an
indexed load from the source vector V.

With the proper hardware support, indexed vector accesses
can be executed at a very fast rate. This includes high ad-
dress generation and translation throughput and high memory
bandwidth for random accesses. A four-lane, 200 MHz VI-
RAM implementation with the memory system described in sec-
tion section V-B, can sustain 511 Mflops for sparse MVM on a
10, 000×10, 000 matrix with 178,000 nonzero elements. This is
more than an order of magnitude better than the 35 Mflops sus-
tained with a 500 MHz Pentium III superscalar processor with a
cache-based memory system. The ability of the VIRAM hard-
ware to issue in parallel and overlap multiple element accesses
for a vector indexed load, leads to the significant performance
advantage.

B. Embedded DRAM Memory System

For fast execution of load and store instructions, a vector pro-
cessor requires a memory system that provides high sequen-
tial and random access bandwidth. For vector supercomputers,
this is typically achieved using SRAM memory or a multi-chip
DRAM system with multiple, wide, high frequency interfaces.
The cost and power consumption of these approaches renders
them inappropriate for use with processors for embedded sys-
tems.

The memory system for VIRAM is based on embedded
DRAM technology (eDRAM). Embedded DRAM allows the use

of the increasing die densities in order to integrate the logic nec-
essary for a microprocessor with high capacity DRAM mem-
ory [24]. There are several fundamental advantages to this ap-
proach. First, a wide, high frequency interface between the pro-
cessor and memory becomes economical, because all compo-
nents are integrated on a single die. The power consumption
of the memory system is also reduced, as most memory ac-
cesses can be processed on-chip, without driving high capaci-
tance board traces [25]. Embedded DRAM is at least five times
denser than SRAM. One can integrate a processor with a DRAM
memory system large enough to be used as the main memory,
not a cache, for embedded applications such as PDAs, cellular
phones, and video cameras. This leads in practice to system-
on-a-chip integration. Finally, the use of trench capacitor cells
allows mixing DRAM memory with a microprocessor, without
a reduction in the speed of the digital circuitry [24].

In order to maximize the bandwidth available for indexed and
strided accesses, an eDRAM memory system is organized as
multiple, independent memory banks [26]. Each bank has a
separate wide interface and a controller that allows initiating
one memory access per cycle. A collection of banks can be
connected to the vector processor using a high bandwidth, on-
chip, switched fabric instead of a simple bus. Random access
bandwidth can be further improved by exploiting the hierarchi-
cal structure of eDRAM banks. Each one consists of a number
of sub-banks, connected to the bank interface through a shared
data and address bus. While this technique was introduced in
order to reduce the memory access latency, it can also be used
to overlap in time accesses to different sub-banks in a pipelined
fashion [27]. Random bandwidth is particularly important to ap-
plications with strided and indexed loads and stores, where bank
conflicts between element accesses can significantly hurt the
overall performance. This is because DRAM reads and writes
take multiple processor cycles to complete. Hence an access
occupies a sub-bank for several cycles, which makes stalls due
to conflicts more expensive. Figure 11 presents the effect of the
number of sub-banks on the performance of a four-lane VIRAM
implementation with 8 DRAM banks for the inverse discrete co-
sine transform (IDCT). This kernel performs the transformation
on every 8× 8 sub-block of a digital image and utilizes strided
loads. Using four sub-banks reduces significantly the frequency
of memory conflicts and their corresponding stall cycles, lead-
ing to 80% performance improvement over the single sub-bank
organization.

The multi-cycle delay for accessing DRAM and the fact that
the delay may vary depending on whether a column or row ac-
cess needs to be performed, introduce an interesting challenge
in designing the load-store unit for the vector processor. In tradi-
tional microprocessor systems, the off-chip DRAM memory is
hidden behind multiple levels of SRAM-based cache memory.
But a vector processor is able to tolerate latency if high band-
width is available. Embedded DRAM offers both high band-
width and significantly lower latency than off-chip DRAM. It
is, therefore, reasonable to organize the load-store unit so that
vector accesses are directly served by DRAM and no die area
is occupied for SRAM caches, which are not always the most
efficient structure for streaming data.

