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Abstract: We present compiler analyses and optimizations for explicitly parallel programs that communicate
through a shared address space. Any type of code motion on explicitly parallel programs requires a new kind of
analysis to ensure that operations reordered on one processor cannot be observed by another. The analysis, called
cycle analysis, is based on work by Shasha and Snir and checks for cycles among interfering accesses. We improve
the accuracy of their analysis by using additional information from synchronization analysis, which handles post-
wait synchronization, barriers, and locks. We also make the analysis efficient by exploiting the common code
image property of SPMD programs.

We demonstrate the use of this analysis by optimizing remote access on distributed memory machines by
automatically transforming programs written in a conventional shared memory style into a Split-C program,
which has primitives for non-blocking memory operations and one-way communication. The optimizations include
message pipelining, to allow multiple outstanding remote memory operations, conversion of two-way to one-way
communication, and elimination of communication through data re-use. The performance improvements are as
high as 20-35% for programs running on a CM-5 multiprocessor using the Split-C language as a global address
layer. Even larger benefits can be expected on machines with higher communication latency relative to processor
speed.

1 Introduction

Optimizing explicitly parallel shared memory programs requires new types of static analysis to ensure that
accesses reordered on one processor cannot be observed by another. Intuitively, the parallel programmer relies
on the notion of sequential consistency: the parallel execution must behave as if it were an interleaving of the
sequences of memory operations from each of the processors [12]. If only the local dependencies within a processor
are observed, the program execution might not be sequentially consistent [16]. To guarantee sequential consistency
under reordering transformations, a new type of analysis called cycle detection is required [20].

An example to illustrate sequential consistency is shown in Figure 1. The program is indeterminate in that the
read of Flag may return either 0 or 1, and if it is 0, then the read to Data may return either 0 or 1. However, if
1 has been read from Flag, then 1 must be the result of the read from Data. If the two program fragments were
analyzed by a sequential compiler, it might determine that the reads or writes could be reordered, since there are
no local dependencies. If either pair of the accesses is reordered, the execution in which the read of Flag returns
1 and the read of Data returns 0, might result.

Even if the compiler does not reorder the shared memory accesses, reordering may take place at many levels
in a multiprocessor system. At the processor level, since a superscalar may issue an instruction as soon as all
its operands are available, writes to different locations might be issued in the order the values become available.
Most processors have write buffers, which allow read operations to overtake preceding write operations. In fact,
on the SuperSparcs [22] the write-buffer itself is not guaranteed to be FIFO. Reordering may also take place at the
network level in distributed memory multiprocessors, because some networks adaptively route packets to avoid
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Initially Data=Flag=0
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Figure 1: If the read of Flag returns 1, the read of Data should see the new value.

congestion. Also, two accesses sent to two different processors may be handled out of order, since network latencies
may vary. Fortunately, machines usually come with support to ensure sequential consistency, such as a memory
barrier or a write-buffer flush to enforce ordering between memory operations, or a test for completion of a remote
operation. However, these new instructions must be explicitly inserted by the compiler or the programmer. If a
standard uniprocessor compiler is used for generating code, these special instructions would not be automatically
inserted.

The cycle detection problem is to detect access cycles, such as the one designated by the figure-eight in Figure 1.
In addition to observing local dependencies within a program, a compiler must ensure that accesses issued by a
single processor in a cycle take place in order. Cycle detection is necessary for most optimizations involving code
motion, whether the programs run on physically shared or distributed memory and whether they have dynamic
or static thread creation. Cycle detection is not necessary for automatically parallelized sequential programs or
data parallel programs with sequential semantics, because every pair of accesses has a fixed order, which can
be determined at compile-time. The additional problem for explicitly parallel programs comes directly from the
possibility of non-determinism, whether or not the programmer chooses to use it.

In spite of the semantic simplicity of deterministic programming models, for performance reasons many appli-
cations are written in an explicitly parallel model. As we noticed with our toy example, uniprocessor compilers
are ill-suited to the task of compiling explicitly parallel programs, because they do not have information about
the semantics of the communication and synchronization mechanisms. As a result, they either generate incorrect
code or miss opportunities for optimizing communication and synchronization, and the quality of the scalar code
is limited by the inability to move code around parallelism primitives. Midkiff and Padua [16] describe eleven
instances where a uniprocessor compiler would generate either incorrect or inefficient code.

In this paper, we present optimizations for multiprocessors with physically distributed memory and hardware
or software support for a global address space. As shown in table 1, a remote reference on such a machine
has a long latency [3][23][13]. However, most of this latency can be overlapped with local computation or with
the initiation of more communication, especially on machines like the J-Machine [18] and *T [2], with their low
overheads for communication startup.

CM-5 | T3D | DASH
Remote Access 400 &H 110
Local Access (Cache miss) 30 23 26

Table 1: Access latencies for local and remote memory modules expressed in terms of machine cycles.

Three important optimizations for these multiprocessors are overlapping communication, eliminating round-
trip message traffic, and avoiding communication altogether. The first optimization, message pipelining, changes
remote read and write operations into their split-phase analogs, get and put [7]. In a split-phase operation, the ini-
tiation of an access is separated from its completion. The operation to force completion of outstanding split-phase
operations comes in many forms, the simplest of which (called sync or fence) blocks until all outstanding accesses
are complete. To improve communication overlap, puts and gets are moved backwards in the program execution
and syncs are moved forward. The second optimization, conversion to one-way communication, eliminates the
acknowledgement traffic that is required to implement the sync operation for pufs. A final optimization, caching
remote values, eliminates remote accesses by either re-using values of previous accesses or updating a remote



value locally multiple times before issuing a write operation on the final value.

Cycle detection was first described by Shasha and Snir [20] and later extended by Midkiff, Padua, and Cytron
to handle array indices [17]. In this paper, we show that by restricting attention to Single Program Multiple Data
(SPMD) programs, one can significantly reduce the complexity of cycle detection. We also improve the accuracy
of cycle detection by making use of the synchronization information in the program. Shasha and Snir’s analysis,
when applied to real applications, discovers a large number of spurious cycles, because cycles are detected between
accesses that will never execute concurrently due to synchronization. We use synchronization analysis to eliminate
these spurious cycles.

