RUNTIME SUPPORT FOR
PORTABLE DISTRIBUTED DATA

STRUCTURES

Chih-Po Wen, Soumen Chakrabarti, Etienne Deprit,
Arvind Krishnamurthy, Katherine Yelick

Computer Science Division, Department of EECS
Unwersity of California, Berkeley, California 94720
USA

ABSTRACT

Multipol is a library of distributed data structures designed for irregular applica-
tions, including those with asynchronous communication patterns. In this paper,
we describe the Multipol runtime layer, which provides an efficient and portable ab-
straction underlying the data structures. It contains a thread system to express
computations with varying degrees of parallelism and to support multiple threads
per processor for hiding communication latency. To simplify programming in a mul-
tithreaded environment, Multipol threads are small, finite-length computations that
are executed atomically. Rather than enforcing a single scheduling policy on threads,
users may write their own schedulers or choose one of the schedulers provided by
Multipol. The system is designed for distributed memory architectures and performs
communication optimizations such as message aggregation to improve efficiency on
machines with high communication startup overhead. The runtime system currently
runs on the Thinking Machines CM5, Intel Paragon, and IBM SP1, and is being
ported to a network of workstations. Multipol applications include an event-driven
timing simulator [1], an eigenvalue solver [2], and a program that solves the phylogeny
problem [3].

1 INTRODUCTION

Multipol is a library of distributed data structures for irregular applications
such as discrete event simulation [1], symbolic computation [4], and search
problems [3]. These applications have conditional control constructs and dy-
namic data structures that produce unpredictable communication patterns and
computation costs. Multipol has data structures for both bulk-synchronous
applications with irregular communication patterns and asynchronous applica-

2 CHAPTER 1

APPLICATIONS
Eigenvalue Speculative
Phylogeny
G}rsoé)g?ser @ Conservative a%g%gt_igm
REUSABLE v Simulator ;

DATA STRUCTURES

Event | |Elimination |BiPartite| |Replicated
Graph Tree Graph List Trie

Snapshot | Randomized ?:I:S){le Idle-Initiated

Task Queue Task Queue
~—_
PORTABLE RUNTIME SYSTEM
CM5/ Paragon/ SP1-2/ | |Paragon/
CMAML|| GAM MPL NX

Figure 1 The Multipol architecture. The runtime layer is used to write the
data structures, but can also be used directly by the applications.

tions, but in this paper we focus on the latter. Compiler analysis and runtime
preprocessing, such as that used in PARTI [5], are not effective in asynchronous
applications, since the computation patterns change dynamically. An overview
of the Multipol library with its underlying runtime layer and example applica-
tions is depicted in Figure 1. In this paper, we explore the issues in developing
irregular parallel applications and present the design of the Multipol runtime
layer. We use example applications to highlight the design tradeoffs and justify
our approach to latency hiding, scheduling, load balance, and communication.

The Multipol runtime system contains a thread system and a simple producer-
consumer synchronization construct called a counter for expressing dependen-
cies between threads. The threads also create opportunities for overlapping
communication latency with computation, and for aggregating multiple re-
mote operations in large physical messages to reduce communication overhead.
In addition to threading support, the runtime system also provides a set of
portable communication primitives for bulk-synchronous communication and
asynchronous communication. Like TAM [6] and Nexus [7], the runtime sys-
tem can be used as a compilation target, but it is primarily designed for direct
programming by library and application programmers.

Our design and implementation targets distributed memory architectures, in-
cluding the Thinking Machines CM5, Intel Paragon, IBM SP1, and future
networks of workstations. Such machines typically have high communication

Runtime Support for Portable Distributed Data Structures 3

latency and overhead for variable-size messages, due to buffer allocation, copy-
ing, and on some machines kernel crossing. On these machines, it 1s common in
bulk-synchronous applications to pre-allocate message buffers and pack many
values into a single message, taking advantage of global communication infor-
mation at compile time or at synchronization points at runtime. The Multipol
runtime system takes this idea one step further, and aggregates messages “op-
timistically,” even when there is no information about future messages going
to the same processor. The runtime system is compact and has a universal
interface across distributed memory platforms, which makes Multipol easy to
port.