The bursty behavior of eDRAM can be tolerated using a de-

10 PROCEEDINGS OF THE IEEE, VOL. X, NO. Y, ZZZ 2002

0 N

DRAM Latency

VR ... VW

T VR

XD M WF Scalar Unit Pipeline

T VW

G

G

VADD

VLD

VST

X XDelay Pipeline Stages

Delay Pipeline Stages

Fig. 12. The delayed pipeline structure for a vector load (vld), store (vst), and
add (add). The store and add pipelines have been padded with idle stages in
order to align their stage for reading source operands (VR) with that for writing
the result (VW) for the load operation that observes the maximum DRAM access
latency.

 5Kc Core C
P

 I
F

DMA

JTAG

SYSAD IF

JTAG IF

TMMIPS64

Instr. Cache
 (8KB)

 (8KB)
Data Cache

FPU

Memory Unit TLB

Vector Register File (8KB)

Arith Unit 1Arith Unit 0

Memory Crossbar

Flag Register File (256 B)

. . .
DRAM 0 DRAM 1 DRAM 7

(1.75MB) (1.75MB) (1.75MB)

Flag Unit

Fig. 13. The block diagram of the VIRAM-1 processor. Its three basic com-
ponents are the MIPS scalar core, the vector coprocessor, and the embedded
DRAM memory system.

coupled organization, where the load-store unit uses data and
address queues to hide the variability in access time from the
other vector functional units [28]. A simpler alternative, which
saves the area and power consumption of the decoupling queues,
is the delayed pipeline presented in Figure 12. This organization
treats DRAM reads and writes as if they always require a row
access, which leads to the maximum latency. But this latency is
pipelined for both loads and stores. In addition, the pipeline for
vector arithmetic operations is also padded with sufficient idle
(delay) stages to match the length of the load pipeline. Hence,
when a vector add is issued a cycle after the vector load that
fetches one of its sources, it can proceed down the correspond-
ing pipeline, without any stall cycles due to the read-after-write
dependency and the long DRAM accesses latency. All the VI-
RAM performance results presented in this paper assume the
use of a delayed pipeline, which demonstrates its effectiveness
for a wide range of cases. Note that while the delayed pipeline
assumes that the time for a row access is always needed, the
control signals sent to the memory banks will only initiate the
portions of a DRAM access that are actually needed, depend-
ing on whether the requested data are already available at the
sense-amplifiers of the corresponding sub-bank.

VI. PUTTING IT ALL TOGETHER: THE VIRAM-1
PROCESSOR

To demonstrate in practice the advantages of the architecture
and techniques presented in the previous sections, we developed

the VIRAM-1 prototype microprocessor [29]. The instruction
set for this design is based on the MIPS architecture [30] with
the vector instructions implemented as a coprocessor extension.
The MIPS architecture was chosen for a number practical rea-
sons and only minor changes would be required to use our vector
architecture as a coprocessor to other RISC architectures such as
ARM or PowerPC.

Figure 13 presents the block diagram of the processor. The
MIPS core is a single-issue, in-order, 64-bit design with 8-
KByte first-level instruction and data caches. The vector copro-
cessor contains an 8-KByte, multi-ported, vector register file.
Each of the 32 vector registers can store 32 64-bit elements, 64
32-bit elements, or 128 16-bit elements. There are two func-
tional units for arithmetic operations, with only one of them able
to perform single-precision floating-point operations due to area
constraints. Each functional unit has four 64-bit datapaths and
the whole coprocessor is organized in four vector lanes.

The memory system consists of eight embedded DRAM
banks with a total capacity of 14 MBytes. It serves as main
memory for both the vector coprocessor and the MIPS core.
Each bank has a 256-bit synchronous, pipelined interface and
latency of 25nsec row accesses. The interface presents each
bank as a single sub-bank structure and does not allow any over-
lapping of accesses internally. This restriction of the eDRAM
banks available to us is not fundamental to the architecture. It
has no performance impact on sequential access pattern, but it
can limit the sustained performance when strided or indexed ac-
cesses are used. A crossbar switch with aggregate bandwidth
of 12.8 GBytes/sec connects the memory system to the scalar
core and the vector coprocessor. The crossbar also connects to
a two channel DMA engine which allows communication with
external devices or memory over a system bus. Similarly to the
on-chip DRAM, any off-chip memory is also considered main
memory and its use is controlled by software.

