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ABSTRACT 
VIRAM (Vector Intelligent Random Access Memory) is a vector 
architecture processor with embedded memory, designed for 
portable multimedia processing devices.  Its vector processing 
capability results in high performance multimedia processing, 
while embedded DRAM technology provides high memory 
bandwidth at low energy consumption.  In this paper, we 
evaluate and compare performance of VIRAM to other digital 
signal processors (DSPs) and conventional SIMD (Single 
Instruction Multiple Data) media extensions in the context of 
video coding.  In particular, we will examine motion estimation 
(ME) and discrete cosine transform (DCT) which have been 
shown to dominate typical video encoders such as H.263. We 
will show that VIRAM outperforms other architectures by 4.6x 
to 8.7x in computing ME and by 1.2x to 5.9x in computing 
DCT.   

1. Introduction 
Traditionally, video processing is performed by high-end 
workstations or specialized hardware such as ASICS.  Recent 
popularity of portable and hand-held devices such as digital 
cameras and wireless videophones has created a need for 
hardware architectures designed for mobile, portable video 
processing applications [7].  Conventional microprocessors are 
not well suited to video processing because they are optimized 
for traditional applications with complex control flow.  On other 
hand, the kernels of multimedia applications are often 
characterized by large amounts of data parallelism and high 
memory bandwidth [2].  For  instance, standardized video 
codecs such as MPEG-4 and H.263 consist  of motion estimation 
(ME) and discrete cosine transform (DCT), both requiring high 
memory bandwidth and involving large amounts of data 
parallelism. In this paper, we analyze the speed performance of 
an H.263 encoder on VIRAM (Vector Intelligent Random 
Access Memory), the vector microprocessor being designed at 
U.C. Berkeley. By integrating vector processing with embedded 
DRAM technology, VIRAM  eliminates off-chip memory 
accesses, and therefore achieves high memory bandwidth at low 
power consumption. In addition, vector architecture uses less 
instruction decode overhead, and as such, VIRAM requires less 
area and power. 
The H.263 is the ITU (International Telecommunication Union) 
recommended standard for very low bit rate video compression 
We choose to analyze the performance of H.263 video codec on 

VIRAM because it has lower computational and power 
requirements compared to other algorithms, and therefore is 
well suited for portable devices. Section 2 gives an overview of  

VIRAM architecture. Next, in Section 3 we characterize the 
time distribution of individual components of the H.263 
encoder.  In  Section 4, we discuss the optimization of ME and 
DCT algorithms on VIRAM and the corresponding speed 
performance results. Finally, we conclude in Section 5. 

2. Overview of VIRAM Architecture 
VIRAM is a vector microprocessor designed for media 
processing with on-chip main memory [8]. Figure 2 shows the 
block diagram of VIRAM architecture.  It contains a MIPS core 
scalar unit and a loosely coupled vector unit (VU).  It is being 
designed using 0.18 µm embedded DRAM technology with 
target clock rate of 200MHz and 1.2V power supply.  Since the 
processor and main memory are placed on the same chip, 
VIRAM can potentially increase memory bandwidth by 100 
times as compared to conventional microprocessor systems [10].  
The target power consumption for the vector unit and memory is 
2 watts [8,3] which is suitable for some portable devices. We 
expect that an industry implementation of this chip would have 

 

 

Figure 2. Block diagram of VIRAM architecture 
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Figure 1.  Block diagram of H.263 encoder 



even lower power. 
VIRAM has two vector arithmetic functional units (VAFU) and 
one vector memory functional unit (VMFU).  Both VAFU and 
VMFU have four 64-bit vector data paths that can be used to 
perform eight 32-bit or sixteen 16-bit operations per cycle.  Both 
VAFUs support integer, fixed point, logical operations but only 
one supports floating-point operations. VIRAM’s peak 
performance is 6.4 GOPS for 16-bit data type, 3.2 GOPS for 32-
bit data type, and 1.6 GOPS for 64-bit data type.  Besides vector 
arithmetic and logical instructions,  VIRAM also supports a 
wide range of scalar–vector instructions which have a scalar and 
a vector as operands.  Most instructions are fully pipelined.  The 
VMFU can load and store up to 256 bits per cycle. There are 
three types of vector memory accesses: unit stride which 
accesses contiguous memory locations, strided which accesses 
memory locations by a fixed offset, and indexed which accesses 
memory locations referenced by elements in a vector register.   
VIRAM’s register file contains 32 vector registers and 32 scalar 
registers.  Each vector register is 2048 bits long.  VIRAM’s 
memory system has 16 Mbytes of DRAM organized into eight 
banks. Finally, there is an I/O interface with 100MB/s parallel 
lines.  Since VIRAM is not yet available, the performance 
results in this paper are based on a near cycle-accurate simulator 
that was developed at U.C. Berkeley [4]. 

