Abstract

This report summarizes and compares the functionality of several portable message
passing libraries. A message passing library contains explicit communication primitives
for the exchange of messages among computing processes. A portable message passing
library further attempts to provide a uniform communication interface on different
types of machines. We survey ten message passing libraries, most of which are publicly
available, and summarize their basic communication interfaces in this report. We also
discuss the semantics of message passing primitives, how easy they are to use, and how
the interface design and implementation can affect portability and performance.

1 Introduction

In spite of claims that writing shared memory programs is easier than writing message
passing ones, message passing remains a popular programming model for large scale
machines, particularly when the goal is to get the maximum performance out of a
given machine. There are several reasons for this popularity. First, simple point-
to-point communication primitives are cheaper to built in hardware than a globally
shared memory, and scalability of shared memory machines continues to be a topic of
debate. Second, message passing seems to be the appropriate programming paradigm
for exploiting the non-uniformity of memory accesses in distributed memory machines,
since all remote accesses are explicit in the program. Third, the nondeterminism in
message passing programs is typically less than in a shared memory program, because
a message constitute synchronization as well as communication. The behavior of a
message passing program, at least in some models, is more predictable than with
shared memory.

Nevertheless, programming with low-level message passing primitives can be an
onerous task. Communication among computations has to be carefully coordinated,
and the program is usually hard to understand. To cope with this difficulty, communi-
cation libraries (also called message passing libraries) that provide high-level program-
ming abstractions have been built on top of the simple message passing primitives.
Typical performance overhead of using such libraries, based on numbers provided by
the developers, is about 25% relative to the cost of native message primitives [1, 2].

Aside from reducing programming complexity, a portable message passing library
may abstract the architectural details of different parallel machines. The programmer
can now use the same communication interface to program distributed memory multi-
computers, cache-coherent multiprocessors, or even networks of workstations. Some
implementations of the libraries further allow the programmer to spread computation
in a heterogeneous environment. Heterogeneity may become an efficient way to exploit
the power of future generation networks; it also eases the development of applica-
tions requiring many specialized computers such as high-speed computing devices and
sophisticated graphical displays.

In this report we sample ten communication libraries that are built around message
passing primitives. Most of them operate on multiple types of parallel computers. A
few also have the capability of running in a heterogeneous network environment. The
ten communication libraries are listed below:

APPL[3]: a communication library developed at NASA Lewis Research Center.
The goal of APPL is to simplify programming on the parallel machines there.
APPL stands for “Application Portable Parallel Library”.

CMAM[19]: an Active Message layer for the Connection Machine (CM-5), devel-
oped at the University of California, Berkeley.

CMMD[4]: a specialized communication library written for the Thinking Ma-
chines CM-5, a multiprocessor architected around a packet switching network.

EXPRESS[1, 5]: a commercial parallel programming toolkit developed by Para-
soft Corp., which was founded by a group from the Caltech hypercube project.

P4[6]: a library of macros and subroutines developed at Argonne National Labo-
ratory. It is meant to support “Portable Programs for Parallel Processors”, from
which it also takes its name.

PARMACS[20]: a collection of macros described in the book “Portable Programs
for Parallel Processors”. It is one of the predecessors of P4.

PICL[7]: a “Portable, Instrumented Communication Library” developed by the
researchers at Oak Ridge National Laboratory. PICL was used to aid the perfor-
mance characterization research at ORNL[8].

PVMI9, 10]: a communication package developed at Oak Ridge National Labora-
tory to address heterogeneity in a network based environment. PVM stands for
“Parallel Virtual Machine”.

TCGMSG[11]: a communication library developed and used by the Theoretical
Chemistry Group at Argonne National Laboratory.

Zipcode[2, 12]: a communication library developed by the researchers at Lawrence
Livermore National Laboratory.

The operating environments of these libraries are summarized in table 1. Note that
many different ports of these libraries are currently under development, and the entries
here are likely to be out-dated.

The list is by no means exhaustive. There are many others that provide similar
functionality. In addition to the message passing primitives, some of these communi-
cation libraries also provide shared-memory primitives, performance monitoring tools,
and user interfaces for programming and debugging. In this report we focus on the
basic message passing aspect only.

The report is organized as follows. Section 2 outlines the programming models pro-
vided by the communication libraries. Section 3 introduces the basic send and receive

Table 1: Summary of operating environments

Name of library

hardware configurations

languages

APPL

workstation network,
iPSC/860, NASA Hypercluster,
Alliant FX

C, Fortran

CMAM

CM5

C

CMMD

CM5

C, Fortran

Express

workstation network,
Alliant, Transputers,
iPSC/860, Ncube, CRAY

C, Fortran

P4

workstation network,
Multimax, Alliant, Cray,
iPSC/860, Delta, BBN,

Sequent Symmetry, Encore

C, Fortran

PARMACS

Alliant, Sequent, Encore
Cray-2, Vax, Intel Hypercube
workstation network

PICL

iPSC/2, iPSC/860, Ncube/3200,
iPSC/1, Symult S2010, Cosmic
Environment, Linda, Cogent

