Randomized Load Balancing for Tree-structured Computation

Soumen Chakrabarti*

Abhiram Ranade!

Katherine Yelick*

Computer Science Division, University of California, Berkeley CA 94720

{soumen,ranade,yelick}@cs.berkeley.edu

Abstract

In this paper, we study the performance of a ran-
domized algorithm for balancing load across a mul-
tiprocessor executing a dynamic irregular task tree.
Specifically, we show that the time taken to explore
a task tree is likely to be within a small constant
factor of an inherent lower bound for the tree in-
stance. Our model permits arbitrary task times and
overlap between computation and load balance, and
thus extends earlier work which assumed fixed cost
tasks and used a bulk synchronous style in which
the system alternated between distinct computing and
load balancing steps. Our analysis is supported by
experiments with application codes, demonstrating
that the efficiency 1s high enough to make this method
practical.

1 Introduction

In this paper we study a popular randomized strat-
egy for load balancing dynamic tree-structured task
graphs on large scale message passing multiprocessors.
First, we show analytically that with high probability,
the randomized strategy results in parallel running
time that 1s within a constant factor of an inherent
lower bound for the task graph. Second, using task
graphs generated from application codes, we estimate
the constant factor. The randomized strategy we
consider has already been used in applications like a
symbolic polynomial equation solver and an eigenvalue
program and has been found to give good speedups [2,
4]. These results represent a step towards bridging the
gap between the theory and practice of dynamic load
balancing algorithms.

Tree structured task graphs arise frequently in
paradigms such as divide and conquer, backtrack
search, and heuristic search using branch and bound.
A sequential algorithm maintains a pool of generated
but unexpanded tasks, and repeatedly selects the most
promising task (based on some measure) and solves it,
possibly generating more tasks that are added to the
pool. For the parallel case, the following strategy has
been proposed and analyzed [5, 8]: every processor
maintains its own local pool, and when a processor
needs work, it selects the best task from its local pool

*Supported in part by ARPA under contract DABT63-92-C-
0026, by NSF (numbers CCR-9210260 and CDA-8722788), and
by Lawrence Livermore National Laboratory. The information
presented here does not necessarily reflect the position or the policy
of the Government and no official endorsement should be inferred.

TSupported by NSF-DARPA grant # CCR-9005448.

666

for execution. If any new tasks are generated during
the execution of one task, they are sent to the pools
of randomly chosen processors in the machine. Karp
and Zhang show that under reasonable assumptions,
independent of the problem instance, the scheme gives
linear speedup to within a constant factor, with high
probability. However, their analysis assumes unit time
tasks. For many applications, the wide variation of
task times limits the applicability of their model.

We extend Karp and Zhang’s strategy to deal
with non-uniform task times. Neither the resulting
strategy nor its analysis require prior knowledge of
the distribution of the task times. Further, as with
the analysis of Karp and Zhang, no knowledge of the
structure of the task graph is required (except that
it is a tree). Under reasonable assumptions, we can
still establish that the speedup is linear with high
probability, where the probability space is over the
random choices made by the load balancing algorithm
and not the structure of the tree instance or task times.

These results are supported experimentally. We
present results from simulations of the machine model
and algorithm, using execution traces from two ap-
plications: a symbolic algebra program and an eigen-
value finder. For comparison, we also provide actual
speedup on the CM-5 multiprocessor. The perfor-
mance results show that the model is faithful in
the applications we considered, and the efficiency of
parallel execution is high.

2 Related Work

Classical scheduling theory deals with exact or bounded
approximate schedules for task graphs with their
execution times and dependencies known in advance.
For irregular applications, task time and dependency
information, represented by the task graph structure,
are usually not available at compile time, so decisions
are made dynamically. Two possible approaches to
dynamic load balancing are sampling and oblivious
algorithms. A sampling algorithm monitors task
statistics to use in scheduling decisions. An oblivious
algorithm does scheduling without such statistics.

Lucco and Polychronopoulos, among others, have
addressed the problem of dynamically scheduling
forall loops in which the execution time of the loop
iterations are unpredictable [6, 7]. However, there are
no dependencies between tasks in the analysis, and
the task pool only shrinks after initialization; there
is no dynamic task creation. Lucco’s sampling algo-
rithm, taper, is a probabilistic version of guided self-
scheduling proposed by Polychronopoulos [7]. Taper

In the 1994 IEEE Scalable High Performance Computing Conference, Knoxville, TN.

collects tasks into clusters, large at first to reduce
overhead, small later for even finishing time. However,
dependencies and data locality are two important
aspects that are not addressed. In addition, the
analysis of taper assumes the variance of task times
is known; in the implementation the true variance is
approximated by sampling and using the variance of
completed tasks.