3. H.263 Performance Characterization 
To characterize the performance of the encoder, we use the 
H.263 version 2 written by Telenor, a popular public-domain 
implementation of H.263.  Our test environment is a SGI 
machine running at 180MHz.  We first optimize the H.263 
encoder by changing many common functions into macros.  We 
also replace the slow IDCT with the fast IDCT provided with 
the Telenor source code.  During the measurements, we 
minimize the computational load of the machine by not running 
any other program.   Our tests include four QCIF (176x144)  
standard H.263 test sequences: Akyio, Mom, Hall, and 
Foreman.  Each contains 300 frames.  We use quantization level 
Q = 10, and target frame rate of 10fps for all the test sequences.  
To measure the time spent on memory and arithmetic operations 
only, each test sequence is run from 3 to 5 times until the total 
time converges to a stable value.  This method avoids the 
influence of disk accesses since all the data are already cached 
in the memory from the previous runs.    

As shown in Table 1, ME and DCT dominate around 
81% and 9.5% of the total encoding time, respectively.   Since 
they are also highly vectorizable, we will optimize the H.263 
encoder for VIRAM, based entirely on ME and DCT. 

4. Performance of H.263 on VIRAM 

4.1 Motion Estimation 
Motion estimation is used to exploit the inherent temporal 
redundancy of a video.  In a typical motion estimation process, 
each frame of the video is divided into 16x16 macro-blocks.  
Given a macro-block in the current frame, the goal is to find the 
16x16 region from the previously reconstructed frame that is 
most similar to it.    In general, the similarity is defined based 
on the minimum value of Sum of Absolute Value (SAD) 
between the luminance pixel values of the two macroblocks: 
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where (x,y) and (k,l) are the lower left-corner positions of the 
current macro-block and the 16x16 region from the previously 
reconstructed frame, respectively, and F1, F0 are the pixel 
luminance values from current frame and previously 
reconstructed frame. 

Since the calculation of SAD is a 
dominant operation during motion 
estimation, most DSPs and 
multimedia extensions vectorize the 
SAD routine.  Vectorizing SAD 
requires the reduction operation 
which takes a vector and reduces to a 
scalar value by summing all the 
elements of the vector, as shown in 
Figure 3. Generally,  reduction 

operation is expensive as it breaks the flow of the vector 
pipeline.   Figure 4 shows a simple example of vectorized ME, 
using a 2x2 macro-block and 3x3 search area.  If one places the 
macroblock on top of the search area as shown in Figure 4(a), 
and starts sliding from left to right and top to bottom,  there are 
4 possible positions for the macroblock.  In each position, 
subtracting the corresponding elements of the macroblock and 
the search area  

 
 
block, and taking the absolute value of the subtraction, results in 
four 4-dimensional vectors as shown in Figure 4(b).  In order to 
find out the minimum, we need to use four reduction operations 
to obtain four scalar values and choose the minimum value of 
the four, which in this case happens to be 4. Alternatively, we 
propose a different approach to implement exhaustive search 
algorithm on VIRAM that uses only one min reduction operation 
when applied to the same example.  Min reduction operation 

Sequence  ME DCT + 
IDCT 

Other Total 

Akiyo  
(12.95 kbit/s) 

18765 
(80.9%) 

2306 
(9.9%) 

2130 
(9.1%) 

23201 

Mom 
(16.25 kbit/s) 

22446 
(82.3%) 

2508 
(9.2%) 

2310 
(8.4%) 

27264 

Hall 
(20.47 kbit/s) 

17745 
(79.5%) 

2282 
(10.2%) 

2300 
(10.3%) 

22327 

Foreman 
(65.52 kbit/s) 

27367 
(82.8%) 

2967  
(9.0%) 

2706 
(8.2%) 

