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Abstract

We present a parallel timing simulator, PARSWEC,
that exploits speculative parallelism and runs on a dis-
tributed memory multiprocessor. It is based on an
event-driven timing simulator called SWEC. Our ap-
proach uses optimistic scheduling to take advantage
of the latency of digital signals. Using data from
trace-driven analysis, we demonstrate that optimistic
scheduling exploits more parallelism than conservative
scheduling for circuits with feedback signal paths. We
then describe the PARSWEC implementation and dis-
cuss several design trade-offs. Speedups over SWEC
on large circuits are as high as 55 on a 64-node CMb
multiprocessor. These results indicate the feasibility
of using distributed memory multiprocessors for large-
scale circuit simulation.

1 Introduction

We present a parallel timing simulator, PARSWEC,
developed for distributed memory multiprocessors.
PARSWEC is a parallelization of SWEC [1], an event-
driven timing simulator. SWEC employs a stepwise
linear waveform and device model, in which subcir-
cuits are evaluated by solving a linear system of node
voltages. The evaluation of a subcircuit is triggered by
events generated by the state changes of the subcircuit
and its fanins. The rate of state change determines the
time step size to be used for a given subcircuit at a
particular time point. These features take advantage
of the latency and multirate properties in most digital
circuits [2]. The latency property states that most dig-
ital signals change infrequently; the multirate property
states that different parts of a circuit produce signals
at different speeds.

The PARSWEC algorithm partitions a circuit into
loosely coupled subcircuits and then assigns those
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subcircuits to processors. FEach processor is respon-
sible for simulating the subcircuits stored in its lo-
cal memory. The subcircuits are simulated optimisti-
cally, by assuming that no events will be generated
by their fanins. Optimistic scheduling exploits the
parallelism determined by the actual signal flows at
runtime, rather than limiting parallelism to the static
interconnection of the circuit. A previous study shows
the lack of static parallelism for several CMOS circuits
[3]. We demonstrate that for sequential circuits, avail-
able run-time parallelism is much higher than static
parallelism. This justifies our choice of optimistic
scheduling—although it requires more memory and
potentially more total computation than conservative
scheduling, it leads to better overall performance on a
large scale multiprocessor.
In this paper we present the following:

e trace-driven simulation results that demonstrate
the parallelism advantage of optimistic scheduling
for sequential CMOS circuits;

e a parallel timing simulation algorithm based on
the Timewarp idea of Jefferson [4], which was pre-
viously used for other simulation domains;

e an implementation for a scalable (distributed
memory) multiprocessor, which is highly tuned
for locality to maximize performance;

e analysis of the design trade-offs and performance
costs in our implementation.

2 Problem Statement

The first step in a timing simulation is to parti-
tion the circuit based on the charge coupling of tran-
sistors. In digital MOS circuits, two transistors are
tightly coupled if they are connected via a source-drain
charge path, and loosely coupled if they are connected
only via the gate terminal of some transistor. Tightly
coupled transistors must be evaluated simultaneously
for precision, while loosely coupled transistors can be
evaluated mostly independently, with infrequent prop-
agation of values between transistors. We refer to the
clusters of tightly coupled transistors as subcircuits.



In SWEC, voltage waveforms are modeled by a
piecewise linear approximation. Time steps may vary
across time and between different subcircuits, and
have a minimum value of one picosecond. Time steps
are adjusted so that input and output waveforms of
all subcircuits are linear within a small error margin.
Several time steps may elapse before a subcircuit com-
municates its state because a subcircuit propagates its
output only when the new output cannot be linearly
extrapolated using the old one.

A subcircuit is represented by a data structure
called a region, for which a single time step simula-
tion is called a region evaluation. In SWEC, a region
evaluation involves model evaluation and a linear sys-
tem solve using Gaussian elimination or relaxation. A
region evaluation leads to an event if the new state is
not a linear approximation of the old state. An event
is the communication of new states to the fanout re-
gions.

To maintain the causality of evaluations, SWEC
uses a priority queue of regions ordered by the next
evaluation time of each region. After a region is eval-
uated, the next evaluation time is predicted assuming
that no fanin events will be generated. If fanin events
are generated, the next evaluation time is adjusted,
leading to a different ordering in the priority queue.
Since events always propagate forward in time, the
region at the head of the queue is guaranteed to be
ready for evaluation.