C, Fortran

PVM

workstation networks,
CRAY, iPSC/860,
iPSC/2, CM2, Titan,
Alliant FX/8, Symmetry

C, Fortran

TCGMSG

workstation network,
Alliant FX(MPP), Titan,
Convex, CRAY, iPSC/860,

Delta, Encore

C, Fortran

Zipcode

workstation network,
Delta, BBN TC2000, CM-5,
iPSC’s, Ncube, Symult S2010

C, Fortran

primitives and defines various forms of message passing semantics. Section 4 compares
the different messages passing semantics, giving examples to illustrate their differences
in use and performance. Section 5 categorizes the ten message passing libraries in
terms of their differences in basic semantics and discuss how one can port applications
written in one library to another. Section 6 summarizes the high-level communication
primitives other than simple sends and receives. In section 6 we summarize the survey
and give our conclusions.

2 Programming Model

Parallel programs written in the message passing paradigm are characterized by a col-
lection of processes, coordinated by messages bearing explicit names of the recipient
processes. It is important to distinguish between processes and processors. A process
is a piece of computation capable of sending and receiving messages; it’s an instan-
tiation of a program text. In the message passing model different processes do not
communicate via shared objects, and therefore they have distinct address spaces. A
processor, in contrast, is a physical resource that actually carries out the computation
specified by a process. Depending on the machine configuration a processor can be a
processing element of a multiprocessor or a workstation connected to a general purpose
network. The mapping from processes to processors is highly machine-dependent. For
example, the mapping is static (fixed) and one-to-one on a CM-5, whereas it is dynamic
and many-to-one on a Sequent Symmetry. For the sake of portability the program-
mer should not be concerned with the process-processor mapping, and the rest of our
discussions will be about the processes only.

A parallel program can be written in various programming models, which are some-
times enforced by languages and sometimes a matter of programming style.

The data-parallel model consists of a single program thread that executes over par-
allel data structures, particularly arrays. Languages for SIMD (Single Instruction Mul-
tiple Data) machines, such as Connection Machine Fortran and Maspar Fortran, are
classic examples of data-parallel languages. The execution model is that instructions
are executed in lock step on all the proessors, with data-depended branches performed
by having some processes abstain from executing instructions along the branch. Re-
cently, the term “data-parallel” has been expanded to encompass any program written
in a data-parallel style, namely one in which the parallelism comes from performing
the same operation on all the elements of an aggregate structure.

In the SPMD model, which stands for Single Program and Multiple Data streams,
the programmer write a single program text and runs is on all processes. The difference
between the data-parallel model and SPMD model is the number of threads of control:
there is one thread of control in a data-parallel language and multiple threads in an
SPMD language. A compiler for a data-parallel language must take computations
on a data structure of size N and map it onto P processes. In SPMD programs, this
mapping is done by the programmer. An SPMD is often provided, along with a message

passing library as the lowest level programming model on MIMD (Multiple Instruction
Multiple Data) distributed memory multiprocessors. A generalization of the SPMD
model allows the programmer to load different programs on different processes. This is
sometimes called an MIMD programming model. Other than saving a certain amount
of code space, the difference between SPMD and MIMD programming is very small,
since an SPMD program can branch to the relevant code segment. Another variant is
the FPMD (Few Programs Multiple Data) model, where multiple instances of the same
program are used for a group of processes. A final variation is the Host/Node model,
in which there is a distinguished processor called the host. Two programs are used
in this model: one for the host processor and one for the other node processors. The
host program is usually used to interact with the user and to invoke the appropriate
node functions; the node programs are written in a SPMD manner. For the rest of our
discussion we will assume the MIMD model is used.

Communication between the processes can be categorized as follows: point-to-
point messages transport data between a pair of processes and are the basis of other
high-level communication primitives; one-to-many messages distribute information
from one source process to multiple recipients; many-to-one messages combine infor-
mation from multiple sources to a single recipient; many-to-many messages combine
and then distribute information among multiple sources/recipients; many-to-many
personalized communication consists of a set of independent point-to-point mes-
sages. More discussion on the functionality of these communication schemes can be
found in section 5. Most multiprocessors have hardware support for fast inter-process
communication. Communication in a heterogeneous environment is usually performed
via the general purpose network interface (sockets) or the file system (pipes). The
performance of these various types of communication is highly dependent on the ma-
chine architecture. For example, CM-5 has dedicated hardware support for carrying
out some particular forms of one-to-many and many-to-many communication. These
machine-dependent performance issues are beyond the scope of this report.

3 Definitions of Message Passing Semantics

In this section we define the message passing semantics existent in the communica-
tion libraries. We introduce these definitions via the most essential message passing
primitives, namely the point-to-point sends and receives. These definitions can be
easily extended to other types of communication primitives. In-depth analysis of the
semantics is left to the next section.