The rest of the paper is organized as follows. The target programming language is described in section 2.
We present basic terminology in section 3. In section 4, we present a brief summary of cycle detection and an
efficient algorithm for detecting cycles in SPMD programs. In section 5, we present our new algorithms that
incorporate synchronization analysis, and in sections 6 and 7, we give code generation and optimizations for
distributed memory machines. Section 8 demonstrates the performance benefit of our approach by optimizing
some application kernels. Related work is surveyed in section 9 and conclusions drawn in section 10.

2 Programming Language

Our analyses are designed for explicitly parallel shared memory programs. We have implemented them in a
source-to-source transformer for a subset of Split-C [7].

Split-C is an explicitly parallel SPMD language for programming distributed memory machines using a global
address space abstraction. The parallel threads interact through reads and writes on a shared address space that
contains distributed arrays and shared objects accessible through global pointers. The shared address space and
SPMD parallelism are the only essential features of the source language. For the target language, we make use
of Split-C’s split-phase (or non-blocking) memory operations. Our compiler can also be viewed as a transformer
that converts programs with shared memory accesses into programs that contain split-phase memory accesses.

Given pointers to global objects srcl and dest2, and local values src2 and destil of the same type, the
split-phase versions of read and write operations on the global objects are expressed as:

get(destl, srci)

put(dest2, src2)

/* Unrelated computation */
sync();

In the first assignment statement, a get operation is performed on srci, and in the second, a put is performed
on dest2. Neither of these operations are guaranteed to complete (the values of dest1 and dest2 are undefined)
until after the sync statement. A get operation initiates the read of a remote location, but it does not wait for
the value to be fetched. Similarly, a put operation does not wait for the acknowledgement that the write occurred
on the remote processor. The sync operation delays the execution for previous non-blocking accesses to complete.
On a distributed memory machine, the get and put operations are implemented using low-level messages sent
across the interconnection network. Therefore, split-phase operations facilitate communication overlap, but the
sync construct provides less control than one might want, because it groups all outstanding puts and gets from
a single processor. Split-C also provides finer grained mechanisms in which a sync object, implemented by a
counter, is associated with each memory operation. Examples of these are given in Section 6.

Split-C also provides a store operation, which 1s a variant of the put operation. A store operation generates
a write to a remote memory location, but does not acknowledge when the write operation completes. It exposes
the efficiency of one-way communication in those cases where the communication pattern is well understood. By
transforming a put to a store, we not only reduce network contention by reducing the number of packets but
also reduce the processing time spent in generating and handling the acknowledgement traffic.

The source language differs from Split-C in two key aspects. First, the source language does not provide
split-phase operations; all accesses to shared memory are blocking. Since split-phase operations are good for
performance but hard to use, it should be the compiler’s task to transform blocking operations into split-phase
operations. Second, the global address space abstraction is provided in the source language only through a
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Figure 2: The figure shows a shared memory execution and one possible total order on operations. Executions in which
the Write to Y appears to happen before the Write to X would not be legal.
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Figure 3: A weak memory execution with I containing some of the edges in . Since the puts in Fj are not ordered,
they may execute in either order. However, an execution in which the get of Z appears to happen before either one of the
puts would be illegal.

distributed array construct and through shared scalar values; the global address space cannot be accessed through
global pointers, which are supported by Split-C. Disallowing global pointers allows us to implement our analysis
without requiring full-blown pointer alias analysis. However, there are no restrictions imposed on the use of
pointers into the local address space. The type system prevents the creation of local pointers into the global
address space, and this allows us to ignore local memory accesses and local pointers in our analysis. Our source
language design allows us to write meaningful parallel programs with optimized local computational kernels and
global phases that communicate using either shared variables or distributed arrays.

3 Sequential Consistency

A parallel execution F on n processors is given by n sequences of instruction executions Fy, ..., E,. We consider
two types of executions: a shared memory execution allows only atomic reads and writes to shared variables; a
weak memory execution may contain split-phase as well as atomic operations.

Given a processor execution I; = aq,...,a,, we associate with F; a total order a1 < as < ... < ap,. In a
shared memory execution, reads and writes happen atomically in the order they are issued, with no predetermined
ordering between accesses issued by different processors. The program ezxecution order, F, is the union of these
E;’s. An execution F is sequentially consistent if there exists a total order S of the operations in F i.e., E C S,
such that S is a correct sequential execution where the reads must return the value of the most recent preceding
write [12]. For example, in Figure 2, if the read to Y returns a new value written by E, then the read of X must
also return the value written by E;.

System Contract 1 Given a shared memory program, a correct machine must produce only sequentially consis-
tent executions for that program.



This contract does not specify the behavior of programs with put and get or other non-blocking memory
operations. In order to extend the system contract for programs with weak memory accesses, rather than relying
on a particular instruction set with non-blocking memory operations and synchronizing accesses, we use a more
general framework proposed by Shasha and Snir [20]. A delay set D specifies some pairs of memory accesses as
being ordered, which says that the second operation must be delayed until the first one is complete. For example,
in Figure 3, Ey specifies the accesses issued by a processor, and D; specifies the delay constraints for executing
the accesses. A sync operation, which is one particular mechanism for expressing delay constraints, could be
introduced to prevent the get operation from being initiated before the puts complete. In general, given an
execution E, D is a subset of the ordering given by F, i.e., D C E. A weak memory execution given by F and
D is weakly consistent if there exists a total order S such that D C S and S is a correct sequential execution.

System Contract 2 Given a weak memory program, a correct machine must produce only weakly consistent
executions for that program.

4 Compile-Time Analysis

FE is a dynamic notion based on a particular execution. During compilation, we approximate F by the program
order P, defined as the transitive closure of the n program control flow graphs, one per processor. The compiler
computes a delay set D, which is a subset of P. We say that a delay set D is sufficient for P if, on any machine
that satisfies the second system contract, all possible executions of P are sequentially consistent. Note that if we
take D to be P, which means that we block on every remote memory access, it forces our machine to produce a
sequentially consistent execution. Qur goal during program analysis is to find a much smaller D that still ensures
sequential consistency.

In this section, we present a brief summary of the cycle detection algorithm, which was originally proposed by
Shasha and Snir. We also show that computing minimal delay sets for MIMD programs is an NP hard problem.
However, by exploiting the common code image property of SPMD programs, we propose a polynomial time
algorithm for SPMD programs. We conclude this section with a discussion on the minimality properties of the
various algorithms.