3 Discrete Event Simulation

Discrete event-driven simulation is used to simulate
a physical system as a collection of processes, in our
case processes to evaluate subcircuits. Processes com-
municate by sending events, which are time-stamped
messages containing state values. Two techniques for
parallel discrete event simulation correspond to two
different scheduling policies. The Chandy-Misra algo-
rithm uses conservative scheduling [5], and the Time-
warp algorithm uses optimistic scheduling.

In the Chandy-Misra algorithm, each process keeps
a logical clock to denote its progress. Progress is con-
veyed to other processes via the timestamps of events.
The conservative algorithm schedules process p for
evaluation at time ¢ only when all processes that may
send an event to p have been simulated past ¢. Dead-
locks can occur if there are cyclic dependencies in be-
tween processes, so deadlock prevention or detection
is needed. Both of these require global information
and therefore incur communication and synchroniza-
tion overhead in a distributed environment. In logic
simulation, for example, the Splash study shows that
deadlocks severely limit parallelism [6].

The Timewarp algorithm relies on the rarity of
events. Processes may compute ahead even if more
events for earlier times are forthcoming. If events
do come, the results are discarded and evaluation re-
sumed from a previous time point. This operation is
known as a rollback, and the event causing the roll-
back is called a straggler. To restart after a rollback,
each region must maintain a history of received events
and 1ts own past states. A process that rolls back may
have to send anti-messages, whose sole purpose is to
undo the effect of its invalid events. Note that invalid
events may be caused directly by a straggler or indi-
rectly from anti-messages caused by another straggler
of another process. The optimistic approach requires
a large amount of memory for storing history infor-
mation and incurs overhead from rollbacks, but as we
show in Section 4, it yields more parallelism than a
conservative approach for timing simulation of sequen-
tial circuits.

4 Measuring Available Parallelism

Bailey and Snyder performed a study of available
parallelism in digital circuits [3] to explain the limi-
tations in parallelizing SPICE-like circuit simulators.
They measured the real teme parallelism, the average
number of transistors switching at the same time, in
six circuits. The results showed low parallelism even
for large circuits, for example, only a factor of 6.3 for a
32-bit RISC processor containing over 24,000 transis-
tors. This real time metric 1s a limit for synchronous
parallel simulators, where subcircuit evaluations are
kept synchronized to the same real time, but asyn-
chronous timing simulators may proceed in parallel as
long as dependencies are preserved, so the limits do
not apply.

We give the results of a similar study, but mea-
sure parallelism on the simulation time axis, rather
than the real time axis. Specifically, we evaluate the
effectiveness of conservative and optimistic scheduling
applied to SWEC simulation. Our results are far more
encouraging, particularly for the optimistic approach.

Figure 1 lists some characteristics of our bench-
mark circuits. In this section, we use only some of
the smaller circuits, since the time to compute par-
allelism profiles for large benchmark circuits would
be prohibitive. The 16-bit ripple adder (ADDER)
and the two 16-bit multipliers (MUL1 and MUL2) are
combinational circuits. The register file (REGFILE)
is sequential, but there are no feedback paths among
the regions because all nodes on a feedback path are
tightly coupled, and are partitioned into the same re-
gion. The 4-bit counter (COUNTER) consists of 4
T type flipflops. The 4-bit counter, the PLA state



Name mosfets | regions | time
ADDER 442 129 59
MUL 1 7190 401 293
MUL 2 6234 1101 | 5297
COUNTER 170 51 22
PLA 2117 507 | 1423
REGFILE 4832 404 538
SIMD 37939 7413 | 64916
1355 2306 678 942
02670 5364 2033 | 5919
Ch315 11260 3730 | 21731
C7552 15394 5272 | 43086

Figure 1: Benchmark circuits: the last column is run-
ning time in seconds of sequential SWEC on a Sun/4.

Combinational ADDER | MUL 1 MUL 2
Conservative 40.6 67.3 107.7
Optimistic 40.9 67.4 109.5
Sequential COUNTER PLA | REGFILE
Conservative 2.5 1.9 27.6
Optimistic 8.3 21.5 27.6

Figure 2: Parallelism in the benchmark circuits.

machine (PLA), and the SIMD processor datapath
(SIMD) are sequential circuits with many feedback
paths among the regions. C1355, C2670, C5315, and
CT7552 are drawn from the ISCAS benchmark suite.