The strategy we analyze is oblivious and gives
optimal (to within constants) schedules in the presence
of irregular task times and dependencies for an
important computation structure: tree-structured
task graphs. Decentralized scheduling is crucial
for distributed memory multiprocessors, but is also
essential for scalable shared memory programs to
avoid memory contention.

While our model permits dependencies and irregu-
larity, it does not capture the effect of data locality.
Our results will still be applicable, however, if the
smallest task time is comparable to or greater than
network communication time for a task. Our exper-
iments suggest that some applications like Grobner
bases computation [2], and the eigenvalue problem [4]
fit this paradigm, either because the volume of data
associated with a task is small, or because caching
and data replication are feasible. For the applications
we consider, transmitting the task takes about 4-6us,
whereas the smallest task takes thousands of microsec-
onds to execute. For such applications, our analysis
makes authentic performance predictions.

3 Computation Model

In this section we describe the model of tree-structured
computation. We consider both exhaustive search
trees, in which all nodes are always expanded, and
branch and bound trees, in which pruning of the tree
may occur dynamically.

3.1 Tree-structured Task Graph

A tree structured computation begins with a single
root task. When a task is executed, its children tasks
are generated. The entire tree will be denoted by
H. The time required to execute a task v will be
denoted as #(v), and can only be known after executing
v. For simplicity, suppose all children are generated
together immediately after the execution is completed.
We assume time i1s measured in discrete steps, and
for all tasks v, #(v) € {1,---,T}, where time is
normalized such’ that maxveH{t()}/ mingepr{t(v)} =
T. The goal 1s to generate and execute every task
that is a descendant of the root task. The process of
executing a task and generating its children will be
called “node expansion”. For the purpose of analysis,
it is assumed that even though task times and tree
shape are unknown to the load balancing algorithm,
they are independent of the scheduling decisions.

667

3.2 Exhaustive Search

Many parallel algorithms enumerate solutions from
some universe by dividing the universe into succes-
sively refined partitions. This method naturally give
rise to tree-structured task graphs. The sequen-
tial paradigm for such problems is backtrack search.
Nodes in the task graph are partial configurations,
leaves are solution configurations or “dead ends”, and
the goal 1s to expand the tree so as to enumerate all
solution leaves.

3.3 Branch and Bound Graph

A branch and bound graph [5] is a tree structured
graph in which each task v has an associated cost
¢(v), with the requirements that c(v) > ¢(PARENT(v))
and all costs are distinct. The goal is not necessarily
to generate and execute all tasks in H, but only to
identify the leaf node with minimum cost ¢*.

3.4 Sequential Algorithm

A common strategy used by sequential algorithms is
the “best-first” strategy. At any point during the
execution, all unexpanded nodes are maintained in a
priority queue. While the queue is non-empty, the
node with least ¢(v) is removed and expanded. Tt is

easy to see that only the nodes in a subtree H are
expanded, where H={veH: e(v) < ¢*}. Let
|H| = n and h be the height of H. The total work
in H is defined as W = ZUEH (v). We also define

S = max__ {ZUEUt(v)}, which is the maximum

work on any root-leaf path ¢ in H. These definitions
apply to the special case of an exhaustive search tree,

where H = H. We assume that operations on a
priority queue for task selection take negligible time
compared to the expansion time. In this model, the
sequential algorithm takes time W.

3.5 Parallel Algorithm with
Distributed Queue

Our machine model consists of processors with in-
dividual local memory connected by a communica-
tion network. Processors communicate by passing
messages to each other. Communicating one task
takes unit time. Similar to Karp and Zhang, we
put a local priority queue of tasks in the memory
of each processor; thus, priority is preserved within
each local queue but not across processors. An
idle processor tries to dequeue a task from its local
queue. If one exists, it is expanded. Any child task
is enqueued into the priority queue of a uniformly
randomly chosen processor. There is no coordinated
global communication for load balancing purposes.
Once a processor obtains a task from its local pool

and starts working at it, the task is run to completion.
This assumption is important for the grain of tasks we
have in mind, where pre-emptive scheduling may be
expensive because of state saving and restoring costs.