4.1 Cycle Detection

A violation of sequential consistency occurs when the “happens before” relation, which is FU S| contains a cycle.
An example is shown in Figure 1. In this case, the figure-eight formed by the arrows is the cycle that violates
sequential consistency. All violations are due to such cycles, although in general the cycles may extend over more
than two processors and involve as many as 2n accesses. The cross-processor edges in the cycles are conflicting
(read-write or write-write) accesses to the same variable by two different processors. We define the conflict set
C' to be a conservative approximation to these interferences: ' contains all unordered pairs of shared memory
operations aj, as, such that a; and as are issued by different processors, both access (or could access) the same
shared variable, and at least one is a write operation.

Shasha and Snir proved that there exists a minimum delay set, Dgg s, that can be defined by considering cycles
in PUC'. The primary idea is that if P UC does not contain any cycles (as in Figure 4), then £ U S would not
contain any cycles since P U (' is a conservative compile-time superset of F'US. We reformulate their result with
the following definitions.

Initially Data=Flag=0

Proc: 1 Proc: 2

LWrite Data=1 }—{ Read Data J

[Write Flag=1 H Read Flag ]

Figure 4: Example of a parallel program that does not require any delay constraints.




Definition 1 A path [a1,...,am] € PUC is a simple path, if for any access a; in the path, if a; is an access on
processor Py, then the following hold:

1. If a;41 is also on Py, then for all other accesses a; (j #14 and j # i+ 1), a; is not on Pj.

2. Ifa;_1 and a;41 exist (i # 1 and i # n) and [a;_1,a;] € C and [a;,a;41] € C, then for all j # i, a; is not
on Py.

Thus, except for the end-points of the path, a simple path is one that visits each processor at most once, with
at most two accesses per processor during a visit. A special case of simple paths points to a potential violation
of sequential consistency.

Definition 2 Given an edge [am, a1] in some Py, a path [ay,...,a,] € PUC is called a back-path, for [am, a1]
if [a1, ..., am) is a simple path.

Shasha and Snir define a particular delay set, denoted here Dgg s, which is sufficient and in some sense minimal.
Definition 3 Dggg = {[ai, ;] € P|lai, a;] has a back-path in P UC'}.
Theorem 1 [20] Dggs is sufficient.

The above definition of Dgg ¢ suggests an obvious algorithm for generating correct code. For every pair of
access statements, determine whether there exists a back-path in the control flow graph, and if such a back-path
is present, introduce a fence to prohibit reordering of the two accesses. However, this formulation of Dgg ¢ suffers
from two drawbacks. First, as we will show, determining the existence of a back-path is NP hard in the number of
program segments in a MIMD program. However, for SPMD programs, there exists a polynomial time algorithm
for discovering back-paths. Second, the minimality result is not sufficient for real programs. The minimality
results on Dggs says that given straight-line code without explicit synchronization, if a pair of accesses in Dgg g
is allowed to execute out of order (i.e., is omitted from the delay set when the program is run), there exists a
weakly consistent execution of that program that is not sequentially consistent. As we will discuss later in this
section, this notion of minimality is not as strong as one would like, because it ignores the existence of control
structures and synchronization constructs that prevent certain access patterns.

4.2 Cycle Detection for MIMD Programs is NP Hard

Although Shasha and Snir do not specify the details of an algorithm for cycle detection, they claim [20] there is
a polynomial time algorithm for detecting cycles in a program that “consists of a fixed number of serial program
segments.” In practice, one does not typically compile a program for a fixed number of processors: either the
language contains constructs for dynamically creating parallel threads, or there is a single program that will be
compiled for an arbitrary number of processors. We can show that if PROCS is taken as the problem size, the
computation needed for the Shasha and Snir formulation is NP-complete'.

Theorem 2 Given a directed graph G with n vertices, we can construct a parallel program P for n processors
such that there exists a Hamiltonian path in G if and only if there exists a simple cycle in P.

4.3 Cycle Detection for SPMD Programs

We now present an efficient algorithm for computing the minimum delay set in an SPMD program. The algorithm
is based on the idea of back-paths, but uses only two copies of the SPMD code, rather than one for each processor.
The algorithm eliminates the condition that a back-path must pass through each program segment at most once.
We first describe a transformation of the given control flow graph and then present an algorithm for detecting
back-paths in the resulting graph. We show that the delay edges computed for the transformed graph are the
same as in Shasha and Snir’s approach.

IThe construction and the proof for the following theorem is in the appendix.



Code: while (turn != MYPROC);
numTrans++;
fund += giftAmt;
turn++;

Transformed Graph:

/\>\7:~:\7, :
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Write fund <o\ I»Write fund

Figure 5: Cycle detection using two copies of the original program
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In an SPMD program graph P = {Py, ..., P,}, all P; are identical. Let V' be the set of access statements in
some P;. We define a conflict set C's pasp as pairs of access statements that belong to V' such that both statements
access the same variable and at least one of them is a write. The conflict edges are bi-directional, so we write
(u,v) for the pair of edges [u, v] and [v, u].

For a given program graph (P, V), we generate a graph Pspyp with nodes Vsparp and edges Fspayrp, defined
as follows. Vsparp is two copies of the accesses in V', which we label L and R for left and right.

Vspup = {vr, vrlvEV}
Ty = {(ur,vmr), (vi,ugr) | (u,v) € Cspymp}
Ty = {(ugr,vr) | (u,v) € Cspup}
Ts = {(ugr,vr) | [u,v] € P}

Espuyp = TiUT,UT;

This transformed graph has two copies of the original program. A backpath will have endpoints in the left
part of Pgpyrp and internal path nodes in the right part. The T} edges connect the left and right nodes. The T5
edges are conflict edges between right nodes. The T3 edges are program edges that link the right nodes. The left
nodes have no internal edges. Therefore, a path from vy to ug 1s composed of a T} edge, followed by a series of
Ty and Ts edges and terminated with a T} edge. Figure 5 illustrates the construction for a simple program.

For every edge [ur,vy] € P, we check whether there exists a path from vy, to uz in the graph Pspyp. We
compute the set Dgparp that consists of all edges [u,v] having a path from vy, to uy. Our algorithm runs in
polynomial time: if m is the number of statements in the program that initiate remote accesses, the delay set can
be computed in O(m3) time.