We instrumented sequential SWEC to record the
activities of the simulation. To give an upper bound
on available parallelism, we assume that there are an
unlimited number of processors, that communication
is free, and that each evaluation is assigned to an idle
processor as soon as it is “ready,” as defined by either
optimistic or conservative scheduling. For optimistic
scheduling, we assume that there is an oracle to pre-
dict the presence of events, so the cost of rollbacks is
not counted. To model the computational cost of a
region evaluation, we use its average running time on
a CMb (Sparc) processor. A plot of the number of
busy processors over time gives the parallelism profile
over the entire simulation. The average parallelism, is
then the ratio of the sequential running time and the
parallel running time.

Figure 2 shows the conservative and optimistic par-
allelism for some of the benchmark circuits. In all of
the circuits there 1s a burst of activity at the begin-
ning of the simulation, when the circuit is converging
to a stable (DC) state. Therefore, the circuits are sim-
ulated long enough so that the start-up effect 1s not
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Figure 3: Circuit parallelism profiles: degree of paral-
lelism over time.

significant. A striking advantage of optimism is seen
for the PLA circuit. The parallelism profile for PLA
in Figure 3 shows this advantage more graphically.

Our results show that parallelism usually grows
with the number of regions and that optimism has
only minor effect on combinational circuits, but a sig-
nificant impact on circuits with feedback paths. In
combinational circuits, both scheduling policies allow
dependent regions to progress in a pipelined fashion,
so the total running time is dominated by the criti-
cal paths in the circuits. In sequential circuits, con-
servative scheduling cannot pipeline evaluations along
a feedback cycle: No two regions in a feedback path
can be evaluated in parallel’ In contrast, optimistic
scheduling exploits pipelining along cycles to the ex-
tent limited by the critical path.

The advantage of optimistic scheduling is quanti-
fied by in Figure 2. The PLA state machine shows an
11-fold increase in parallelism and the counter shows
a 3-fold increase. Although we were unable to mea-
sure the SIMD processor datapath or the other larger
benchmark circuits, the bus structure of processors
like SIMD will certainly prevent the circuit from ex-
hibiting high parallelism with conservative scheduling.

Under optimistic scheduling, if two regions in a
feedback path are evaluated in parallel, the outcome
of one may render the other incorrect. However, the
latency property of digital circuits indicates this is not
the common case. In the SIMD circuit, for example,
a bus-oriented interconnection makes most regions of
the circuit mutually dependent, but the actual signal
flow is carefully controlled by the timing scheme; most
of the time the circuit is acting as a collection of inde-
pendent functional units, whose signals are confined

1Technically, under conservative scheduling, two regions can
be evaluated in parallel if they happen to have identical simula-
tion times, but because the time-steps are chosen dynamically
and independently, this is rarely, if ever, the case in practice.
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Figure 4: Computing GVT": The value is 40, but the
naive scheme gives 100.

to its own latches or registers.? Our performance re-
sults in Section 6 confirm that the degree of optimistic
parallelism in SIMD and other large circuits is high.

5 The PARSWEC Implementation

In optimistic simulations, the progress of a region
is represented by the timestamp of its most recent
state, referred to as the local virtual time or LVT.
The progress of the system is determined by the min-
imum of the timestamps of all regions and messages,
called the global virtual time or GV'T. The LVT of
individual regions may be decreased by stragglers or
anti-messages, but the GV'T of the system is mono-
tonically increasing. GVT is used for fossil collection
and termination detection. Fossil collection discards
states with time less than GVT', since no region can be
rolled back before GVT'. Termination detection sim-
ply halts the simulation when GVT progresses past
the final simulation time.

Computing GV'T requires taking a snapshot of the
distributed state. A naive implementation that probes
the processors individually would be incorrect, since,
as shown in Figure 4, rollbacks may be missed. Dis-
tributed snapshot algorithms exist, but they add mes-
sage overhead on communication. Because there is
hardware on the CM5 for fast synchronous operations,
we use a synchronous algorithm based on fuzzy barri-
ers, in which processes initiate a request to perform
a barrier, and then continue computing until all other
processors agree.