Termination. In a parallel branch and bound pro-
gram, each processor has to periodically propagate the
cost of the least cost leaf it has expanded, so that all
processors know the cost of the global best cost leaf in
order to use it for pruning. Also, barrier synchroniza-
tions are required to detect situations where all local
queues are empty so that the processors can terminate.
We note that these can be done infrequently with low
overhead, so they do not affect the time bounds we
derive.

3.6 Parallel Algorithm with Ideal
Central Queue

To interpret the bound on randomized running time,
we shall compare it with an idealized model in which
all tasks are managed at a centralized site, so that
global ordering on the priority value ¢(v) of nodes v is
ensured. An idle processor attempts to get a task from
the manager. If a task is found, it is expanded and any
child generated is enqueued into the central queue. We
make the ideal case assumption that the task manager
has high bandwidth — it can serve all P processors in
the same time step if they all happened to request for
work. This can only make the comparison with the
randomized model more conservative.

3.7 High Probability

Analysis of the distributed algorithm is probabilistic,
with the notion of high probability defined as follows.
For a task tree with n nodes, the statement

t= O(g(P, W,n,T,S, h)) w.h.p! (1)
means that given an arbitrary real number « > 0,
there is some constant § that possibly depends on «
but not the characteristics W, n, T, S, and h of the
tree instance, such that

Pr[t>Bg(P,W,n,T,S,h)] <n™°. (2)
The probability space in the above equation is over
the random choices of processors to send freshly
generated tasks, and not the space of possible inputs.
Thus our results hold over all possible input task
trees, and no statistical properties are assumed of
the input. Contrast this with sampling algorithms
like Lucco’s taper, whose efficiency depends on
approximate knowledge of the variance of task times.

1With high probability.

668

4 Analysis

In this section we present the analytical results. First
we make some observations about the centralized
queue model described in §3.6. We get a tight bound
on the running time, which sets our goal for the
analysis of the randomized model described in §3.5.

4.1 Centralized Priority Queue

For exhaustive search problems with H = H, the
running time is O(W/P + S), analogous to the
©(n/P + h) bound for unit task times [5]. We omit
the proof of this fact, and consider the more interesting
case of branch and bound trees.

Lemma 4.1 With an ideal shared priority queue, the
execution time ¢ is given by 1 = © (% + hT).

ProoF. First consider the lower bound. Since a total
work W has to be performed by P processors, at least
W/P time is needed. The example in figure 1 shows
that Q(hT) time can be necessary. The boundary

between H and H is shown by the broken curve in
the figure. 1In step 1, one processor expands the
root, generating P children that all P processors start
expanding at time 2. P — 1 of the nodes v are in
H — H with t(v) = T, meant to keep P — 1 processors
busy for time 7', so the last processor is left alone to
expand part of the useful tree H as shown. Node r has
P children and node x has T — 1, so that when the
new set of P nodes are generated, the P—1 processors
just freed grab the new decoys. This can be arbitrarily
repeated, so we effectively lose all but one processor,
which has to do all the useful work.

To demonstrate the upper bound, pick any root-leaf

path o in H and consider the expansions of nodes on
o, which must happen in sequential order. Let u be

any node in ¢. Since u € H, u must be enqueued into
the central queue (at time g(u), say) and expanded at
some later time d(u). Let N(u) def d(u) — g(u) be the
time for which u has been “neglected”. Expansion of
u finishes at time d(u) + t(u). Define the path time

Z (N(u) + t(u)))

u€eo

o) = (3)

Then it is clear that ¢ = max, (o), i.e., the total
execution time is the maximum path time. We shall
now bound #(o) for any . Observe that after time
g(u) + T, every processor has had an opportunity to
dequeue u, so if they pick nodes other than u, each of

those nodes v must have ¢(v) < ¢(u), and since u € H,

v E f], too. Thus all processors must be doing useful
work between g(u)—+T and d(u) (the shaded region in
figure 1). Since the length of the shaded interval is at

Lower Bound

Upper Bound
u generated u expanded
| | | |
I ! 4 | I
8(u) T g(u)+T d(u)
t(u)

N(u)

-_— =

All processors doing useful work

Figure 1: Tllustrations for lower and upper bounds in lemma 4.1.

least N(u) — T and the total useful work is W,

Z(N(u)—T)P < W
= S N -hT < Z(N(u)—T)gg
= o) < g—i—hT—i—Zt(u)
W
< S +hT+S.