The rest of the paper is organized as follows. Section 2 describes the thread sys-
tem for hiding latency and introduces atomic threads and split-phase interfaces,
which are the basic programming abstractions in Multipol. Section 3 describes
our support for application-specific schedulers. Section 4 explains our approach
to load balance. Section 5 presents dynamic message aggregation, our solution
to efficiently support asynchronous communication. Section 6 compares the
Multipol runtime system with other runtime systems. Section 7 summarizes
the paper and reports on the current status of the runtime system.

2 MULTIPOL THREADS

In this section, we describe the Multipol thread support for latency hiding and
concurrent programming. The simple design of the thread system makes it
extremely easy to port. The entire thread system is written in C, and can run
on most machines without modification.

2.1 Latency Hiding

A typical Multipol application resembles a shared-memory parallel program,
which consists of processes communicating via shared data structures. How-
ever, the logically shared data structure is physically distributed among the
processors, and the distribution is explicitly controlled by the programmer for
better locality and load balance. Since distributed memory architectures do
not support a shared address space, accessing remote data requires communi-
cation with the remote processor, and is inherently more expensive than local
accesses.

To save communication costs, the data structure designers usually adopt an
owner computes rule, which often involves computation migration. For exam-
ple, to perform a remote look-up operation on a distributed hash table, it is
typically more efficient to migrate the operation to the processor where the
bucket resides, than to fetch the data items of the bucket and perform local
search. Although migrating computation saves communication overhead, each
individual operation may have longer latency, since it turns shorter remote

4 CHAPTER 1

read and write operations into longer remote computation operations. The
overall latency of a remote operation contains not only the network transport
latency, but also the remote scheduling and computation delays. Therefore, it
is essential for the runtime system to provide latency hiding mechanisms.

Operations on distributed data structures seldom have substantial local com-
putation to hide the communication latency. For example, a hash table lookup
cannot proceed locally without waiting for the reply. Therefore, the latency
must be overlapped with the caller’s computation, which requires breaking the
traditional abstractions, since a data structure operation must return before it
is complete. This is accomplished by providing split-phase interfaces for oper-
ations that may require communication. A split-phase operation returns after
doing whatever local computation is necessary, but never waits for communica-
tion to complete. The caller is required to explicitly check for completion of the
operation using other synchronization mechanisms. If the operation does not
require communication, it behaves like a normal procedure call. Otherwise, it
creates a separate thread of control and passes its local state to the new thread
which awaits the reply from the remote processor.

Synchronization can be accomplished with continuation passing, which explic-
itly passes the continuation thread handle to the remote processor, or with
synchronization data structures such as counter. A counter maintains a list
of threads waiting for the counter to exceed certain values. Upon completion,
a split-phase operation increments the counter, which starts all threads that
become eligible for execution after the increment. Counters are usually used
to synchronize threads that pipeline multiple operations, where the issuing
threads need to know if some number of operations have taken effect on the
data structure.

Multipol supports a simple thread system which requires the programmer to
specify what local state to save. The programmer can use knowledge of the
data structures or the application to reduce the state saving overhead. Without
knowledge from the compiler or the programmer, the runtime system would
have to make conservative assumptions and save the entire processor state and
the stack frame.

2.2 Invoking Remote Computation

Communication layers such as active messages [8] provide mechanisms for im-
plementing computation migration. Direct use of active messages as remote
request handlers, however, presents three major problems for implementing
general data structures other than simple memory cells:

m Most active message layers either assume a fixed number of arguments
(e.g., 4 words [8, 9]), whose size is tailored to the network packet size,
or require the programmer to pre-allocate remote memory for holding ar-

Runtime Support for Portable Distributed Data Structures 5

guments [10]. The lack of flexibility makes it difficult to express dynamic
communication patterns.

m Because active messages do not implement any flow control, they usually
require the programmer to follow a request/reply protocol to avoid net-
work level deadlock. For example, request handlers can only send reply
messages, which severely restricts the code that can run as a handler. The
protocol causes problems for data structures which may need to re-migrate
computation, such as hash table lookups that require re-hashing.

® Active message handlers may execute whenever the network is serviced (by
polling or interrupt). Therefore, a local thread loses atomicity whenever
the network is touched. To guarantee atomicity, the programmer must
either explicitly lock all data structures touched by the thread, which is
overly general for short operations, or disable interrupt and polling. Dis-
abling network service may cause congestion. It is also hard to enforce
when modules or data structures are composed in a program that has
no knowledge of their implementations. Finally, the programmer has no
control over how the operations are scheduled (they always execute upon
reception).