33040 

Table 1 Time in ms for components of H.263 
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takes a vector and returns the smallest element in the vector. We 
first describe the algorithm then present the VIRAM 
architecture features that enable the algorithm. 
The method is as follows.  Step one: Subtract each entry in the 
macroblock from all possible overlapped entries of the search 
area, and take the absolute value of the subtraction.  For 
example, the first entry (0,0) of the macroblock will overlap 

with entries (0,0), (0,1), (1,0), 
(1,1) of the search area, and the 
resulting vector is (3,2,3,2).  Since 
the macroblock has 4 elements in 
this example, we will have 4 
resulting vectors as shown in 
Figure 5.  Step two:  Add all 
resulting vectors to obtain vector 
(9,8,7,4).  Each element in this 
vector is the SAD at a particular 
position in the search area.  Step 
three: Use only one min reduction 
on the final vector to obtain the 
minimum SAD. 
 To implement the above algorithm 
efficiently, the scalar and vector 
subtraction instruction is needed  to 

perform the step one in the example.  Unlike other architectures 
such as MMX, VIRAM has a wide range of arithmetic scalar 
and vector instructions which take a scalar operand and a vector 
operand to produce a vector result.  Next, to store many possible 
overlapped entries of the search area in a few vector registers to 
perform the subtraction in step one, the vector registers have to 
be long.  While most existing architectures have 64 to 128 bits 
vector registers, and hence can only store 4 to 8 16-bit values, 
VIRAM’s registers are 2048-bit long that can store up to 128 
16-bit values. As such, two VIRAM vector registers are enough 
to hold 16x16  overlapped search area.  In addition, VIRAM 
provides the indexed load instruction with autoincrement of the 
base register to read the overlapped search area which is usually 
a block in the image, into a vector register.  Other DSPs such as 
the TriMedia [11] do not have the ability to load a block of the 
image into a vector register in one instruction.  In step 3, 
VIRAM provides an efficient way to do min reduction on a N-
dimensional vector with log(N) complexity. 
 

 Table 2.  Cycles/frame for the exhaustive search 

Tables 2 shows the performance of two versions of VIRAM vs. 
Pentium II MMX.  The number in the parentheses represents 
the speed-up factor of VIRAM over MMX.  On the Pentium 
MMX, the measured time is  multiplied by the clock rate to 
obtain the number of cycles, and the measurement is done using 
SAD routine provided by Intel Corp [5]. On VIRAM, we use the 
cycle-accurate performance simulator.  VIRAM-1 is the current 
design that can generate four addresses/cycle while VIRAM-2 
design can generate eight addresses/cycle for indexed loads. 

Note that VIRAM-1 performance is much worse than VIRAM-2 
because of the stalls in address generation units by indexed 
loads.  Address generation stalls happen when address 
computations are not fast enough for the vector unit. Still, 
VIRAM-1 outperforms MMX by a factor of 4.6. 
 

4.2  Discrete Cosine Transform 
The discrete cosine transform maps the pixel values from spatial 
domain into the frequency domain for energy compression.  A 
two-dimensional forward DCT of NxN pixels f(x,y) is given by: 
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where ki = 2/1  for i  = 0 and ki= 1 otherwise. 

 
There are several fast methods for computing the DCT.  In this 
paper, we consider a fast DCT algorithm called LLM [9]. While 
the original LLM algorithm uses 11 multiplies and 29 additions, 
we implement the alternate LLM [9] which uses 12 multiplies 
and 32 additions.  The advantage of this method is that no data 
path contains more than one multiplication. This allows a 
simple and accurate implementation in scaled fixed-point 
arithmetic, with a minimal number of shifts. We also use 32-bit 
data to comply with the MPEG standard.  To compute 2-
dimensional  DCT, we first take a 1-dimensional DCT along the 
column, then take another 1-dimensional DCT along the row.  
To do the DCT along the column, we use unit strided load to 
read the first 8 rows of the image into 8 vector registers.   We 
then apply the normal DCT operations across the vector 
registers as though they are scalar values, and use unit strided 
store to write back the results of column DCT.  This process is 
repeated for all the rows of the image.  Next, to take the DCT 
along the row, we apply the same method as above except using 
strided load and store to work with the columns of the image.  
Unlike other architectures, VIRAM has high memory bandwidth 
due to its embedded DRAM technology that allows efficient 
strided load and stores [8]. 
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Our simulations show that the DCT performance of 

VIRAM degrades due to the stalls from address conflicts.  
Address conflicts happen when there is an access to the same 
memory bank while the previous access has not been completed.  
To avoid address conflicts, VIRAM memory banks is divided 
into many sub-banks.  Figure 6 shows the average number of 
cycles for computing 2-dimensional DCT of an 8x8 block using 
QCIF image for LLM with different number of sub-banks. As 