Since S = O(hT), the result follows.

4.2 Distributed Priority Queue

As noted earlier, a centralized queue is unrealistic.
But it provides an upper limit on the best possible
performance. We show here that the distributed
priority queue described earlier in fact very closely
matches the upper limit.

4.2.1 The Delay Sequence Argument

The first step in the analysis (lemma 4.2) is to show
that if the execution of some node s finishes at time
t, then any delays in reaching s were caused by a set
of nodes V' that, in some sense, interfered with the
execution. Further, the total execution time of the set
V is greater than ¢t — hT — S| so if ¢ is very large, the
nodes in V' account for most of this time.

The rest of the analysis deals with estimating the
likelihood that any set V' of nodes interferes (in the
above sense) with the execution of any node s. This
is formalized using the notion of a delay sequence,
adapted from [8]. We show that the probability of
having a long execution, in which the computation is
significantly delayed by interference from V, is small.

669

Lemma 4.2 Suppose the expansion of some node
s € H finishes at time ¢. Let 81,...,8p(s) denote the
nodes on path from the root to s, with sy = root
and sp(s) = s. Further, let s; have been dequeued
from queue ¢; and executed by processor ¢;. Then

there exists a set of vertices V' C H and a partition
my,..

-, My(sy of the interval [1, 77 such that

L Vﬂ{sl,...,sh(s)} = @

e Fach v € V is generated during the time interval
[1,¢]. Further, each node in V arrives into g;

during interval II;, for some j, 1 < j < h(s).
. Zvevt(v) >t—hT - 5.

ProoF. We only sketch the proof, the details being
similar to a similar proof in [8]. The proof is
constructive. The idea is to work backwards from the
time ¢ and consider the earliest time instant ¢’ < ¢
such that during the interval [t,¢] only nodes in H
are expanded in qp(;). We include all these nodes
into V, and set M) = [t',#]. We then continue
the construction from ¢ — 1 in an analogous manner.
Reasoning as in lemma 4.1, we can see that the
processing times of nodes in V' must cover all of
[1,1], except for the time spent in processing nodes
81,...,8h(s) (which is at most S) and the time spent

in processing nodes outside H (which is at most AT).
]

Definition 4.1 (Delay Sequence) A delay sequence
(s,Q, T, V) of length ¢, t being a positive integer,
consists of the following components.

e Anodes e f], at depth h(s) in H.
e A sequence @ = (q1,...,qn(s)) of task queues,

identified by the processor on which the queue
is located.

e A sequence of individually contiguous but mu-
tually disjoint intervals (I, ..., () that par-
tition the interval [1,¢].

e A set ofnodesvgff.
X

Definition 4.2 A delay sequence (s, Q, I, V) of length
t occurs in an execution if

e The tree expansion takes time at least ¢.

s € H is a node whose expansion finished no
earlier than ¢ (there has to be such a node, or
time ¢ would not have been necessary). Suppose
s is at depth h(s), and, starting at the root of
H, the root-to-s path is (sq, .. oy Sh(s))-
s; was enqueued into queue ¢; and expanded by
Processor ¢;.

Aset V C H can be identified as in lemma 4.2.
X

<y 85,

From lemma 4.2, we can conclude that whenever
execution takes time ¢ or longer, some delay sequence
of length ¢t must have occurred.

The probability of large delays can thus be es-
timated by estimating the probability of occurrence
of delay sequences. This is done by counting all
possible delay sequences, and in turn estimating the
probability of each.

Lemma 4.3 The probability of occurrence of a delay

. 1
sequence (s, Q, T, V) of length ¢ is DR

ProoOF. We know that each node in V and {s1, ..

(note that they are disjoint) was expanded during
some II;, and further that it was enqueued into the
speciﬁeé q;. However, there were P choices for each
node, and thus the probability of the specified choice
was 1/P, giving the result.]

To count the number of delay sequences, we need to
consider the number of different ways of choosing the
parameters s, @, II and V in a consistent manner.
The hardest to count is the number of choices for
V. The vertices in V must be selected so that their
execution times sum to at least ¢ — AT — S. This
part of our argument is more complicated than the
one of [8] because the expansion time of a node can
have arbitrary values in the range [1,T].

We first describe the counting argument assuming
that ¢(v) can only take on one of the ©(lgT) values
in {1, 2,4,...,2MeT] } Later, in §4.2.2 we will show
how this assumption can be discarded.