In our experience, asynchronous applications require higher level programming
abstractions than a SPMD model (one thread per processor) with active mes-
sages. The Multipol runtime system provides atomic threads as the basic pro-
gramming abstraction, and unlike active message handlers, messages from the
network can be accepted without affecting atomicity. Atomic threads run to
completion without preemption or suspension. Except for a non-blocking re-
striction, which forbids the atomic threads from spinning on a condition and
requires that each thread terminates in finite time, they are completely gen-
eral computation constructs and can be created by remote processors. We use
atomic threads as building blocks for higher-level programming constructs in
Multipol data structures as well as applications. A restricted subset of active
messages are used by the runtime system to send data over the network or
to create remote atomic threads. Above the runtime level, all communication
is done using the runtime system primitives, and not through direct access to
active messages or other message layers.

The overhead of scheduling and thread management can be reduced when lack
of atomicity does not affect the correctness of the program. For such appli-
cations, the programmer can use a preemptive scheduler (see Section 3) for
selected threads. Such threads may preempt the running computation when
the network is serviced.

6 CHAPTER 1

3 SCHEDULING

There are many applications where the scheduling policy has a significant im-
pact on performance. In the Grobner basis application, for example, there
are two types of tasks, one of which must be scheduled at a higher priority
to keep the memory utilization and total work low [4]. In this discussion, we
use Parswec, a speculative timing simulator [11] and Tripuzzle, a state space
search program that counts the number of unique solutions for the tripuzzle
problem [12].

In Parswec, a digital circuit is decomposed into subcircuits that are distributed
among the processors, and the simulation proceeds speculatively using an algo-
rithm similar to Timewarp [13]. A separate thread is created for each subcircuit
to simulate its state. These threads are ready to start any time (subject to stor-
age constraints), since they can speculate on the input values. However, some
threads are more likely to lead to redundant work than others. Therefore, it is
imperative to give higher priorities to threads that are more likely to be useful
work. Also, the thread scheduling priorities must change as the simulation pro-
gresses. For example, a subcircuit that is rolled-back in time due to incorrect
speculation should be given higher priority to avoid an avalanche of roll-backs.
If these scheduling policies are not properly enforced, the overall running time
can easily increase by more than two-fold. Therefore, applications such as Par-
swec not only require sophisticated control over scheduling, but also require
access to the scheduler’s data structure.

In contrast, in the Tripuzzle application a simple scheduling policy is sufficient,
and being less complicated, it has lower scheduling overhead. The performance
of Tripuzzle improves by 20% to 30% if we use a cheap scheduler that sacrifices
atomicity with respect to the hash table operations, which is not required by
Tripuzzle.

To accommodate application-specific scheduling policies, our runtime system
allows the programmer to use customized schedulers, which are data structures
with two operations: deposit and select. When a thread is ready for execution,
the runtime system invokes the designated deposit operation to store the thread
in the scheduler’s internal data structure. The programmer also registers the
select operation with the runtime system, which periodically executes the op-
eration to choose the next thread to dispatch. In addition to the user-written
schedulers, Multipol also provides common schedulers such as a FIFO and a
priority queue.

Separating out schedulers as independent data structures also eases perfor-
mance tuning, because scheduling decisions are localized to the implementation
of the schedulers. Scheduling decisions are some of the hardest design decisions
to make in advance, and by separating the scheduling abstraction we allow ap-
plication programmers to select a scheduler or write their own very late in the
development process. The runtime system guarantees that each registered de-

Runtime Support for Portable Distributed Data Structures 7

posit operation is executed exactly once within finite time of being registered,
and the frequency of call can be configured by the programmer. The scheduling
of different modules or data structures can then be tuned separately without
affecting other parts of the program.

4 LOAD BALANCE

Many irregular applications can be naturally decomposed into parallel tasks.
These applications include the phylogeny problem [3], which uses a parallel
branch and bound algorithm to search for the largest character subset that
forms a perfect phylogeny tree, a divide-and-conquer eigenvalue algorithm, and
the Grobner basis problem, which reduces sets of polynomials in parallel with
respect to a growing basis.