3.1 Basic Primitives

The following primitives are found at the bottom layers of most communication li-
braries. Although these primitives perform very simple functions, they are sufficient
to expose all the subtle differences in message passing semantics.

e point-to-point send: deliver a message from a given user buffer to some user
buffer of the recipient process. The arguments for the send primitive include the
address of the user buffer, the length of the message to be delivered, the recipient’s
process id, and possibly the message’s tag.

e point-to-point receive: pick up a message and store it in a given user buffer.
The arguments for the receive primitive include the address of the user buffer to
store the incoming message, the length of the message to be received, and possibly
the sender’s process id or the message’s tag.

e active messages: deliver a message from a given user buffer and invoke some
procedure at the recipient process, using the message as its argument. The ar-
guments for an active message include the user buffer storing the message, the
length of the message, the address of the remote procedure (referred to as the
handler), and the identifier of the recipient process.

In addition to the message content, some other information must be sent along to
ensure the message is picked by the proper recipient. This is done by specifying the id
of the sending process and a tag describing what the message is about. The message
is then picked up by a receiving statement specifying some matching sender id and
tag. The programmer may choose to ignore this information by using wildcards in the
receive statements.

Note that the message types we discuss here is not related to the type of the
message data as defined by the programming language. The language type is not
used by the communication library to enforce message selection. It is used to perform
data conversion in a heterogeneous networking environment. Some libraries supports
data conversion based on the XDR (External Data Representation) standard. This
functionality eliminates the machine dependent code from the user program. PVM
and P4 provide interfaces to enforce such type conversion.

3.2 Semantics of Basic Message Passing Primitives

We now define the semantics of simple message passing primitives. Unfortunately there
is no standard terminology for some of the concepts described here; we use the common
terminology whenever it exists.

e Synchronous send: send a message and wait for an acknowledgment from the
recipient.

e Synchronous receive: receive a message (wait if necessary) and send back an
acknowledgment.

e Blocking send: send a message and continue execution without waiting for
the reception of the message. However, the send statement may block in some
circumstances, and the execution of subsequent statements is not guaranteed.

e Blocking receive: receive a message (wait if necessary). Subsequent statements
will not be executed until the receive is done.

e Non-blocking send: send a message and continue execution without waiting
for the reception of the message. The latency of the send statement is bounded
and subsequent statements will be executed in any case. The user may not reuse
the user buffer before the send operation is performed.

e Non-blocking receive: receive a message if one is available. Some variants
of the non-blocking receive return information about the message (such as the
sender’s id and the message tag) without retrieving the message itself. The receive
statement returns with failure immediately if there is no message to be received.

Note that the synchronous primitives use a different protocol than the asynchronous
ones (blocking or non-blocking). Therefore synchronous sends must be paired with the
synchronous receives. On the other hand, blocking and non-blocking sends/receives
can be mixed.

Communication via sends and receives is cooperative in that the delivery of a mes-
sage requires actions on both the sending and the receiving processes. Active messages,
on the other hand, requires an action from the sending process only. The recipient thus
has no role in specifying the time, space, and method of delivery.

4 Comparison of Message Passing Semantics

We now explain the differences between the various message passing semantics — syn-
chronous vs. asynchronous, blocking vs. non-blocking, and active vs. cooperative. A
series of examples are used to contrast their use and performance implication.

4.1 Synchronous vs. asynchronous message passing

The main use of a message is to transport a piece of information. A message can
also be used to synchronize the execution of two processes. Synchronization requires
one process to wait (i.e., to suspend execution) for the other; the recipient waits until
the expected message is sent, and the sender waits until the sent message is received.
The waiting on the receiving side is simply to suspend until the message physically
arrives. The waiting on the sending side, however, requiring an acknowledgment from
the recipient after the message is picked up. This two-way protocol enforces a barrier
synchronization between the two processes at the send/receive statement, and hence
we call the corresponding primitives synchronous message passing primitives.
Synchronous message passing is a very restricted way of writing parallel programs.
All the communication points have to be planned carefully, otherwise deadlocks may oc-
cur. Asynchronous messages, on the other hand, allows more flexibility in the schedul-
ing of communication. For example, when two processes X and Y wish to exchange

two local arrays, the following program will break down if synchronous messages are
used:

process X : process Y :

send A to Y send B to X

receive B from Y receive A from X

Since the receive statements can not execute before the send statements are done,
none of these two messages will be received. The above program, however, functions
normally if asynchronous messages are used, because in that case the send returns
immediately to allow the subsequent receive to proceed.

The above example illustrates the restriction synchronous messages put on the
ordering of messages—although the exchange works regardless of the order in which
A and B are received, the programmer must select an order a priori. The following
program performs the exchange with synchronous messages:

process X : process Y :
send A to Y receive A from X
receive B from Y send B to X

Restricting the ordering of messages requires the programmer to think more care-
fully. The result, however, can be a more reliable, data-race free program. Fixing
the communication schedule means that multiple runs of the program yield the same
result, which greatly simplifies debugging. Furthermore, even asynchronous messages
can produce unexpected deadlocks, as explained later.