Each circuit region contains a state history of pre-
vious region states, and an event history of previous
fanin events. In addition, a region has a FIFO message
queue for each fanout edge, which stores unprocessed
event messages and anti-messages. A processor has a
set of these regions, and a local copy of the GV'T" vari-
able, initialized to 0. A processor’s local GVT may be

2 There are other techniques (e.g., unit-delay simulation) that
exploit this property in pipelined designs by handling clock cy-
cles explicitly in the simulator. Our work is more general in
that we allow arbitrary feedback.

out of date, but is always guaranteed to be less than
or equal to the true GV'T.

Each processor repeatedly executes one of the fol-
lowing operations:

o Termination. If GVT is greater than the total
simulation time, exit.

e Update GVT. Compute the new GVT by initiat-
ing a fuzzy barrier and when it succeeds, comput-
ing a global minimum.

e (Collect fossil. Find all regions containing states
with times less than GV'T" and discard such states.
It is a local operation.

e Schedule. Pick a region, evaluate it and advance
its LVT. If the new state generates an event, cre-
ate the event messages.

e Send. Pick the first message from any nonempty
fanout message queue. Process the event or anti-
message, and rollback or adjust the LVT of the
fanout region if necessary. Create the necessary
anti-messages.

Because the size and computation requirements for
subcircuits vary, the static assignment of subcircuits
to processors may not lead to good load balance. How-
ever, a dynamic load balancing scheme would incur
both synchronization costs, for collecting global load
information mid-execution, and commaunication cost,
due to loss of locality. Statistics from SWEC show
that the cost of simulation could double under dy-
namic load balancing, and our preformance results in-
dicate that load balance is not a major limitation for
most circuits.

Memory management in PARSWEC is crucial, be-
cause there is no virtual memory on the CMb, and
subcircuit states, message queues, and event histories
can be large. Subcircuit states are reclaimed by fossil
collection. To avoid message buffer overflow, Jeffer-
son proposed a flow control protocol that runs along
with Timewarp [4]. Instead, we place restrictions on
scheduling and use fixed history sizes. Namely, we re-
quire that all event messages be acknowledged, and
that a Schedule operation for a region r is started
only after the previous event messages from r have
been processed. We also require that messages be pro-
cessed 1n order, so that an anti-message cannot bypass
its own event-message. Anti-messages are not stored
explicitly, but a count of the events to be canceled is
kept. These restrictions make 1t possible to allocate
fixed space for message queues.



To resolve the memory problem for the event his-
tories, we allocate event histories equal to the size of
the corresponding state history (which resides on the
processor that sends the events). Since an event his-
tory is always a subset of its state history, the Schedule
operation can proceed as long as there is space left lo-
cally, without flow control for the fanout. Once again,
we have traded off space to avoid the communication.
The savings in communication for flow control may be
significant, since the number of fanouts for an event
can be quite large.

Proper scheduling is essential for performance. Re-
gions that will most likely lead to valid states should
be evaluated first. In PARSWEC we use the func-
tion that predicts the next evaluation time point to
define three priority classes in their preferred order:
conservative, speculative, and unlikely. An evaluation
is conservative if the last event times of the fanins are
all greater than its evaluation time; it is speculative
if the next event time estimates of the fanins are all
greater than its evaluation time; it 1s unlikely other-
wise. Within each class, the regions are scheduled in
increasing order of local virtual time; this corresponds
to the traditional Timewarp scheduling heuristics.

The frequency of Update GVT operations must be
balanced between the synchronization overhead of the
updates, and the stalls because regions are blocked
due to lack of space. Update GVT invocation 1s based
on runtime information, since it is not feasible to de-
termine the frequency a priori. The following heuris-
tic works well in practice: a processor starts the first
phase of Update GVT when a new region runs out of
space in its state history, when no region is ready for
evaluation, or when the highest priority evaluation is
unlikely. Collect fossilis scheduled immediately after
Update GV'T completes, since that is the only time
when states in the histories become fossils.

6 Performance

Speedup is calculated as the ratio of the running
time of the sequential SWEC implementation on a
Sun/4 (given in Figure 1) to the parallel running time
of PARSWEC on the CM5. Most of the numbers were
taken on a 64 processor machine, although for a few we
had access to a 128 processor CMb5. The CM5 nodes
contain the same processors as the Sun/4, although
the memory systems are different. For most bench-
marks, we were unable to run the sequential SWEC on
a single CMb5 node due to insufficient memory. How-
ever, we were able to simulate ADDER on a single
CM5 node, and the result showed that the Sun/4 is
about 10% faster.