Runtime systems such as Cilk [12] adopt a built-in load balancer and treat
threads not only as a latency-hiding mechanism, but also as units of load bal-
ance which can be migrated freely. This approach suffers the same problem
as providing fixed scheduling policies — different applications require different
load balancing policies. For example, the phylogeny program observes a 5-fold
increase in running time if tasks are migrated randomly for load balance. The
significant increase in running time is due to the loss of locality, which is im-
portant for effective pruning of the search space. There are also applications
where the loss of locality incurs additional communication overhead.

It is infeasible to build a general load balancer in the runtime system, since it
is very difficult to predict the impact of locality on performance. We separate
out load balancing policies from the Multipol runtime system and put the
functionality in data structures such as a distributed task queue [14]. The
programmer can then select different data structures or implement new ones
to tailor the load balancing policy to a particular application. Furthermore,
Multipol threads do not migrate, because they are used only for latency hiding
or message aggregation (described in the next section).

5 EFFICIENT COMMUNICATION

Besides the thread system, the Multipol runtime system also provides a com-
munication layer that is portable across a variety of distributed memory archi-
tectures. Two types of communication are supported: bulk-synchronous and
asynchronous. The bulk synchronous communication primitives include put
and get operations, which are split-phase versions of remote read and write.
Asynchronous communication primitives include remote threads, which start a
thread on a remote processor with a variable number of arguments, and store,
which is similar to remote threads except that it requires the user to pre-allocate
buffer space for holding the arguments.

8 CHAPTER 1

Tripuzzle on 8-node SP1 Tripuzzle on 8-node SP1
14000 751

12000 | 7

10000 6.5

m
8
8
S

Py
8
S

Time in Seconds

Messages per Processor

4000 5r

2000 a5

. 4 ,
o 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
Aggregation Size in Bytes Aggregation Size in Bytes

Figure 2 Effect of aggregation on Tripuzzle. The running time of Tripuzzle
first decreases due to better communication efficiency, and then increases due
to synchronization delay.

Many irregular applications have unknown numbers of concurrent operations,
each taking some arbitrary number of arguments. Such communication pat-
terns have low bandwidth characteristics on distributed memory architectures,
which perform better for pre-allocated or large messages. The Multipol run-
time system dynamically aggregates small, asynchronous messages to improve
communication performance. For example, asynchronous remote thread calls
are copied into a message buffer, which is sent to the destination processor in
bulk when the accumulated size exceeds a certain threshold, or when the local
processor runs out of work. The extent of aggregation depends on the available
concurrency in the application. To allow more aggregation, the application
may need to increase its level of multithreading beyond what is sufficient for
latency hiding.

Message aggregation amortizes the communication startup overhead over large
volumes of data. However, it introduces copying overhead, and increases the
latency of remote operations. Increase in the latency may increase idle time
because of the additional delay in synchronization, which is demonstrated by
Tripuzzle (Figure 2). Tripuzzle enumerates the states in the state space, and
its execution consists of constructing a series of hash tables that record all the
possible states of a particular depth. The results showed that aggregating up
to 4K bytes improves performance due to the sharp reduction in the number of
physical messages. However, the benefit is offset by the increase in idle time,
when the processors wait for all updates to a hash table to complete. The
tradeoff results in a optimal aggregation size at about 4K byes.

The increase in latency may also generate more redundant work for specula-
tively parallel applications such as Parswec, which is illustrated in Figure 3.
Figure 3 shows that a moderate aggregation size (1K bytes) reduces the run-
ning time by more than 20% due to the reduction in the number of physical
messages. However, the running time increases by 7% when the aggregation

Runtime Support for Portable Distributed Data Structures 9
[1 No aggregation

Speculative timing simulation on 8-node SP1 1 1K bytes
I (6K bytes
Running # Messages # Redundant
Time (sec) per Proc Threads
10.31
106K
87 9.1K 93K g9k
8.1
29K 27K
Aggregation Aggregation Aggregation

Figure 3 Effect of aggregation on Parswec. The running time of Parswec
first decreases due to better communication efficiency, and then increases due
to redundant work.

size changes from 1K bytes to 16K bytes due to a proportional increase in
redundant work.