The main performance drawback of synchronous messages is its inability to overlap
communication with other activities. A synchronous send statement always observe
the full latency of a round-trip message. We can see that in the first program, the two
asynchronous send statements can execute in parallel; while in the second program,
the two send statements are forced to execute sequentially. Synchronous messages,
however, do have some performance advantage. It is possible to implement synchronous
messages in such a way that the receive statement pulls the message from the send
statement. Using this protocol the message can be transferred directly between the
two user buffers to avoid the system buffering overhead. The savings in buffering cost
can be quite significant for large messages.

4.2 Blocking vs. non-blocking message passing

A process is said to block if its execution is suspended for some external event. In the
context of message passing a process can block for three types of events: the arrival
of a message, the synchronization between two processes, and the availability of buffer
space. The first two types of events are evident in the synchronous send and receive
primitives described above. The third type of event is explained in details below.
When performing an asynchronous send operation, the programmer specifies the

message data via a pointer to a user buffer. The send operation can not return until
the entire message content is moved out to a safe place, as the statements following
the send may modify the user buffer. There are three possible places to which the
message can be moved: the sending process, the network, and the receiving process.
Buffer space must be negotiated for the latter two cases, and thus the sending process
may block for an unpredictable amount of time. Even in the first case the sending
process may block if the local buffer is full, although that rarely happens. Consider
the exchange operation again. Suppose that local buffering is used and the run-time
system delivers the message only when there is space in the network. One may write
the following program to carry out the exchange of several large arrays, using the
asynchronous send and receive primitives:

process X : process Y :
send Al to Y send Bl to X
send A2 to Y send B2 to X

receive Bl from Y receive Al from A
receive B2 from Y receive A2 from A

Suppose the sizes of the arrays are 10K bytes each. The above program will deadlock
if the amount of space available for buffering outgoing and incoming messages, plus the
buffering space in the network, is less than 20K. In this case the two processes fill up
each others buffer space and neither can proceed to the receive statements. The danger
of using asynchronous blocking primitives is then the unexpected deadlocks due to
system-dependent limitations, which is hidden beneath the communication abstraction.
Another disadvantage is the buffering cost required to temporarily save the message
content at the sending and the receiving sites. A worst case scenario for asynchronous
blocking primitives is quadruple buffering, in which the message is copied four times,
two of them are the scatter/gather type of operations at the user level, and the other
two are between the user buffer and the system buffer.

A message passing primitive can be made truly non-blocking only if the programmer
helps managing the buffers. A non-blocking send returns as soon as the address of the
user buffer is recorded. To ensure the integrity of the message the user must not modify
the user buffer before the message is sent. The completion of a send operation is checked
by another primitive. Since no buffering is required the send statement always have a
bounded latency, and thus no deadlock can occur due to sends blocking later receives.
Messages may still need to be buffered at the receiving site if non-blocking receives are
used. User level copying may also be required if the user buffer is needed for continuing
computation, or if the message is not laid out contiguously (e.g., a column in a two
dimensional array with row-major layout).

A different interface of non-blocking messages is found in the CE/RK implementa-
tion. Instead of having the programmer check before re-using buffers, CE/RK forbids
reuse at all — a send automatically frees the user message buffer. Whatever the inter-
face is, using non-blocking messages gains performance and flexibility, at the cost of

higher programming complexity.

4.3 Active vs. Cooperative Message Passing

So far we have discuss various options of sending and receiving messages, assuming
that the messages to be sent and received by all processes are known a priori. There
are many applications where the communication pattern is irregular and difficult to
predict. Cooperative message passing is clearly not suitable for these applications.

Active message passing allows a message to trigger a procedure at the receiving
site. This procedure can be used to performed application specific message handling
or to schedule new computation. For example, the following program exchanges two
arrays (with 10 integers each) between process X and Y:

int £ = 0;
put(int *a, int i, int x)
ali] = x;
f=1+ 1
process X : process Y :
for (i=0;i<10;++1i) for (i=0;i<10;++1i)
call put(A4,i,A[i]) at Y call put(B,i,B[i]) at X
wait until f equals 10 wait until f equals 10

We assume the addresses of A (and B) are the same for both processes.

The purpose of active messages is to retrieve messages from the network as soon as
possible, and to trigger the proper operation upon receiving the message. scheduling
new computation. In general a process can be interrupted to handle active messages
at any time. Therefore, the execution of the handler must have bounded latency to
avoid unexpected problems. For example, the above program can be rewritten so that
each process requests for the data it needs:

get(int #a, int i, int P)

call put(a,i,ali]) at P

process X : process Y :
for (i=0;i<10;++1i) for (i=0;i<10;++1i)

call get(B,i,X) at Y call get(A,i,Y) at X
wait until f equals 10 wait until f equals 10

Assuming that a process does not accept incoming active messages when executing
the handler. The above program may deadlock because the put statement may block
due to limited buffering in the network. On the other hand, if one accepts incom-
ing active messages when executing a handler (as in CMAM), the nesting of handler
functions may be arbitrarily deep, possibly causing the stack to overflow. The CMAM

implementation solves this problem for the client/server type of communication by
providing two types of active messages, each using a separate network on the CM-5
(the request and the reply network). However, it is not clear if a general solution exists
for other types of communication network architectures. Thus the user is warned to
leave communication out of the handler.