4.4 Minimality of Dspyp

Shasha and Snir prove that their algorithm computes a delay set that is, in some sense, minimal. In this section
we compare the delays sets computed by both algorithms for their minimality properties.

There are three potential sources of inaccuracy in the analyses that can lead to a non-minimal delay set: 1)
the programs are assumed to be free of aliases, and if the analysis instead used a conservative approximation of
aliases, spurious conflicts could be detected; 2) control flow information is ignored in the analysis; 3) the backpath
may be longer than the total number of processors. Both our algorithm and theirs assume that there are no aliases
to variables and, up to this point, do not include control flow information in the analysis. In the next section



we will address the issue of control flow for the special cases of synchronization constructs, but without this, the
only difference between the delay sets arises when there are long cycles.
We define the length of a backpath as the number of conflict edges in the path and give the following results.

Theorem 3 Given an SPMD program for which the longest backpath Pspyrp ts less than or equal to PROC'S,
Dspyp = Dses-
Proof: Straightforward from the construction of Pspyp -

Our algorithm is correct regardless of the assumption on the longest backpath. To see why ours is more
conservative in the (probably rare) case in which the program contains a long backpath, consider such a program.
Our algorithm, as described, will compute a delay set for an arbitrary number of processors. If a program
with a backpath of length n is run on PROC'S < n processors, the execution order identified by that backpath
has insufficient number of processors to actually take place. Thus, the delay edge added for that backpath is
unnecessary.

Even this difference between the algorithms is not fundamental; if the value of PROC'S is known at com-
pile time, as Shasha and Snir assume, our backpath detection algorithm can search for backpaths shorter than
PROC'S, which will be exactly those produced using cycle detection on PROC'S copies of the program. The
cycle detection analysis, as proposed by Shasha and Snir, produces a minimal delay set if the program segments
comprise of straight-line code. Modulo the requirement of knowing the number of processors at compile-time, our
algorithm observes the same minimality property.

There is one more substantial difference between the algorithms: we analyze SPMD code, while Shasha and
Snir consider MIMD code. Given an MIMD program with PROC'S different programs, we can convert it into
an SPMD program with a branch for processor number around each program segment. Qur analysis will run in
polynomial time on this transformed MIMD program while theirs will be exponential on the original program.
Assuming one starts with a branch-free MIMD program, their analysis would be minimal but ours would not,
because of the branches introduced in the conversion process. In practice, programmers rarely write programs
with PROC'S different pieces of code, so the loss of minimality relative to practicality of the analysis is a good
trade-off to make.

In summary, the same theoretical results on minimality can be obtained for both algorithms, assuming the
programs are branch-free and the number of processors is known at compile-time. As we will show in section 8§,
this theoretical result is not very useful in practice, since without control flow information both algorithms
find essentially universal delay sets—every pair of accesses have a delay edge and there are no opportunities for
optimizations in the example programs. We address this pragmatic problem in the next section by considering
synchronization analyses, which are special cases of control flow analysis for explicit synchronization primitives.

5 Using Synchronization Information

The cycle detection algorithm described in the previous section does not analyze synchronization constructs and
is therefore overly conservative. It 1s correct to treat synchronization constructs as simply conflicting memory
accesses, but this ignores a valuable source of information, since synchronization creates mutual exclusion or
precedence constraints on accesses executed by different processors. For example, Figure 6 shows two program
segments that access the variables X and Y. The delay set Dgg s contains edges between both pairs of accesses to
X and Y, thereby prohibiting any overlap. However, if synchronization is taken into account, the delays between
the reads and writes are seen to be unnecessary, as long as the post will be delayed for the writes to complete
and the reads cannot be started until the wait completes.

In this section, we modify the delay set computation to incorporate synchronization analysis for three con-
structs: post-waits, barriers, and locks. Our synchronization analysis presumes that synchronization constructs
can be matched across processors, and we also describe runtime techniques to ensure this dynamically. This
analysis only helps if the programmer uses the synchronization primitives provided by the language. If the pro-
grammer builds synchronization using reads and writes, we would not be able to detect the synchronization. In
this case our algorithm is still correct, but we would not be able to prune the delay set. Note that if we have
accurate control flow analysis, then the synchronization analysis would fall out (for example, detect that a loop
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Figure 6: The post-wait synchronization enables the ordering of conflict edges, which results in fewer back-paths.

is actually a spin-wait loop). Since such an analysis is too hard, even undecidable in the general case, we pro-
vide synchronization primitives as language constructs and analyze their usage to obtain precedence and mutual
exclusion information.

5.1 Analyzing Post-Wait Synchronization

Post-wait synchronization is used for producer-consumer dependencies. The consumer executes a wait, which
blocks until the producer executes a post. This synchronization creates a strict precedence between the operations
that are forced to execute before the post and the operations that are delayed to execute after the wait?. We
start by considering two examples that use post-wait synchronization, and then present the modified delay set
construction. In our discussion, we use a precedence relation R that captures the happens-be fore property of
accesses. Matching post-wait pairs are one example of pairs in R.

Definition 4 A precedence relation R is a set of ordered pairs of accesses, (a1, as), such that ai is guaranteed to
complete before as is initiated.

Consider the computation of the delay set for the program in Figure 6 where post and wait are treated as
conflicting accesses. Dggs is {[a1, as], [as, as], [a1, as], [aa, as], [as, as], [a4, as]}, which will force completion of
a; before the initiation of as and as before ag. The semantics of post-wait synchronization require a precedence
edge from as to a4, which eliminates one direction of the conflict edge between asz and a4 and leads to a smaller
delay set. It is sufficient to use the smaller delay set {[as,as],[a1, as], [a4, as], [aa, as]}, because taken with the
precedence ordering [as, as], the other conflict edges [a1, ag] and [as, as] are ordered by transitivity, thus destroying
the remaining back-paths.

As this example illustrates, we will compute the delay set and precedence relation through a process of refine-
ment. Initially, the precedence relation contains only those edges that directly link a post and a wait. We then
create an initial delay set Dy with those edges from Dggs that involve at least one synchronization construct.
This says that some delay edges—those involving synchronization—are more fundamental than others. Once Dy
is computed, the precedence relation R is expanded to include the transitive closure of itself and D;. The example
provides two key insights into how we could use synchronization information. First, by providing a directionality
to a conflict edge, we impose more restrictions on the interleaving of accesses from different processors, which
results in a smaller delay set. Second, the precedence relation R serves as the catalyst for discovering other
precedence constraints in the program. Note that a synchronization construct will not result in a fence for ev-
ery outstanding memory operation, but only for those accesses that share a back-path with the synchronization
operation.