6 RELATED WORK

Past research has produced a variety of runtime systems such as TAM [6], the
Chare kernel [15] Cilk [12], and Nexus [7]. TAM threads are similar in spirit
to the Multipol atomic threads in that they are used to hide latency. However,
since TAM is designed as a compilation target, the threads are statically allo-
cated within the scope of an activation frame, and a fixed scheduling policy is
used to maintain locality of threads in the same frame. The threads in Cilk
are also atomic, but unlike the Multipol threads, they can be migrated for load
balance. Both Cilk and Chare kernel have built-in load balancers. Nexus is
designed to support heterogeneous computing, and is built on top of standard
thread packages, which are more heavy weight. TAM and Cilk programs are
synchronized in a data-flow fashion, while most Multipol programs communi-
cate and synchronize via shared data structures. PARTTI [5] performs runtime
message aggregation, but it does not handle dynamic communication patterns
where runtime preprocessing techniques cannot be applied. We have not found
any runtime system that allows customized schedulers, or performs dynamic
message aggregation.

10 CHAPTER 1

7 CONCLUSIONS AND CURRENT STATUS

The design of the Multipol runtime system is motivated by our experiences in
parallelizing irregular applications. Specifically, we have identified the following
important features:

m Split-phase interfaces for latency hiding.
m Atomic threads as the basic programming abstraction.
m Customized schedulers for application-specific scheduling.

m Dynamic message aggregation for better communication performance.

Currently, the runtime system exists for CM5, Paragon, and SP1. Ports to
network of workstations and tools for performance tuning are currently being
developed.

Acknowledgements

This work was supported in part by the Advanced Research Projects Agency
of the Department of Defense monitored by the Office of Naval Research under
contract DABT63-92-C-0026, by the Department of Energy grant DE-FG03-
94ER25206, by the National Science Foundation Grants CCR-9210260 and
CDA-8722788, The information presented here does not necessarily reflect the
position or the policy of the Government and no official endorsement should be
inferred.

REFERENCES

[1] Chih-Po Wen and Katherine Yelick. Portable parallel asynchronous simulation
on distributed memory architectures. In Internation Conference on Parallel
Processing, 1995. To appear.

[2] Soumen Chakrabarti and Abhiram Ranade and Katherine Yelick Random-
ized Load Balancing for Tree Structured Computation In IEEFE Scalable High
Performance Computing Conference, 1995.

[3] Jeff Jones. Exploiting parallelism in the perfect phylogeny computation. Mas-
ter’s thesis (TR-95-869), University of California, Berkeley, Computer Science
Division, December 1994.

[4] Soumen Chakrabarti and Katherine Yelick. Distributed data structures and
algorithms for Grobner basis computation. Lisp and Symbolic Computation,
1994.

[5] H. Berryman, J. Saltz, and J. Scroggs. Execution time support for adaptive sci-
entific algorithms on distributed memory multiprocessors. Concurrency: Prac-
tice and Fzxperience, pages 159-178, June 1991.

Runtime Support for Portable Distributed Data Structures 11

[6]

[10]

[11]

[12]

[13]

[14]

[15]

D. Culler, A. Sah, K. Schauser, T. von Eicken, and J. Wawrzynek. Fine-grain
parallelism with minimal hardware support: A compiler-controlled threaded ab-
stract machine. In Proc. of jth Int. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems, Santa-Clara, CA, April 1991.

lan Foster, Carl Kesselman, Robert Olson, and Steve Tuccke. Nexus: An in-

teroperability toolkit for parallel and distributed computer systems. Technical
Report ANTL/MCS-TM-189, Argonne National Laboratory, 1991.

Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus FErik
Schauser. Active messages: a mechanism for integrated communication and
computation. In International Symposium on Computer Architecture, 1992.

Eric A. Brewer and Robert D. Blumofe. Strata: A multi-layer communication
library. To appear as a MIT Technical Report, February 1994.

David Culler, Kim Keeton, Lok Tim Liu, Alan Mainwaring, Rich Martin, Steve
Rodrigues, and Kristin Wright. The generic active message interface specifica-
tion. Unpublished, 1994.

Chih-Po Wen and Katherine Yelick. Parallel timing simulation on a distributed
memory multiprocessor. In International Conference on CAD, Santa Clara,
CA, November 1993. An earlier version appeared as UCB Technical Report
CSD-93-723.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded

runtime system. In Principles and Practice of Parallel Programming, 1995.

D.R. Jefferson. Virtual time. ACM Transactions on Programming Languages
and Systems, 7(3), July 1985.

Chih-Po Wen. The distributed task queue user’s guide. Unpublished, 1994.

Wei Shu and L.V. Kalé. Chare kernel — a runtime support system for parallel
computations. Journal of Parallel and Distributed Computing, 11:198-211, 1991.