The advantage of active messages is the ability to perform asynchronous commu-
nication with high efficiency. In the above example all messages contain sufficient
information to specify their destination addresses, and thus no buffering is needed for
receiving these messages. of the destination. The disadvantage of active messages is the
complexity of programming, since the programmer must now consider unpredictable
external events that may change the local state of a process.

4.4 Determinism

Assume that the behavior of a process is dependent only on its input and the messages
it receives. This assumption is valid for ordinary message passing programs without
shared mutable states. Then a message passing program is deterministic if, given the
same input, each receive statement always picks up the same message. Under this
definition nondeterminism can only be introduced by the reordering of messages in the
network and at the sending and receiving sites.

We now investigate how different message passing semantics affect the ordering of
messages. The most restrictive ordering is imposed by synchronous primitives without
wildcards. This combination always yields a deterministic order, since the messages
sent by the same process follows the program order of the send statements, and the
messages sent by different processes follows the program order of the receive statements.

A less restrictive scheme is to use synchronous sends and synchronous receives, but
allow the receive statements to use wildcard sender ids or message tags. The process
now sees its sends handled in the program order, but the ordering between messages
sent by different processes is not deterministic. This scheme is well suited for the
client /server type of communication [21].

The next scheme is to use asynchronous messages. In this case the sending process
will not know when and in what order its outgoing messages are received. The ordering
of messages depends on the use of sender ids and message tags.

Active messages introduce the most nondeterminism. As in the asynchronous
scheme the message order can not be known a priori. The additional confusion comes
from the fact that there is no well defined communication point; the local state of a
process can be mutated by an incoming message at any point of the program. The pro-
grammer must then carefully code the active message handlers to ensure consistency
of the program.

We now use an example program to illustrate the message ordering enforced by dif-
ferent message passing semantics. Consider the Gaussian elimination operation which
converts a matrix into the upper triangular form. For the moment it suffices to con-

sider a 3-by-3 coefficient matrix whose columns are distributed over 3 processes. The
sequential algorithm for the Gaussian elimination of a 3-by-3 matrix (no pivoting) is
given below:

Gaussian elimination of a 3-by-3 matrix A:

for (i=0;i<3;++i)
for (j=i+1;j<3;++j)
subtract row i * A[j,i] / A[i,i] from row j

A first-cut implementation using asynchronous messages follows:
Process 1:

compute s1 = A[1,0]1/A[0,0]

send sl to process 2

send s1 to process 3

compute s2 = A[2,0]/A[0,0]

send s2 to process 2

send s2 to process 3

Process 2:

receive si

subtract A[0,1]*s1 from A[1,1]
receive s2

subtract A[0,1]*s2 from A[2,1]
compute s3 = A[2,1]/A[1,1]
send s3 to process 3

Process 3:

receive si

subtract A[0,2]*s1 from A[1,2]
receive s2

subtract A[0,2]*s2 from A[2,2]
receive s3

subtract A[1,2]*s3 from A[2,2]

Since a synchronous send always blocks until its message is received, s1, s2, and s3
will arrive in the desired order. Therefore there is no need for the receive statements
to specify the sender id or the message tag. The main drawback of the above program
is that the communication latency of each send operation is observed by the sender. It
is clear that the send statements can be overlapped without affecting the semantics of
the program. This can be done by replacing the synchronous sends with asynchronous
sends. However, there may be a race condition between s1, s2, and s3, causing incorrect
row updates. To enforce the correct ordering we add tags to the messages and obtain

the following program:

Process 1:

compute s1 = A[1,0]1/A[0,0]
send sl tag 1 to process 2
send sl tag 1 to process 3
compute s2 = A[2,0]/A[0,0]
send s2 tag 2 to process 2
send s2 tag 2 to process 3

Process 2:

receive sl tag 1 from process 1
subtract A[0,1]*s1 from A[1,1]
receive s2 tag 2 from process 1
subtract A[0,1]*s2 from A[2,1]
compute s3 = A[2,1]/A[1,1]

send s3 to process 3

Process 3:

receive sl tag 1 from process 1
subtract A[0,2]*s1 from A[1,2]
receive s2 tag 2 from process 1
subtract A[0,2]*s2 from A[2,2]
receive 83 from process 2
subtract A[1,2]*s3 from A[2,2]

Both of the above two programs are deterministic because the receive statements
always return the same messages. If we look further into the code, we can see that
although the ordering of messages sent from different processes are important (s1,s2
must be received before s3 in this case), the ordering of messages from the same process
is irrelevant. Under this weaker constraint we may be able improve performance further
by allowing the processes to pick up sl or s2 in the order they arrived:

Process 2:

receive s from process 1 with tag t

subtract A[0,1]*s from A[t,1]

receive s from process 1 with tag t

subtract A[0,1]*s from A[t,1]

compute s3 = A[2,1]/A[1,1]

send s3 to process 3

PROGRAM 1

~

CEONECED
ONCES

Figure 1: Ordering of messages. The messages are labeled with their destination processes.