Lemma 4.4 For fixed s and V, the number of
possible delay sequences (s, @, T, V) of length ¢ +

TlgT is at most PH)24/T,

ProOF. [Sketch] Given s, the processors which ex-
panded s; can each be chosen in P ways for 1 < j <

h(s), and the partition TI need be specified only to a

Sh(s)}

670

granularity of 7', which can be done in (t/j;[("s};(s)) <

2t/T ways. Multiplying these gives the result.

Lemma 4.5 The probability that some delay se-
quence of length at least ¢ + T'1g T occurs is at most

eW/P

t—S—hT “)

t—vf//—:T
n 4t/ []

ProOF. [Sketch] From the previous lemmas, the
probability of occurrence of a length ¢ delay sequence
for fixed s and V is at most P~()+IVD o phls)gt/T —
PV 9t/T,

The probability of an arbitrary delay sequence of
length ¢ occurring is at most > P-IVIgHT,

We choose V as follows. We first choose the amount
of time ¢; spent on nodes of color 7 in V. We choose
t; to a granularity of T', and hence this can be done in

at most (t/Tlg‘i'%gT) < 24T Fixing t; fixes the number

of nodes of color ¢ in V' to be ti/Qi. Since there are n;
nodes of color i overall, the number of choices for V'
consistent with the choices for ¢; is at most [, (t 7’2,)

The number of choices for s is at most n. Using
convexity arguments and the constraint that >, ¢, >
t — S — AT we can upper bound the probability of
occurrence of an arbitrary delay sequence of length ¢

by the required expression. [

Using lemma 4.5, we can obtain our main result.
We omit the proof.

Theorem 4.1 (Main Result) For any given o > 0,
there exists a f depending only on « (and not the
input) such that

Pr[t>ﬁ<%+hT>] < n™9,

provided P = O(n/lgn) and P = O(n/logT).

()

In other words, under the stated conditions,

t =0 (g—i—hT) w.h.p.

4.2.2 Allowing Arbitrary Task Durations

The proof above assumed that task durations could
only assume values from the set {1, 2,4,...,2MeT] }
Here we indicate how to discard this requirement.

The idea is to round up the actual duration ¢(v) of
node v to the next higher power of 2 for the purpose
of the analysis. This can at most increase all times by
a factor of two. As a result only the constant factors
in the analysis will be affected.

We note that instead of rounding up to powers of
2, we could use any other base b > 1. This might be
useful for getting the best estimates of the constants.

4.2.3 Exhaustive Search

For exhaustive search problems, a slightly different
analysis gives

t=0 (K + S) w.h.p.,

- (")

subject to the same conditions as above.

5 Simulation and Experience

This section reports on the performance evaluation of
the randomized load balancing algorithm in practice.
For applications with tasks that take much more time
expanding than transmitting, actual performance cor-
roborates the above results that predict that speedups
are scalable, to a small constant factor.

5.1 The Applications

There are applications for which the theory devel-
oped makes reasonable performance predictions. The
Grobner basis problem [2] and the bisection eigen
value problem [4] are two examples. They can be
abstracted to tree-structured computations, in which
locality has little influence on performance because
replication is used.

5.1.1 The Bisection Eigenvalue Algorithm

A symmetric tridiagonal N x N real matrix is known
to have N real eigenvalues. It is easy to find an initial
range on the real line containing all eigenvalues, and,
given a real number p, it is possible to calculate in
O(N) time how many of the N eigenvalues are less
than p. This primitive can be used to successively
subdivide the real line and locate all eigenvalues to
arbitrary precision [9]. The kernel is shown below.
Parameters 1Val and rVal represent the current
endpoints of the current range and Cnt is the number
of eigenvalues in that range.

Eigen (1Val, rVal, Cnt) {
If ¢nt = 0 Return;
Shrink [1Val,rVal] while Cnt remains unchanged;
If [LVal,rVal] is small
Return, reporting convergence;
Else {
Split [1Val,rVal] at some mVal:
1Val < mVal < rVal;
Find number mCnt of eigenvalues
between 1Val and mVal;
Eigen (mVal, rVal, Cnt - mCnt);
Eigen (1Val, mVal, mCnt);
}
}

671

The two recursive calls to Eigen generate a binary
tree as the task graph. The computation in each task
consists of the Shrink and Split operations, each of
which is O(N) flops for an N x N tridiagonal input.
But Shrink might be repeated an unknown number
of times depending on convergence. This makes task
times irregular. The input array, being read-only
and sparse, can be replicated across all processors.
Thus locality is not an issue. It is common to choose
mVal = (1Val + rVal)/2. This does not necessarily
balance the number of eigenvalues on either side, so
the tree can potentially be quite unbalanced. The first
histogram in Figure 2 shows the distribution of tasks
times.