The vector memory unit serves as the interface between the
coprocessor and eDRAM, as there is no SRAM cache for the
vector load and store accesses. It implements the delayed
pipeline with 15 pipeline stages. It is able to exchange up to
256 bits per cycle with the memory system. Four address gen-
erators can used to produce up to four addresses per cycle for
indexed and strided accesses. Unlike traditional vector designs,
VIRAM-1 includes a multi-ported, two-level, TLB that supports
virtual memory for vector memory accesses. Overall, the mem-
ory unit can sustain up to 64 addresses pending to the memory
system at any time.

Table I summarizes the design statistics of VIRAM-1. The
clock frequency goal is set to merely 200 MHz to allow for
a low power supply and reduced power consumption. Despite
this, the performance is high due to the parallel execution of el-
ement operations on the four vector lanes. The result is 1.6 bil-
lion operations per second per Watt for 32-bit integer numbers,
with power/performance efficiency being higher for operations
on narrower data types or when multiply-add instructions can be
used.

Figure 14 presents the floorplan for VIRAM-1. The die area
is 15mm× 18mm, while the transistor count is approximately
130 millions. The design is particularly modular as it consists of
replicated vector lanes and DRAM banks. Modularity is a major

KOZYRAKIS ET.AL.: HARDWARE/COMPILER CO-DEVELOPMENT FOR AN EMBEDDED MEDIA PROCESSOR 11

TABLE I

THE VIRAM-1 PROCESSOR DESIGN STATISTICS.

Technology IBM 0.18µm CMOS process
6 layers copper, deep trench DRAM cell

Area 270mm
2

Devices 130 million transistors
Frequency 200 MHz
Power Supply 1.2V (processor), 1.8V (DRAM)
Power Consumption 2 Watt
Integer 1.6/3.2/6.4 Gop/s (64-,32-,16-bit data)
Performance 3.2/6.4/12.8 Gop/s (with multiply-add)
Floating-point 1.6 Gflops (32-bit only)
Performance

advantage both for reducing design complexity and providing a
straight-forward path for scaling. This key property has allowed
the development of such a large design by a team of six graduate
students. Alternative designs can be easily produced by prop-
erly selecting the mix of lanes and banks with minimal control
changes necessary. Another interesting property of VIRAM-1
is that the majority of its die area is used for vector registers,
execution datapaths, and DRAM main memory. This is in con-
trast with superscalar and VLIW designs where an increasing
percentage of the die area is used for SRAM-based caches.

Figure 15 compares the performance of VIRAM-1 to a num-
ber of desktop and embedded processors such as the PowerPC
G3 and G4, the Intel PentiumIII, and the Mitsubishi M32R/D.
The three kernels used are corner turn, coherent sidelobe can-
celer, and beam steering, which perform signal and image pro-
cessing for radar applications. Performance is presented as
speedup over the PowerPC G3 design running at 400MHz. De-
spite its lower clock frequency, VIRAM-1 outperforms the other
architectures by an order of magnitude by exploiting parallel ex-
ecution on vector lanes and the rich memory system resources
available.

Figure 16 compares VIRAM-1 to high-end desktop and server
superscalar processors for a 100 × 100 matrix-vector multipli-

MIPS

FPU

MEMORY CROSSBAR

LANE
VECTOR

LANE
VECTOR

LANE
VECTOR

LANE
VECTOR

MEMORY CROSSBAR

C
O

N
T

R
O

L

I
O

CACHE

DRAM DRAM DRAMDRAM

DRAM DRAM DRAM DRAM

BANK BANK BANK BANK

BANKBANKBANKBANK

Fig. 14. The floorplan of the VIRAM-1 vector processor (drawn to scale).

 Corner Turn Sidelobe Canceller Beam Steering
0

5

10

15

20

25
PPC G3−400MHz
M32RD−80MHz
PPC G4−700MHz
Pentium III−700MHz
VIRAM1−200MHz

Fig. 15. The performance of VIRAM-1 and a set of superscalar processors for
three media kernels for radar applications. Performance is expressed as speedup
over the PowerPC G3 processor.