Process 3:

receive s from process 1 with tag t
subtract A[0,2]*s from A[t,2]
receive s form process 1 with tag t
subtract A[0,2]*s from A[t,2]
receive 83 from process 2

subtract A[1,2]*s3 from A[2,2]

The resulting program is nondeterministic, because a receive statement may not re-
turn the same message for different runs when the network is reordering. The semantics
of the program stays intact, however

Figure 4.4 illustrates the message order enforced by these three programs. Figure
4.4 compares how time is spent in these programs.

5 Porting Message Passing Programs

The previous section shows that there are many subtle differences in the semantics
of message passing primitives, although the basic interfaces appear to be the same
(sends and receives). The programmer must be aware of these differences when he
ports programs across libraries, so that he can preserve correctness while achieving
good performance.

The focus of this section is the issues in porting message passing programs. We

PROGRAM 1

rocess T T T T T TN | T T T T

process2[|

PROGRAM 2

rrocess T N | |]

rocess2[N N I

PROCESS 3 | DN 00—

:l SEND COST
_ RECEIVE COST
:l NETWORK LATENCY
_ COMPUTATION
L Jmwe

Figure 2: Analysis of running time.

start by categorizing the ten communication libraries according to the semantics of
their basic message passing primitives. We then discuss two ways of porting programs
— by emulating the original primitives with the new ones on the target machine, or by
changing the program to use these new primitives.

5.1 Categorization of the Message Passing libraries

We present these models in order of increasing generality. When a library supports
more than one model, we put it in the most general model applicable.

e Synchronous send and receive, deterministic model. This model uses
synchronous sends and synchronous receives, and further requires that the sender
id be fully specified for each receive statement. TCGMSG is in this category.

e Synchronous send and receive, nondeterministic receive model. Wild-
cards can be used to specify the senders in the receive statements, although each
send or receive must block for synchronization. CMMD belongs to this category.

e Asynchronous send and receive, blocking (buffered) model. The library
buffers messages for asynchronous delivery. P4, PICL, PVM, APPL, Zipcode
belongs to this category.

e Asynchronous send and receive, non-blocking (unbuffered) model. This
model allows the programmer to use non-blocking primitives and to handle the
message buffers explicitly. EXPRESS belongs to this category. We put CMAM in

this category because it requires the user to manage buffers, although the current
implementation of CMAM does block if the network is congested.

5.2 Porting Message Passing Primitives

It is clear that asynchronous primitives can not be emulated by synchronous primitives,
and non-blocking primitives can not emulated by blocking primitive. Active messages,
however, can be emulated by cooperative messages with non-blocking receives. This is
analogous to detecting external events via polling instead of via interrupts. The current
implementation of CMAM is actually built using this method, and the programmer
must insert sufficient amount of polls to receive incoming active messages. The main
motivation for polling is the lack of light-weight, user-level interrupts on the CM-5.

Emulation in the opposite direction is straightforward. A synchronous message
can be emulated by a pair of asynchronous messages, one of which serves as the ac-
knowledgment; a buffered (or blocking) message can be replaced by a unbuffered (or
non-blocking) message and some copying to avoid clobbering; cooperative message
passing can be emulated by active message handlers that simply buffer the messages
for later retrieval.

5.3 Porting Message Passing Applications

Sometimes a programmer has to modify his application to run on a new system, either
because the original primitives can not be emulated by the new, and possibly more
restrictive primitives, or because a straightforward emulation can not take advantage
of the features in the new system.

It would be hard to describe a porting scheme that applies to all message passing
programs. We can, however, observe some common sources of errors when porting such
programs. For example, when one goes from asynchronous messages to synchronous
messages, the main problem is to avoid deadlocks due to unnecessary synchronization.
We can imagine each send/receive pair as a solid line between the two processes (im-
plying a barrier synchronization), and we must re-arrange the pairs in such a way that
no two solid lines cross. Sometimes porting applications to a more restrictive mes-
sage passing model may require redesigning the underlying algorithm. For example,
an data-flow style algorithm may have to be replaced by a synchronous algorithm to
run on top of synchronous message passing library, because the new system requires
predictable communication patterns.

6 High-level Communication Primitives

In this section we summarize the communication primitives other than the simple sends
and receives. Functionally they can be implemented by a few send and receive primi-
tives, but they have two important advantages. First, these communication primitives

provide the programmer with high-level programming abstractions, making it easier to
develop, debug, and maintain message passing programs. Second, they help hiding the
architecture-dependent optimizations from the user. The resulting code is thus more
portable.