The process of pruning back-paths does not always involve directing a conflict edge. R could be used for
removing certain accesses that are not qualified to appear in back-paths, and thus decrease the number of back-
paths that we discover. In Figure 7, there are simple paths from a3 to a; and from ag to as. Furthermore, since
as and a4 are synchronization accesses, [a1,as] and [a4, ag] belong to the initial delay set D;. This information,
when combined with the precedence edge [as, a4], implies that a; precedes ag for any execution of the program.
Since a simple-path to a; corresponds to a runtime execution where all the accesses in the sequence execute before
a1, ag will never occur in a simple-path to a;. We therefore remove ag while searching for simple-paths to a;.

?In our analysis, we assume that it is illegal to post more than once on an event variable.
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Figure 7: An example where synchronization analysis disqualifies certain accesses from appearing in back-paths.

Removal of ag destroys the simple-path from ay to a1, which otherwise would have resulted in [a1, as] being added
to the delay set.

Using these examples as motivation, we propose a general scheme for finding a delay set. We initially compute
the delay set D;, which relates synchronizing accesses to non-synchronizing accesses, and combine 1t with direct
precedence edges to obtain complete precedence information. For post-wait operations, this process requires the
dominator tree of the control flow graph. A node u is said to dominate a node v if u appears on every path from
the entry node of the original graph to v. (Domination information is efficiently represented using a dominator
tree, which stores only the closest dominators.) We now present the modified algorithm for computing the delay
set.

1. Compute the dominator tree, T'.

2. Compute initial delay restrictions D; by restricting the simple-path algorithm from the previous section to
pairs that include one synchronization access.

3. Compute the set of precedence edges, Ri, between matching post and wait constructs.

4. For every pair of access statements a; and as, check whether there exists two other statements by and b,
that satisfy the following constraints.

(a) a1 dominates by and bs dominates as in T,

(b) [a1,b1] € Dy and [ba, as] € Dy, and

(c) [b1,bo] € Ry
df

Add [ay, as] to R if by and by exist.

5. The original conflict set C' contained unordered pairs. Order the pairs that have a precedence as follows:

Let Cl =C - {[a2aa1] | [alaaz] € R}
6. D= Ds.

7. For every pair [a;,a;] € P, let X = { b | [a;,b] € R}. If [a;, a;] has a back-path in P U Cy — X, then
D= DU{[ai,aj]}.

By eliminating accesses and ordering conflict edges before checking for back-paths, we reduce the number of
back-paths that are discovered. There is a corresponding decrease in the size of the delay set, which results in
improvements in execution times of the programs.

5.2 Analyzing Barrier Synchronization

Barrier statements can be used to separate the program into different phases that do not execute concurrently.
The analysis for barriers is similar to that of post-wait synchronization, since crossing a barrier introduces a
precedence relation. As before, we add the delay edges between accesses and barriers before we compute the
delay set for the rest of the program.
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void foo() {

barrier();

for (i=0; i<n; i++) {
barrier();

}

barrier();
Figure 8: Inaccuracies in analysis of barrier statements

To use barriers for computing precedence, we need to line up the barrier statements in the program text that
will execute together at runtime. Since barriers can occur in branches and loops, the problem of lining up barriers
is undecidable in general. Figure 8 shows a sample program where it is likely that all the processors will execute
the final barrier statement at the same time, but to prove that assertion at compile-time, our analysis needs to
prove that the function foo gets called by all the processors at the same time and the loop inside the function
executes the same number of iterations on different processors. Rather than adding sophisticated analysis to
line up barriers [11], we use a simple runtime solution that works well for many real programs. We add a run-
time check to each barrier to determine whether these are the ones lined up during compilation. The compiler
produces two copies of the code, one with pipelining optimizations and the other without any optimizations. If
the processors are indeed synchronized and executing the barrier operations as predicted, the optimized version
of the code i1s run. This approach to analyzing barriers also allows us to overcome separate compilation issues
for many real programs. If, however, adequate information is available at compile-time through analysis similar
to the algorithm described in [11], the cycle detection analysis is applied on all the code fragments that could be
executing concurrently on different processors.

5.3 Lock Based Synchronization

We can extend our synchronization analysis to locks, even though there are no strict precedence relations implied
by the use of locks. We again compute D; for pairs of accesses that include a synchronization construct. We then
determine the set of accesses guarded by a lock. An access a is said to be guarded by the lock [, if the following
conditions hold:

1. a is dominated by a lock [ operation (which we will call /1), and there are no intervening unlock [ operations.
2. a dominates unlock [ operation, which we will call u.
3. [lh,a] € Dy and [a,uq] € Dy

If access statements a; and as are guarded by the lock I, we remove all other access statements that are
guarded by the same lock before checking for a simple-path from as to a; (see Figure 9). The removal of these
access statements is a valid operation by the following reasoning. If as, b1, b, ..., bg, @y s a simple-path, then the

writeE

Figure 9: Eliminating accesses guarded by the same lock. While checking for back-paths between a; and a2, accesses as
and ae are not considered. However, there does exist a valid back-path between accesses az and as.
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get_ctr(&x, &X, ctrl)

s X =X y = 2
y =2 if (foo()) {
if (foo()) { sync_ctr(ctrl);
N y=x+1 y =x + 1;
} }
Z =1 sync_ctr(ctrl);
z =1
Source code Target code

Figure 10: Code Generation: Upper case letters are shared variables, lower case letters are local variables, the solid line is
a delay edge, and the dashed line is a def-use edge.

accesses corresponding to by, by, ..., by must occur after as and before ay. It follows from our definition of being
guarded by a lock and from the semantics of lock/unlock operations that none of by, bs, ..., bg can be guarded
by the same lock and still appear in a violation sequence. To arrive at this property, we assume that locks
cannot be indiscriminately tampered by the program. In particular, a lock cannot be unlocked by a processor
that has not acquired the lock through a previous lock operation. Also, a lock variable cannot be accessed by
standard read/write operations in the program. The first constraint can be checked at runtime whenever an
unlock operation is executed. The second constraint is guaranteed by the type system of the language that
prevents direct access to a lock.