5.1.2 The Grobner Basis Algorithm

Buchberger’s Grobner basis algorithm [1] starts with
a set G of multivariate symbolic polynomials and
repeatedly checks if there is any pair f, g € G such that
a certain scaled sum of f and ¢ is not represented in
G. If there 1s, GG is augmented with a new polynomial
to make it “more complete.” Thus the computation
kernel has the following structure.

(G = UserInput;
P={{fg}: fLg€G}
While P #) do {
Remove some {f, g} from P;
r = Combine(f, g);
If » not represented in G {
Add new pairs {{r,h}: h € G} to P;
Add r to G

}

By suitably transforming the program, we can express
the parallel program as a tree-structured computation.
FEach task descriptor is a pair {f,g}. Solving the
task involves executing the body of the while-loop
above, which can take extremely diverse task times
(i.e., T can be hundreds to thousands in practice).
Even though the augmentation of G looks inherently
sequential, the tasks in the tree can actually run with
significant concurrency [2]. G is replicated across
processors, and maintaining consistency is inexpensive
since augmentations are rare in practice. Thus,
locality is not a primary factor in performance.

5.2 Measurements

Randomly placing tasks give good empirical perfor-
mance for many applications. However, it is difficult
to isolate the effects of the load balancing strategy
from several other factors (e.g. locality) that affect
overall performance. By simulating execution traces
we overcome this problem. For each application, we
added instrumentation to the sequential program to
emit the task tree with task times, and input this tree
to a simulator that simulated the parallel execution
of the randomized load balancing algorithm. We also

Eigenvalue Grobner

1400

12007

1000

Frequency
Frequency

|

0.5

.

Task time

Il

Task time x 10

5

Figure 2: Distribution of task times for (a) the eigenvalue
example, and (b) the Grobner basis example. The average
task time is shown by a vertical broken line.

measured actual speedup on the CM-5 multiprocessor.
Comparing the speedup curves enabled us to judge the
closeness of the simulation to reality.

Given a computation tree H = H, the minimum
execution time is at least max{W/P, S}. Using more
than /S processors cannot increase speedup, so we
plot efficiency against the number of processors only
where P < W/S. Note that max{W/P, S} may not
be achievable even by an optimal run, so our efficiency
estimate 1s pessimistic.

5.2.1 Grobner Basis Algorithm

Over a standard set of benchmarks, the Grobner
basis problem shows a remarkable variation of tree
structure, both in shape and task times. We present
data from one example in figure 3, but the speedup
profiles from other examples are virtually identical
in shape. For our example, the tree has W
11053339us, n = 142, h = 11, T = 174860us =
1184us ~ 148, S = 474880us, and W/S ~ 23. The
simulation is worse than actual runs because they did
not work with the same tree; it is hard to control
what tree is expanded as the algorithm is highly
indeterminate [2].

5.2.2 Bisection Eigenvalue Algorithm

Depending on the input, dynamic load balancing may
or may not be necessary for the bisection algorithm.
If the eigenvalues are distributed uniformly on the
number line, static load balancing usually does quite
well. To measure the effectiveness of our load
balancing algorithm, we used an input that has one
large cluster of eigenvalues that would be assigned to
one processor by a typical static scheduling strategy.
For this problem, the tree has W = 108247480pus,
n = 2999, h = 20, T = 18437Tus +— 4486us ~ 41,
S = 237917us, and W/S = 455. The simulation fits

the actual performance closely.

672

20-

Speedup

Simulation

W/S

Figure 3: Performance on the Grobner basis example.

Speedups were averaged over 20 runs.
5.2.3 Communication Latency

The random scattering of tasks does not take into
consideration the topology of the connection network
or the cost of communication. Thus the analysis
would be accurate for PRAMs, but it would also be
acceptable for networks that are effectively modeled
as being completely connected (for example, the
LogP model [3]), provided transmitting a task has a
negligible cost compared to executing it.