Global communication primitives

e broadcast: distribute a copy of the message to all processes. A synchronous
broadcast blocks until everyone has received its copy. This operation is carried
out cooperatively by a broadcast and the corresponding receive broadcast calls,
thus a barrier synchronization among the participants is implied. Asynchronous
broadcast is functionally equivalent to a set of asynchronous sends. A multicast
operation is a special form of broadcast that delivers a message to a subset of all
processes.

e synchronous exchange: exchange two messages between a pair of processes
and block until both are received. The exchange primitive is particularly useful
for grid-type communication.

e scatter: distribute elements in the sender’s array to the recipients according to
their indices. For example, the i¢th element of the array is sent to process 7 in a
global scatter operation involving all processes in the system.

e gather: collect elements sent by multiple processes into a local array. For ex-
ample, the element sent by the ¢th process is placed at the ith position of the
recipient’s array.

e scan: combine and distribute the results computed by different processes. The
programmer can use one of the standard associative operators (e.g., min, max,
and sum) or supply his own to perform the combination. A special case of the
scan primitive is the prefix operation, where a process combines all the elements
computed by the processes ordered before it. For example, a prefix operation us-
ing the sum operator computes the running sum over a distributed array. Another
special case is the reduce operation which combines elements from all processes
and ships the result to one or all of them. For example, a reduce operation using
the min operator finds the minimum value in a distributed array.

e crystal router: the crystal router [5] defers individual message transfers un-
til the processes synchronize, at which point the accumulated messages are sent
en masse. The operation exploits the regular communication pattern in loosely
synchronous applications (such as meshes in DIME[17]). These applications de-
compose the problem into cycles of computations, and the results produced (and
distributed) by a certain compute phase are not acted upon until the next cycle.

The latency of broadcasts and scans can be made logarithmic with the number
of processes by applying techniques such as recursive doubling [12, 15] . On some

machines (such as the CM-5 or the shared-memory multiprocessors) broadcasts can be
performed efficiently by the hardware.

Synchronization primitives

Synchronization plays an important role in parallel programs. Explicit synchronization
primitives coordinate processes through the exchange of control information instead of
data (or messages). Some libraries do not have provisions for synchronization at all.
The disadvantage is two-fold: the programmer must either use machine dependent
synchronization constructs in the program, or embed the synchronization primitives
within messages. Such embedding obscures the intent of the programmer and pre-
vents optimizations that make use of machine-specific features. Some libraries treat
zero-length messages as synchronization messages and handle them using specialized
routines to get around the latter problem.
The following is a list of useful synchronization primitives:

e barrier synchronization: block until all processes have reached the synchro-
nization point.

e assert event and wait on event: wait for a certain event to be signaled
by some process. The event mechanism can be used to implement pair-wise
synchronization or fuzzy barriers among a subset of processes.

Some machines (such as CM-5) have direct hardware implementation of these syn-
chronization primitives. On other machines, synchronization can be implemented as
light weight messages requiring no buffering and flow control overhead.

Distributed data structures

Some libraries provide sophisticated message formats and communication abstractions
to accommodate certain applications. These high-level formats are conveyed as part
of the message to optimize the performance of sends and receives. The high level
abstractions also ease the programming task. Listed below are the distributed data
structures found in the libraries:

e grids. Many scientific applications can be parallelized by decomposing the prob-
lem domain into fixed-size grids. A grid can be fully specified by its dimensional-
ity. Communication on grids is usually between nearest neighbors, possibly mixed
with infrequent global communications such as broadcast and reduce.

e vectors and matrices. Vectors and matrices are the core of most numerical
applications. Standard operations on these data structures are in general very
well defined (the three levels of BLLAS!). Related communication operators have

'BLAS stands for Basic Linear Algebra Subroutines

also been proposed (LACS ?).

e meshes. Meshes are generalization of grids to deal with decompositions of irreg-
ular shape, resolution, and connectivity. Partitioning the mesh elements among
processes can be a difficult task for the programmer. It is even more complex
with adaptive meshes where the mesh structure is refined over time and dynamic
load balancing must be performed. Implementing the mesh operators in the com-
munication library enables the programmer to concentrate on application specific
computations.

Some libraries such as Zipcode provide abstractions to allow the programmer com-
pose message passing programs with little modification. The concept of mailing context
and its inheritance in Zipcode let the user build up larger data structures using existing
modules.

7 Conclusion

Programming with the communication libraries has the following advantages. First,
the programming task is simplified by the use of high level communication primitives
such as broadcast and reduce. Secondly, the libraries support the message passing
programming paradigm on machines where it is otherwise unavailable. Finally, the
cost of porting applications to different machines is greatly reduced if the applications
are developed using a portable communication library. Using these libraries does induce
some performance overhead, but the cost is tolerable considering the advantages they
offer.

The interfaces provided by the libraries vary in expressiveness and portability. How-
ever, there does exist a set of primitives that are supported by most (seven) of the ten
libraries. These primitives include simple send and receive, broadcast, reduce, and
barrier synchronization.