6 Code Generation

The notion of a delay set can be used to generate code for a variety of memory models, one of which is the put, get
model provided by Split-C. The Cray T3D, the Stanford DASH, and the Wisconsin Wind Tunnel are examples
of machines that have support for prefetching read and non-blocking write operations. Instead of generating
code for a particular machine, the compiler produces Split-C code, and the Split-C compiler[14] is responsible for
mapping the Split-C operations to the primitive operations supported by the target machine. In this section we
describe the transformations introduced by our source level transformer.

For code generation, we use the control flow graph of the SPMD program, the delay set computed after
synchronization analysis, and the use-def graph for each processor’s variable access (obtained through standard
sequential compiler analysis). During the code generation process, both the delay constraints and local depen-
dencies must be observed. The generated code contains put, get, and store constructs, as well as various types
of sync statements. Normally, a sync statement will force completion of all previous puts and gets issued by the
processor. However, Split-C also provides a mechanism called synchronizing counters to wait for the completion
of a subset of outstanding accesses. The programmer specifies a counter when issuing puts and gets, and again
when issuing the sync, which will wait for only those accesses with a matching counter.

The first step in code generation is to split remote accesses into initiation and completion events. A remote
read of X into y is transformed into get_ctr(y, X, counter) followed by sync_ctr(counter), where counter
is either a new or reused synchronizing counter. This transformation is always legal, but analysis is needed to
move the two operations away from each other, thereby allowing communication overlap.

6.1 Separating Initiation from Completion.

The algorithm for moving a sync_ctr operation d;yn. away from its corresponding initiation a;y;; involves repeated
applications of the following rules:

1. If async is at the end of a basic block, propagate a,yn. to all the successors of the basic block and continue
the motion on each copy of asyne.

2. If agyne is in the middle of a basic block, let a’ be the operation that immediately follows it.

(a) If there is a delay or def-use constraint of the form [ainis, @], terminate the movement of a;yne.

12
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Figure 11: Barrier synchronization guarantees that X is read-only in the second phase.

(b) If @ is another copy of the synchronization a;ync, merge the two asyn. operations.

(¢) Otherwise, move agyn. past a’.

The above algorithm moves sync_ctr operations as far away from initiation as possible. As shown in Figure 10,
this may not be the best strategy, since it can lead to multiple synchronization points in the same control path.
The duplication may result in unnecessary overhead, but is legal because sync_cntr operations are idempotent.
Similarly, if a sync_ctr i1s propagated into a loop body, 1t will be executed in every iteration, even though the
first execution is sufficient. Our compiler uses heuristics to avoid these cases. To choose the best placement, the
compiler would require data on average executions of control paths and machine parameters.

6.2 One-Way Communication Optimization.

An optimization that is beneficial on many distributed memory machines is to transform two-way communication
into one-way communication. The put operation generates an acknowledgement that signals the completion of
the write on the remote processor. If there are no delay constraints that require the completion of a put access,
the acknowledgement is not required, and therefore the put access can be replaced by the store operation. If the
completion of a put access is required at a barrier synchronization point, we could still transform the put into a
store as long as the barrier synchronization waits for all the stores across the machine to complete. However,
this requires a stronger form of barrier synchronization. Fortunately, on most modern machines like the CM5 and
the T3D, this form of barrier synchronization is relatively inexpensive, and the benefit obtained by eliminating
the acknowledgement traffic outweighs the additional cost.

7 Eliminating Remote Accesses

Delay sets are necessary for any transformation that involves code motion including the motion of memory access
initiation away from its completion. In this section we consider a second class of transformations for distributed
memory machines, which lead to the elimination of remote accesses through a kind of common-subexpression
elimination. The idea is to cache remote values that are being written or read multiple times in compiler
generated local variables. We begin by examining when these optimizations are valid within a basic block. We
then describe the correctness criteria for optimizing across basic blocks.

E

2

Put X

ll m

Post F

Figure 12: X can be cached by F» since the updates to X are guaranteed to be complete.
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Value Reuse Write-back Value Propagation

[xl = X} [tmp =x1 = X}
P — I
[x2 = X] [x2 = tmp]

Figure 13: A set of transformations to eliminate remote accesses that are similar in spirit to standard uniprocessor
optimizations like common subexpression elimination. Upper case letters denote global variables, and lower case ones local
variables.

7.1 Optimizations within a Basic Block

When there are repeated accesses within a single basic block to the same variable X, and if X is not being written
concurrently, the value of X can be cached. By virtue of synchronization analysis, it is easy to determine whether
X 18 being concurrently written. Two examples are shown in Figures 11 and 12. In the first case, there is a barrier
that marks the transition to X being read-only, and in the second, the post-wait synchronization ensures that
the gets are issued only after the put is complete. The synchronization analysis described in Section 5 identifies
these synchronization regions and orders the conflict edges between the gets and puts to X. Consequently, there
is no delay edge between the two gets, and the second access can be eliminated.

Mutually exclusive access is sufficient but not necessary for elimination of repeated gets. It may be possible
to reuse a previously read value even when there are intervening global accesses to the variable, as long as it is
legal to move the second get up to the point of the first one. The algorithm used for remote access elimination
is essentially the reverse of that used for sync_ctr propagation: the second get is moved backwards in the code
until it reaches a operation that shares a delay edge or local dependence. If this propagation is successful, we will
end up with a sequence like:

get(locall, X, counteril)

sync_cntr(counteri)
get(local2, X, counter2)

sync_cntr(counter?2)

At this point, if there are no non-local accesses initiated between the two gets, the second get is replaced by a
local assignment of locall to local2, and the second sync_cntr is eliminated, along with any of its copies.

The examples presented so far eliminate redundant reads, which is similar to saving a value in register. The
technique can be applied to a variety of other communication-eliminating optimizations as illustrated in Figure 13.
For simplicity, these optimizations are shown as transformations on the higher level code, with temporaries
introduced to minimize conflicts during code motion. Reading a remote variable that has recently been written
can be avoided if the written value is still available. When a thread issues two successive writes to the same
variable, the earlier writes can be buffered in a local variable and the final value written to the remote copy at
a later point. This is equivalent to using write-back cache, rather than a write-through cache. Note that since
there could be intervening reads to the same variable that have been transformed into reads from local memory
through the value propagation transformation, the first write access is not dead-code.