Size VIRAM-1 VIRAM-2 MMX 

QCIF 7.1x10
6

 (4.6x) 3.9x10
6 

(8.4x) 3.3x10
7
 

CIF 2.8x10
7 

(5.0x) 1.6x10
7 

(8.7x) 1.4x10
8
  

Figure 6. Cycles/block with different numbers of sub-banks 
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seen, the number of cycles is reduced by nearly a factor of 2, 
from 1 sub-bank design to 4 sub-banks design.  However, we 
gain only 5 cycles going from 4 sub-banks design to 8 sub-banks 
design due to the fact that address conflict is no longer the 
bottleneck but the computation. 
Table 3 shows number of cycles to compute the DCT of a 8x8 
block on different architectures.  The number in parentheses 
represents the speed-up factor of VIRAM versus other 
architectures. As seen, VIRAM outperforms both DSPs and 
SIMD multimedia extensions architectures by 1.2x to 5.88x in 
computing the DCT.  VIRAM and V830 numbers comply with 
MPEG accuracy standard.  For other numbers, compliance is not 
claimed, and hence computationally cheaper algorithms could 
have been used.  We also obtain 59 cycles per 8x8 block for a 
less accurate DCT algorithm called AAN [1] using 16-bit data. 

 

Table 3. DCT performance comparison of VIRAM vs. 
others 

4.3 Overall Performance 
Currently, our cycle-accurate simulator only emulates vector 
unit of VIRAM.  We do not yet have a scalar performance 
simulator. To measure the overall speed performance of the 
H.263 encoder which has both scalar and vector codes, we 
measure the time spent on the scalar code separately on a SGI 
machine, and the time spent on the vector code on the simulator.  
We then combine the results to get the overall performance of 
H.263.  This method is reasonably accurate since VIRAM has 
the same scalar core as the SGI machine.  Applying this 
technique to VIRAM with 4 sub-banks, we obtain the average 
achievable encoding frame rate for the test sequences in Table 4 
using exhaustive search for motion estimation, and LLM for 
DCT.  As we optimize the motion estimation and the DCT, the 
time spent on variable length coding (VLC) becomes significant.  
For example, the DCT and the motion estimation of the 
Foreman sequence take about 42 percent of the total time while 
VLC and other miscellaneous operations take the other 58 
percent.  At present time, we have not optimized the VLC for 
VIRAM.   As vector processing speed increases, we anticipate 
VLC to become the bottleneck in a typical video encoder. 
 
Akiyo 
(12.95 kbit/s) 

Mom 
(16.25 kbit/s) 

Hall 
(20.47 kbit/s) 

Foreman 
(65.52 kbit/s) 

23.5 fps 22.7fps 22.7fps 20.9fps 

 
Table 4. Average encoding speed for H.263 on VIRAM. 
 

As seen, the achievable encoding rates are high enough to result 
in acceptable quality for most multimedia and communication 
applications. 

5. Summary 
In this paper we presented an overview of VIRAM architecture, 
a vector microprocessor with embedded memory, optimized for 
multimedia applications.  Although VIRAM is a general-
purpose processor, its performance exceeds other DSP and 
multimedia extension architectures consistently by a factor of 
4.6 to 8.7 in computing motion estimation and by 1.2 to 5.88 in 
computing discrete cosine transform.  The improvement in the 
H.263 encoder performance is due to VIRAM’s high memory 
bandwidth based on the embedded DRAM technology.  With 
high memory bandwidth, VIRAM architecture is able to provide 
efficient indexed and strided memory operations that are well 
suited for memory access patterns of the discrete cosine 
transform and motion estimation.  The long vector registers of 
VIRAM allow an efficient vectorized algorithm for the 
exhaustive search motion estimation.   In addition, unlike 
existing multi-chip solutions, VIRAM is a one-chip solution, 
and as such, it results in lower power consumption, and smaller 
area.  
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VIRAM (4 sub-banks, LLM) 85 
TriMedia TM-1000 from Philips 160  (1.88x) 

TI TMS320C62 230  (2.71x) 

PowerPC with Alitvec 102  (1.20x) 

HP PA-8000 with MAX2 147  (1.73x) 

Intel Pentium II + MMX 500 (5.88x) [6] 

NEC V 830/A 201  (2.36x) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 