However, even for these simple primitives there can be variations in semantics.
Examples include the use of message buffers (visible vs. invisible to the user) and
the way communication is performed (synchronous vs. asynchronous, blocking vs.
non-blocking). The interpretation of these primitives varies for different libraries, and
sometimes even for different machine configurations supported by the same library
(see table 4 for examples). To settle on a universal message passing interface these
differences need to be resolved — we think it is now high time for standardization.

References

[1] Fxpress C: User’s Guide — 3.0, Parasoft Corporation.

2ILACS stands for Linear Algebra Communication Subroutines

Table 2: Summary of communication primitives

Primitive | P4 | PICL| PVM | TCGMSG | APPL |iPSC/2 |

low-level communication primitives
Synchronous sends Y Y Y
Blocking sends Y Y Y Y Y
Non-blocking sends Y
Synchronous receive Y Y Y
Blocking receive Y Y Y Y Y
Non-blocking receive Y Y Y Y Y
Exchange
Vector messages
Active messages Y

Global communication primitives
Synchronous Y Y Y H
broadcast
Asynchronous Y Y Y H
broadcast
reduce Y Y Y Y Y
Scan
Scatter-Gather Y
Crystal router

Synchronization primitives
barrier Y Y Y Y Y
Signal-Wait Y Y
Distributed data structures

Grids
Vector and matrices
Meshes

** only for short messages

Primitive | EXPRESS | CMMD | Zipcode | CMAM | PARMACS ||

low-level communication primitives

Synchronous sends Y Y
Blocking sends Y Y Y
Non-blocking sends Y
Synchronous receive Y Y
Blocking receive Y Y Y
Non-blocking receive Y Y
Exchange Y Y
Vector messages Y Y
Active messages Y Y
Global communication primitives

Synchronous Y? Y
broadcast
Asynchronous Y
broadcast
reduce Y Y Y
Scan Y Y
Scatter-Gather Y Y Y
Crystal router Y

Synchronization primitives
barrier Y Y Y Y Y
Signal-Wait Y Y

Distributed data structures
Grids Y Y
Vector and matrices Y
Meshes Y

[2]

A. Skjellum, Zipcode: A Portable Communication Layer for High Performance
Multicomputing — Practice and Experience, March 1991.

Application Portable Parallel Library version 2.0, NASA Lewis Research Cen-
ter, January 1992. Source code available from fsang@lerc.nasa.gov.

CMMD User’s guide, Thinking Machine Corporation.

J. Flower and A. Kolawa, A "packet” History of Message Passing Systems,
Parasoft Corporation.

R. Lusk, P4 Version 0.2 Documentation. Source code is available from
info.mcs.anl.gov.

G. Geist et al., A User’s Guide to PICL: A Portable Instrumented Communica-
tion Library, Oak Ridge National Lab. Report No. ORNL/TM-11616, February
1991.

P. Worley and M. Heath, Performance Characterization Research at Oak Ridge
National Laboratory.

V. Sunderam, PVM: A Framework for Parallel Distributed Computing, PVM
2.3 documentation. Source code available from netlib.

A. Beguelin et al., A User’s Guide to PVM Parallel Virtual Machine, Oak
Ridge National Lab. Report No. ORNL/TM-11826, July 1991.

R. Harrison, TCGMSG Version 4.0, Theoretical Chemistry Group, Ar-
gonne National Laboratory, December 1991. Source code available from
harrison.tcg.anl.gov.

A. Skjellum and C. Baldwin, The multicomputer toolbox: Scalable Parallel Li-
braries for Large-Scale Concurrent Applications, LLNIL, Numerical Mathematics
Group Report No. UCRL-JC-109251, December 1991.

PARMAC documentation. Source code available from netlib.

C. Seitz et al., The C' Programmer’s Abbreviated Guide to Multicomputer Pro-
gramming, it Caltech Computer Science Technical Report No. Caltech-CS-TR-
88-1, January 1988.

J. Gistafson et al., Development of Parallel Methods For a 1024-Processor Hy-
percube, SIAM Journal on Scientific and Statistical Computing, Vol.9 No.4,
July 1988.

L. Bomans and D. Roose, Benchmarking the iPSC hypercube multiprocessor,
Concurrency: Practice and FExperience, Vol.1, pp.3-18, September 1989.

R. Williams, DIME: A Programming Environment for Unstructured Triangular
Meshes on a Distributed-Memory Parallel Processor, C3P Report 502, 1988.

G. Wilson, Design Principle for Message-Passing System, Draft paper, January
1991.

[19] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser, Active messages: a
mechanism for integrated communication and computation, 19th Annual Inter-
national Symposium on Computer Architecture, pp.256-66, May 1992.

[20] E. Lusk et al., Portable Programs for Parallel Processors, Holt, Rinehart and
Winston, Inc., 1987.

[21] W. Gentleman, Administrators and multiprocessor rendezvous mechanisms.,
Software - Practice and Fxperience Jan. 1992, vol.22, no.1, ppl-39.