7.2 Optimizations across Basic Blocks

We cannot always apply these transformations to a pair of accesses that belong to different basic blocks. Here
is a simple example that illustrates the dangers associated with applying the value reuse transformation across

basic blocks.

x =X+ 1;

while (X != 3);
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Figure 14: The figure gives the execution times, normalized so that the execution time of the code generated without cycle
analysis is 1. Thus, a relative speed of 0.5 corresponds to a factor of 2 speedup.

Clearly, if we replace the remote reference to X in the spin-loop by a local reference to z, the program may stall.
To address this problem, we classify variables into two types: data variables and control variables. Informally,
the control variables are variables that affect the control flow of the program while the data variables do not. The
following definition describes the criteria used for the classification.

1. Let CV = {v | v appears in a conditional}.

2. Repeat until there is no change to C'V:
CV =CVU{u|3veCV such that u is used to compute v}.

The classification occurs after synchronization analysis, which partitions the program into different phases.
Therefore, we might discover that certain variables that are used as control variables in certain phases of the
program might be data variables in other phases. After classifying the variables, we apply the transformations
that eliminate remote accesses only on the data variables.

8 Experimental Results

We quantify the benefits of our analysis by studying the effect of the optimizations on a set of application kernels
that use a variety of synchronization mechanisms. A brief description of the applications is given below:
Ocean: This benchmark is from the Splash benchmark suite[21]. Ocean studies the role of eddy and boundary
currents in large-scale ocean movements. The primary data structures are grids that are updated using stencil-like
computations. Distinct phases of the program synchronize using barriers.

EM3D: Em3d models the propagation of electromagnetic waves through objects in three dimensions [15]% The
computation consists of a series of “leapfrog” integration steps: on alternate half time steps, changes in the electric
field are calculated as a linear function of the neighboring magnetic field values and vice versa. The alternate half
time steps are separated using barrier synchronization.

Epithelial Cell Simulation: Biologists believe that the geometric structure of the embryo emerges from a few
simple, local rules of cell movement. This application is a cell aggregation simulation that allows scientists to
posit such rules. At each time-step of the simulation, a Navier-Stokes solver calculates the fluid flow over a large
grid by performing 2-D FFTs. Barrier synchronization 1s used frequently in this application.

Cholesky: Cholesky computes the factors of a symmetric matrix. The primary data structure is a lower triangular
matrix, which is distributed in a blocked-cyclic fashion. The computation is structured in a producer-consumer
style. Synchronization is enforced at the granularity of blocks using post-wait operations on flags.

3We use a version of Em3d that uses arrays for storing electric and magnetic field values and is written in a style that is more
akin to Fortran and HPF programming models. Hence, the program has performance characteristics that are different from those of
the pointer-based versions described in [7].
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Figure 15: Speedup curves for the Epithelial application kernel with varying degrees of optimization. As expected, the
optimized versions scale better with processors.

Health: This benchmark is from the Presto application suite. Health simulates the Colombian health service
system, which has an hierarchical service-dispensing system. Exclusive access to shared data structures is guar-
anteed by the use of locks. Communication occurs along the implicit tree structure imposed by the hierarchical
system.

The prototype compiler automatically introduces the message pipelining and one-way communications opti-
mizations for all the applications. The execution times of these applications were improved by 20-35% through
message-pipelining and one-way communication optimizations. The measurements were done on a 64 proces-
sor CM-5 multiprocessor. The relative speedups should be even higher on machines with lower communication
startup costs or longer relative latencies. Figure 14 gives the performance results of these experiments. The
base program is the original unoptimized program. For this set of applications, cycle detection without syn-
chronization analysis does not discover any opportunities for code motion. Qur synchronization analysis results
in much smaller delay sets, which in turn enables greater applicability of the message pipelining and one-way
communication optimizations.

As a result of introducing the message pipelining optimizations, the speedup characteristics of the program
changes. Figure 15 shows that the efficiency of a parallel program increases when we transform blocking operations
by asynchronous operations. The increase in efficiency 1s a direct result of the reduction in either the time spent
waiting for remote accesses to complete or the overhead of sending messages.

9 Related Work

Most of the research in optimizing parallel programs has been for data parallel programs. In the more general
control parallel setting, Midkiff and Padua [16] describe eleven different instances where standard optimizations
(like code motion and dead code elimination) cannot, be directly applied. Analysis for these programs is based on
the pioneering work by Shasha and Snir [20], which was later extended by Midkiff et al [17] to handle array based
accesses. Neither of these included implementations and the algorithms as presented were not practical because
synchronization behavior is ignored. Related to our work is the AC compiler [6], which uses the non-blocking
memory operations on the Cray T3D. However, since the AC compiler does not employ cycle detection, the
compiled code could potentially generate executions that are not sequentially consistent.

In our analyses, we analyze the synchronization accesses in the program to obtain precedence and mutual
exclusion information. Others have proposed algorithms for analyzing synchronization constructs in the context
of framing data-flow equations for parallel programs, where strict precedence information is necessary [5][9]. Our
algorithm for analyzing post-wait synchronization is similar in spirit; however, we can also exploit mutual-exclusion
information on accesses. Also related to our work is the research that proposes weaker memory models [1, 8].
Those approaches change the programmer’s model by giving programming conventions under which sequential
consistency is ensured. Qur work shifts this burden from the programmer to the compiler. Our analysis could
also be used for compiling weak memory programs since it can determine when code motion is legal, which is
critical for generating prefetch instructions.
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Compilers and runtime systems for data parallel languages like HPF and Fortran-D [10] implement message
pipelining optimizations and data re-use. The Parti runtime system and associated HPF compiler uses a combi-
nation of compiler and runtime analysis to optimize communication [4], and these optimizations have also been
studied in the context of parallelizing compilers [19]. However, as discussed earlier, compiling data parallel pro-
grams is fundamentally different from compiling explicitly parallel programs. First, in a data parallel program,
it is the compiler’s responsibility to map parallelism of degree n (the size of a data structure) to a machine
with PROCS processors, which can sometimes lead to significant runtime overhead. Second, the analysis problem
for data parallel languages is simpler, because they have a sequential semantics resulting in only directed con-
flict edges. Standard data-dependence techniques can be used in a data parallel language to determine whether
code-motion or pipelining optimizations are valid.