VIRAM−1 UltraI UltraII R12000 21264 PPC G3 Power3
0

50

100

150

200

250

300

350

400
MFLOPS
MFLOPS/Watt

Fig. 16. The performance and power/performance efficiency of VIRAM-1 and
a set of high-end superscalar processors for the matrix-vector multiplication rou-
tine.

cation kernel. The other architecture are the Sun Ultra-sparc
I and II, the MIPS R12000, the Alpha 21264, the PowerPC
G3, and the IBM Power3-630. Performance, reported in sus-
tained Mflops or Mflops per Watt, is achieved with compiled
code for VIRAM and with vendor optimized BLAS routines
written in assembly for the other processors [31]. Focusing on
the bars representing Mflops, one can notice that VIRAM-1 is
competitive with the most aggressive superscalar design today,
the Alpha 21264, while it clearly outperforms the remaining ar-
chitectures. If a larger matrix is used, all the superscalar de-
signs will experience a performance reduction due to caching
effects. The performance for VIRAM-1 will not be affected,
since vector accesses are directly served by on-chip DRAM
main memory. When power/performance efficiency is consid-
ered (Mflops/Watt), the superiority of VIRAM-1 is obvious. It
is able to exploit the vector architecture and the eDRAM mem-
ory system to achieve both high performance and low power
consumption for this highly data parallel kernel. On the other
hand, the superscalar architectures rely on parallel instruction
issue, hardware speculation, and increased clock frequency. All

12 PROCEEDINGS OF THE IEEE, VOL. X, NO. Y, ZZZ 2002

these techniques lead to significant power consumption between
20 and 80 Watt, depending on the specific design.

VII. CONCLUSIONS

As Moore’s Law continues to apply for semiconductor tech-
nology, the question is not only how to harness its potential
power, but also for what applications. Recent market and de-
vice use trends show that embedded and portable systems run-
ning multimedia applications such as speech recognition or im-
age processing create an application domain of great importance
and large potential growth. While microprocessors for desktop
PCs seem to be fast enough to run office productivity software,
embedded application still require significant advances in the
performance, power consumption, and complexity efficiency of
general purpose processors. Improvements are not only neces-
sary in order to add features to existing systems, such as im-
proved graphics to a game console, but also to enable new em-
bedded applications such as PDAs with speech recognition.

Vector IRAM demonstrates an approach to riding Moore’s
Law for multimedia applications on embedded systems. It uses
a vector architecture to match the data parallelism of media tasks
and embedded DRAM technology to provide a high bandwidth,
integrated memory system. The explicit representation of data
parallelism in vector instruction enables VIRAM to be efficient
for all four important metrics: performance, power consump-
tion, design complexity, and scalability. It also allows trade-
offs between hardware resources and performance or hardware
resources and power consumption. This is desirable because
the cost of additional hardware resources (vector lanes) is auto-
matically reduced with every generation of CMOS technology.
Moreover, the VIRAM architecture lends itself to compiling
from high level programming languages with high efficiency,
both in terms of the achieved performance and the executable
code size.

REFERENCES

[1] T Lewis, “Information Appliances: Gadget Netopia,” IEEE Computer,
vol. 31, no. 1, pp. 59–66, Jan. 1998.

[2] K. Diefendorff and P. Dubey, “How Multimedia Workloads Will Change
Processor Design,” IEEE Computer, vol. 30, no. 9, pp. 43–45, Sept. 1997.

[3] J.E. Smith and G.S. Sohi, “The Microarchitecture of Superscalar Proces-
sors,” Proceedings of the IEEE, vol. 83, no. 12, pp. 1609–24, December
1995.

[4] S. Palacharla, N.P. Jouppi, and J.E. Smith, “Quantifying the Complexity
of Superscalar Processors,” Tech. Rep. CS-TR-1996-1328, University of
Wisconsin-Madison, Nov. 1996.

[5] J.A. Fischer, “Very Long Instruction Word Architectures and ELI-512,”
in the Proceedings of the 10th Intl. Symposium on Computer Architecture,
Stockhold, Sweden, June 1983.

[6] M. Schlansker, T.M. Conte, J. Dehnert, K. Ebcioglu, J.Z. Fang, and C.L.
Thompson, “Compilers for Instruction-Level Parallelism,” IEEE Com-
puter, vol. 30, no. 12, pp. 63–69, Dec. 1997.

[7] R. Russel, “The Cray-1 Computer System,” Communications of the ACM,
vol. 21, no. 1, pp. 63–72, January 1978.

[8] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, second edition, Morgan Kaufmann, 1996.