To study the effect of network latency on efficiency,
we fixed the number of processors P and varied
network latency L. The simulator models network
latency by delaying the remote enqueue event of a
task by L from the message send event. The send
itself is instantaneous, so the sender can continue with
computation right away. The variation of efficiency
n with latency, L, is plotted, with latency shown in
units of ¢ = W/n, the average task time. The point
L = W/n is instructive: since each task suffers about
a equal time overhead in communication, one might
expect that n(W/n) =~ n(0)/2. n(WW/n) turns out to
be better owing to the overlap of message transfer with
computation. For the CM-5, nL/W ~ 1.66 x 1074, so
the loss of efficiency is negligible.

6 Open Problems

Even though the asymptotic optimality of random
task placement within the defined model has been
settled in this paper, many important problems
remain to be solved. First, our analysis guarantees
asymptotically linear speedup up to the point where
running time is dominated by the sequential paths in
the tree. Better constant factors should be possible
when P is not close to the limit of parallelism (e.g., the
eigenvalue algorithm efficiency is much higher than the
best predicted constant between 1 and 64 processors,

50

451 Simulation

I I I I ,
40 50 60 70 80
P

I
30

.
20

Figure 4:
Speedups were averaged over 20 runs.

Performance on the eigenvalue example.

because W/S > 64). Another problem is to extend
the results to account for the effects of locality. For
unit time tasks in a finite tree, with the restriction
that the task tree is also the communication graph,
Wu and Kung [10] have described a method based on
controlled global information.

7 Conclusion

Dynamic scheduling algorithms are designed to ensure
load balance when the computational load 1s not
known in advance. The problem is complicated by
one or more of the following: variable task times,
dependencies between tasks, and need for data locality
to reduce communication cost. While systems exist

Efficiency
o o o o o
(S (=) ~ © ©
T T T T T

o
IS
T

0.3

0.2

0.1

2 3 4 5 6 7 8 9
nL/W (P=64)

Figure 5: Effect of latency on efficiency.

673

that address some or all of these concerns, little is
known about their theoretical performance bounds
under even two of three complicating factors. We have
presented and analyzed a load balancing algorithm,
using a randomized strategy that has been found
useful in application programming. Our main result
is that, with high probability, the randomized running
time 1s optimal to within a small constant factor. This
improves on previous work by handling both irregular
task times and dependencies. Our experimental
results suggest that the constant factor in the analysis
is small, and the effects of communication latency
are tolerable. These results bring the theoretical
understanding of load balancing algorithms closer to
the techniques used in practice.

References

[1] Bruno Buchberger. Grobner basis: an algorithmic
method in polynomial ideal theory. In N. K.
Bose, editor, Multidimensional Systems Theory,
chapter 6, pages 184-232. D. Reidel Publishing
Company, 1985.

Soumen Chakrabarti and Katherine Yelick. Im-
plementing an irregular application on a dis-
tributed memory multiprocessor. In ACM SIG-
PLAN Symposium on Principles and Practice of
Parallel Programming, pages 169-178, San Diego,
California, May 1993.

David Culler, Richard Karp, David Patterson,
Abhijit Sahay, Klaus Schauser, FEunice San-
tos, Ramesh Sumbramonian, and Thorsten von
Eicken. Logp: Towards a realistic model of
parallel computation. In ACM SIGPLAN Sym-
postum on Principles and Practice of Parallel
Programming, pages 1-12, 1993.

Inderjit Dhillon and James Demmel.
communication., March 1994.

Richard M. Karp and Yanjun Zhang. A ran-
domized parallel branch-and-bound procedure.
JACM, 40:765-789, 1993. Preliminary version in
ACM STOC 1988, pp290-300.

Steven Lucco. A dynamic scheduling method for
irregular parallel programs. In ACM SIGPLAN
Symposium on Programming Language Design
and Implementation, pages 200-211, 1992.

C. D. Polychronopoulos. Guided self-scheduling;:
A practical scheduling scheme for parallel super-
computers. [EFE Transactions on Computers,

C-36(12):1425-1439, December 1987.

Abhiram Ranade. A simpler analysis of the
Karp-Zhang parallel branch-and-bound method.
Technical Report UCB/CSD 90/586, University
of California, Berkeley, CA 94720, August 1990.

David S. Watkins. Fundamentals of Matriz
Computations. John Wiley and Sons, 1991.

[.-C. Wu and H. T. Kung. Communication
complexity for parallel divide-and-conquer. In

32nd TEEE FOCS, pages 151-162, 1991.

Private