10 Conclusions

We presented analyses for explicitly parallel programs that communication through a global address space. The
first analysis, cycle detection, improves on work by Shasha and Snir by making the analysis algorithm practical for
SPMD programs. Whereas their framework leads to an exponential algorithm, our algorithm runs in polynomial
time, and is more conservative only in rare instances that are unlikely to arise in practice. We implemented this
analysis and showed that, using either formulation of the algorithm, cycle detection on its own is not sufficient
to allow for any code motion or other optimizations in a set of simple application kernels.

We therefore extended the programming language with a set of synchronization primitives that are known
to the compiler and incorporated synchronization information into the analysis. By treating synchronization
operations as special accesses, we significantly improve cycle detection and can therefore perform transformations
on the example applications.

The analyses are useful for a variety of optimizations. On shared memory parallel machines with some form of
weakly consistent memory, our analysis can be used to automatically introduce memory fences or synchronization
instructions to ensure that the programmer observes a sequentially consistent execution. On machines with
explicit prefetch or non-blocking writes, it can be used to safely convert traditional loads and stores into these
non-blocking counterparts. We use Split-C with its split-phase versions of read and write as an abstract target
language. Our transformations convert Split-C programs with only traditional read and write operations into
optimized programs that make use of the split-phase accesses.

The main optimization is masking latency of remote accesses by message pipelining, split-phase writes, and
prefetching, split-phase reads. We also make use of an unacknowledged write operation to reduce network traffic,
bulk messages to combine several reads or writes to the same processor, and common subexpression elimination
which leads to caching of remote values. We have a prototype compiler that implements the first two optimizations
and quantified the payoff on a set of application kernels. The performance improvements are as high as 35% on the
CM-5. On machines with lower communication startup and longer relative latencies, the benefits for overlapping
communication would be even higher. On machines with higher message startup, say from trapping to the kernel,
the use of bulk operations or caching would be more important.

By providing a natural programming model based on shared memory, we allow programmers to focus on the
higher-level problems of designing algorithms that are correct, have the right amount of parallelism, and are well
load-balanced. The compiler is responsible for ensuring sequential consistency and performing communication
optimizations, along with their traditional role of generating efficient code for each type of machine.
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A Back-path Recognition is NP Hard

In this section, we show that detecting back-paths is NP hard. We prove that any instance of the Hamiltonian Path
recognition problem (H PR) can be reduced to a corresponding instance of the back-path recognition problem
(BPR). Given a general graph (V| F'), we construct a parallel program with program order P and conflict relation
C, such that a Hamiltonian path exists in the original graph if and only if there exists a particular back-path.
Let the vertices in V be vy,...,v,. The HPR problem is to determine whether there exists a simple path
of length n — 1 from v1 to v,. We construct a parallel program with n — 1 threads that access a set of shared

variables of the form vi

7 where 1 <i < nand 1< j <n. For every vertex in V', we construct a program thread

18



Parallel Program
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Read x; Read xp Read x;?

Write x,! Read x3 Read x2

Read x, Write x,! Write x,!

Read x2 Read x;

Read xy Read xg

X X,

Figure 16: Constructing a parallel program for a given graph.

that initiates accesses to the shared variables in a particular order. The code for thread j is constructed based
on the set of neighbors of vertex v; in G. Let wy, ..., wq be the neighbors of vertex v;. We now define a macro
called C'odeSeq, which we will later use for fully specifying the code for thread j.
CodeSeq(j,1):
Write v} ;
Read wi"’l;
Read wé"’l;

-
Read wzl'" ;

The code for thread j, P;, for 1 < j < n is defined as:
CodeSeq(j, n-1);
CodeSeq(j, n-2);

CodeSeq(j, 1);

P, is defined as: Write v7?; Read v}

We can show that a Hamiltonian path exists from vy to v, if and only if there is a back-path between the
two accesses initiated by thread P,. Figure 16 illustrates this construction for a simple graph consisting of four
vertices. The figure shows a Hamiltonian path from vertex z; to vertex x4 in the graph and a corresponding
back-path between the two accesses initiated by Pj.

Theorem: There exists a Hamiltonian path from v to v, in the graph G if and only if there exists a back-path
from Read v to Write v7, which are accesses initiated by thread P,.

Proof: We will first show that if there is a Hamiltonian path from vy to v, in GG, then a back-path exists. Let
U1, ..., u, be the Hamiltonian path from v, to v, where u;y is v1 and u, is v,. Consider the access sequence Read
ut, Write ut, Read u2, Write u2, Read u3, Write u3, ..., Read u?, Write u?. By construction, (Read ul, Write
ut) € C and (Write ul, Read uZﬂ) € Py,,. Also, this access sequence visits each thread exactly once. Therefore,
this path is a valid back-path from access Read vi to Write v].

We can also show that if a back-path exists between the two accesses, there is a Hamiltonian path in G that

begins at vertex v; and ends at vertex v,. To prove this assertion, we make use of the following properties of
such a back-path.

1. All conflict edges that appear in the back-path are of the form (Read z, Write z).

2. All program edges that appear in the back-path are of the form (Write vf, Read vf"’l) where vertex v; is
adjacent to the vertex v; in G.
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3. The back-path visits exactly n — 1 threads (excluding the thread P,).

These properties follow from the structure of the parallel program and the definition of a back-path. The
accesses initiated by a thread after a Write vf access are either reads to variables of the form v/ with m < k+1
or writes to variables of the form v;” with m < k. The accesses initiated after a Read v¥ access are either reads
to variables of the form v with m < k or writes to variables of the form v with m < k. Therefore, if there is
a back-path from an access Opl v to an access Op2 v, then the back-path must contain exactly t — r P edges
of the form (Write vf, Read vf"'l). Since t = n and r = 1, the back-path between accesses initiated by thread n
has the above mentioned properties. These properties also imply that there is a Hamiltonian path from vy to v,
due to the constraint that a back-path does not visit a thread more than once.

Therefore, to solve the HPR problem on a graph, we can use the reduction specified in this section and
formulate an equivalent BP R problem. Hence, BPR is NP hard. a
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