[9] R.W. Brodersen, A. Chandrakasan, and S. Sheng, “Design techniques for
portable systems,” in the Digest of Technical Papers of the Intl. Solid-State
Circuits Conference, San Francisco, CA, Feb. 1993.

[10] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low-power CMOS
Digital Design,” IEEE Journal of Solid State Circuits, vol. 27, no. 4, pp.
473–484, Apr. 1992.

[11] K. Asanovic, Vector Microprocessors, Ph.D. thesis, Computer Science
Division, University of California at Berkeley, 1998.

[12] R. Ho, K.W. Mai, and M.A Horowitz, “The Future of Wires,” Proceedings
of the IEEE, vol. 89, no. 4, pp. 490–504, Apr. 2001.

[13] S.L. Graham, D.F Bacon, and O.J. Sharp, “Compiler Transformations for
High Performance Computing,” ACM Computing Surveys, vol. 26, no. 4,
pp. 345–420, 1994.

[14] J.M Anderson, S.P. Amarasignhe, and M.S. Lam, “Data and Computa-
tion Transformations for Multiprocessors,” in the Proceedings of the 5th
Symposium on Principles and Practice of Parallel Programming, Santa
Barbara, CA, July 1997.

[15] Cray Research Inc., Cray Standard C and Cray C++ Reference Manual
(004-2179-00), 2000.

[16] C. Lee and M. Stoodley, “Simple Vector Microprocessor for Multimedia
Processing,” in the Proceedings of 31st Intl. Symposium on Microarchi-
tecture, Dallas, TX, Dec. 1998.

[17] A. Peleg and U. Weiser, “MMX Technology Extension to the Intel Archi-
tecture,” IEEE Micro, vol. 16, no. 4, pp. 42–50, Aug. 1996.

[18] M. Phillip, “A Second Generation SIMD Microprocessor Architecture,”
in the Conference Record of Hot Chips X Symposium, Palo Alto, CA, Aug.
1998.

[19] D. Judd, K. Yelick, C. Kozyrakis, D. Martin, and D.: Patterson, “Ex-
ploiting On-chip Memory Bandwidth in the VIRAM Compiler,” in the
Proceedings of the 2nd Workshop on Intelligent Memory Systems, Nov.
2000.

[20] R. Thomas, “An architectural performance study of the fast fourier trans-
form on VIRAM,” Tech. Rep. UCB//CSD-99-1106, University of Califor-
nia, Berkeley, June 2000.

[21] S.A Mahlke, D.C. Lin, W.Y. Chen, R.E Hank, and R.A Bringmann,
“Effective Compiler Support for Predicated Execution Using the Hyper-
block,” in the proceedings of the 25th Intl. Symposium on Microarchitec-
ture, Dec. 1992, pp. 45–54.

[22] J.E. Smith, G. Faanes, and R. Sugumar, “Vector Instruction Set Support
for Conditional Operations,” in the Proceedings of 27th Intl. Symposium
on Computer Architecture, Vancouver, BC, Canada, June 2000.

[23] G. Sohi, “High-Bandwidth Interleaved Memories for Vector Processors -
A Simulation Study,” IEEE Transactions on Computers, vol. 42, no. 1, pp.
34–44, Jan. 1993.

[24] I.S. Subramanian and H.L. Kalter, “Embedded DRAM Technology: Op-
portunities and Challenges,” IEEE Spectrum, vol. 36, no. 4, pp. 56–64,
Apr. 1999.

[25] R. Fromm, S. Perissakis, N. Cardwell, C. Kozyrakis, B. McGaughy, P. Pat-
terson, T. Anderson, and K. Yelick, “The Energy Efficiency of IRAM Ar-
chitectures,” in the Proceedings of the 24th Intl. Symposium on Computer
Architecture, Denver, CO, June 1997.

[26] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A Case for Intelligent DRAM:
IRAM,” IEEE Micro, vol. 17, no. 2, pp. 34–44, Apr. 1997.

[27] T. Yamauchi, L. Hammond, and K. Olukotun, “The hierarchical multi-
bank DRAM: a High-performance architecture for memory integrated
with processors,” in the Proceedings of the 17th Conference on Advanced
Research in VLSI, Ann Arbor, MI, USA, Sept. 1997.