Short Simulations
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Figure 5: Speedup curves.

The speedup curves are shown in Figure 5. The
first graph shows speedups for some of the smaller cir-
cuits, all of which took less than 1000 seconds on a
Sun/4. Most of these do not have sufficient computa-
tion to justify large scale parallelism, but they give the
observed parallelism results for the circuits that were
simulated on an ideal machine in Section 4. Notice
that even with the overhead of optimistic paralleliza-
tion, the actual speedup achieved with PLA is greater
than the theoretical speedup achievable by the conser-
vative method.

The peak speedups of our simulator are far greater
than those reported for similar timing simulators in [7,
8]. The speedup for SIMD is particularly encouraging,
and it shows the feasibility of using large distributed
memory multiprocessors to perform large simulations.

The speedup is usually below the theoretical max-
imum, due to the overhead of data management,
scheduling, and communication that arise in practice.
Communication overhead is particularly significant; it
ranges from 1% of running time for COUNTER, and
REGFILE, to nearly 17% for PLA and SIMD 3. Some
improvement in performance may be possible by over-
lapping Sends with other computation, although such
pipelining tends to complicate programs and have lim-

3Despite the communication overhead, we actually observed
superlinear speedups for SIMD during the start-up transient.
This is because the speculative nature of PARSWEC allows
it to relax the strict priority queue in SWEC, which greatly
reduces the access costs when the queue is very large.
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Figure 6: Effect of history size on performance.

ited effect on overall performance.

Another loss of efficiency is due to the static load
balancing scheme. The only circuit that showed much
effect of this is MUL 1. Post-mortem analysis showed
that the activities in MUL 1 are highly concentrated,
which is indicated by the imbalance of processor time
spent in Schedule for each region. Dynamic load bal-
ancing might improve the performance of MUL1, but
given the added communication overhead, the overall
effect 1s not clear.

The allowed number of states in the histories is a
significant tuning parameter in the implementation.
All of the simulations in Figure 5 used 100 states per
history. To investigate the effect of history size on
performance, we also ran some of the benchmarks on
128 processors using history sizes of 100, 200, 300,
and 400 states. The results are given in Figure 6.
Figure 6 shows that the speedup usually grows with
the number of states in the history, with PLA as an
exception. The adverse effect of increasing history size
for PLA probably comes from the rollback overhead
due to excessive speculation, plus the increased cost
for managing longer histories.

7 Previous Work

The Timewarp simulation technique has been ap-
plied to logic and mixed-level simulation [9], but we
are not aware of any Timewarp timing simulator at
the level of precision of SWEC. Previous work on par-
allel timing simulation includes XPSIMI8], an asyn-
chronous algorithm, and CEMU[7], which has both
a synchronous and an asynchronous version. CEMU
results indicate that the synchronous algorithm is
more efficient than the asynchronous one; the syn-
chronous implementation showed speedups up to 20 on
a 64-processor hypercube, whereas the asynchronous
version showed speedups under 10. Similarly, the
speedups achieved by XPSIM were below 4.6 on a 11-
processor Sequent. Note that a synchronous imple-
mentation uses a uniform time step algorithm, which

requires more total computation than the variable
time step algorithms of XPSIM and SWEC. In gen-
eral, variable time step algorithms have better abso-
lute performance.

8 Conclusions

In this paper we showed that the amount of paral-
lelism in timing simulation is sufficient to justify the
use of a large multiprocessor, and that optimism is
essential for exploiting parallelism in sequential cir-
cuits. The speeup for the PLA circuit is higher than
the theoretical maximum for conservative simulation,
and the best speedups, 50 on 64 processors, are bet-
ter than those obtained in previous efforts. We are
currently exploring the use of lower level parallelism
within subcircuit evaluation, and looking at other sim-
ulation domains in which optimistic scheduling might
be beneficial. Because the PARSWEC implementa-
tion involves nontrivial protocols, we hope to leverage
off the current implementation by providing compiler
and runtime support that will be useful across prob-
lem domains.
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