[28] R. Espasa and M. Valero, “Decoupled Vector Architecture,” in the Pro-
ceedings of the 2nd Intl. Symposium on High-Performance Computer Ar-
chitecture, San Jose, CA, Feb. 1996.

[29] C.E. Kozyrakis, J. Gebis, D. Martin, S. Williams, I. Mavroidis, S. Pope,
D. Jones, D. Patterson, and K. Yelick, “VIRAM: A Media-oriented Vector
Processor with Embedded DRAM,” in the Conference Record of the Hot
Chips XII Symposium, Palo Alto, CA, August 2000.

[30] J. Heinrich, MIPS RISC Architecture, 2nd Edition, Silicon Graphics, Inc.,
1998.

[31] J.J. Dongarra, J. Du Croz, S. Hamarling, and R.J. Hanson, “An Extended
Set of Fortran Basic Linear Algebra Subprograms,” ACM Transactions on
Mathematical Software, vol. 14, no. 1, pp. 18–32, Mar. 1988.

KOZYRAKIS ET.AL.: HARDWARE/COMPILER CO-DEVELOPMENT FOR AN EMBEDDED MEDIA PROCESSOR 13

Christoforos Kozyrakis (Student Member, IEEE) is
a Ph.D. Candidate in Computer Science at the Uni-
versity of California at Berkeley. He holds B.S. and
M.S. degrees in Computer Science from the Univer-
sity of Crete (Greece) and the University of Califor-
nia at Berkeley respectively. He is the recepient of a
Ph.D. Research Fellowship Award by IBM. His cur-
rent research interests include scalable processor ar-
chitectures, memory hierarchies, multimedia systems,
and digital systems design.

David Judd has 32 years of software development ex-
perience on RISC processors at Control Data Corp.
(CDC 7600), Cray Research Inc. (Cray-1/2/3, Cray
C90/T90, Cray T3D/T3E), and SGI. He was involved
with operating system development (SCOPE-2, COS,
UNICOS) and compiler development (Cray CF90,
C/C++). He received the B.S. from Stanford Univer-
sity in 1966 and the M.S. degree from the University
of Minnessota in 1969.

Joseph Gebis (Student Member, IEEE) is pursuing a
Ph.D. degree in Computer Science at the University
of California at Berkeley. He holds a B.S. degree in
Computer Engineering from the University of Illinois
at Urbana-Champaign. His research interests are in
computer architecture and circuits design.

Sammuel Williams is a nice guy. Here we should
place some irrelevant information about his life. Ap-
parently this info must be long enough to cover the
space next to the picture. Otherwise, latex starts doing
weird things, as usual. I looked for a while but I could
not find some better solution for this problem, unfor-
tunately. Hopefully people have enough things to say
about their exciting lifes...

David Patterson (Fellow, IEEE) joined the faculty
at the University of California at Berkeley in 1977,
where he now holds the Pardee Chair of Computer
Science. He is a member of the National Academy
of Engineering and a fellow of both the ACM and the
IEEE.
He led the design and implementation of RISC I,
likely the first VLSI Reduced Instruction Set Com-
puter. This research became the foundation of the
SPARC architecture, used by Sun Microsystems and
others. He was a leader, along with Randy Katz, of

the Redundant Arrays of Inexpensive Disks project (RAID), which led to re-
liable storage systems from many companies. He is co-author of five books,
including two with John Hennessy, who is now President of Stanford Univer-
sity. Patterson has been chair of the Computer Science Division at Berkeley, the
ACM SIG in computer architecture, and the Computing Research Association.
His teaching has been honored by the ACM, the IEEE, and the University of
California. Patterson shared the 1999 IEEE Reynold Johnson Information Stor-
age Award with Randy Katz for the development of RAID and shared the 2000
IEEE von Neumann medal with John Hennessy.

Katherine Yelick is a Computer Science faculty
member at UC Berkeley. Her research in parallel com-
puting addresses irregular applications, data struc-
tures, compilers, and run-time systems. Her projects
include equational unification algorithms, parallel
symbolic applications,the Multipol distrubuted data
structure library, the Split-C parallel language, the Ti-
tanium compiler for explicit parallelism, and compiler
support for VIRAM.
Yelick graduated with a Ph.D. from MIT in 1991,
where she worked on parallel programming methods

and automatic theorem proving and won the George M. Sprowls Award for an
outstanding Ph.D. dissertation.

