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Abstract

Sparse matrix-vector multiplication is an important com-
putational kernel used in numerical algorithms. It tends to
run much more slowly than its dense counterpart, and its
performance depends heavily on both the nonzero struc-
ture of the sparse matrix and on the machine architecture.

In this paper we address the problem of optimizing
sparse matrix-vector multiplication for the memory hier-
archies that exist on modern machines and how machine-
specific or matrix-specific profiling information can be used
to decide which optimizations should be applied and what
parameters should be used. We also consider a variation
of the problem in which a matrix is multiplied by a set
of vectors. Performance is measured on a 167 MHz Ultra-
sparc I, 200 MHz Pentium Pro, and 450 MHz DEC Alpha
21164. Experiments show these optimization techniques to
have significant payoff, although the effectiveness of each
depends on the matrix structure and machine.

1 Introduction

Matrix-vector multiplication is an important compu-
tational kernel used in scientific computation, signal
and image processing, document retrieval, and many
other applications. In many cases, the matrices are
sparse, meaning that most of elements are zero, and
in those cases, only the nonzero elements are stored
with extra information regarding the position of the
elements in the matrix.

The performance of sparse matrix operations tend
to be much lower than their dense matrix counter-
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parts, because the memory access patterns are irregu-
lar and the ratio of floating point operations to mem-
ory operations is lower than in some dense operations.
Like dense matrices, optimizations depend heavily on
details of the machine architecture, but unlike dense
problems, they also depend on the structure of the ma-
trix, because the distribution of nonzero elements in a
sparse matrix determines the memory access pattern.

Our goal is to provide a toolbox to generate highly
optimized sparse matrix kernels based on the knowl-
edge of matrix structure and target architecture. In
doing so, we make use of profiling information from the
machine, data from the matrix structure, (possibly not
known until runtime), and performance models to help
choose from a wide set of possible optimization tech-
niques. While this framework could be incorporated
into a compiler framework with feedback, we do not
address issues of dependence analysis or low-level code
generation in this paper, but rather the issue of how
to modify the data structure representation and to re-
organize the computation to optimize for the memory
hierarchy of a given machine and sparsity structure of
a given matrix.

In this paper, we focus mainly on the problem of
multiplying a sparse matrix by a dense vector. This
operation is often used in iterative solvers for linear
systems, in explicit methods, and in eigenvalue com-
putations, just to name a few. Given a sparse matrix
A, dense vectors z and y, the problem is to compute
y=Axz+y.

The nonzero structure of A directly determines the
memory access pattern of the source vector x and des-
tination vector y, although there is quite a bit of flexi-
bility in reordering the computation to improve local-
ity.

In this paper we present several design trade-offs in
the optimization of sparse matrix-vector multiplica-
tion. In particular, we describe a technique called reg-
ister blocking and perform a large set of experiments
on the effectiveness of register blocking for various ar-
chitectures and matrices. One of the challenges of reg-



ister blocking for sparse matrices is the determination
of block size; we introduce a new performance model
for estimating the optimal block size, and evaluate it
on a set of benchmark matrices. We also define and
measure the overheads associated with register block-
ing and discuss the effectiveness of these techniques in
a real compiler and application setting.

The remainder of this paper consists of the follow-
ing sections. In section 2, the related work on matrix
computation is reviewed. Register blocking is intro-
duced in section 3, and in section 4, we describe
how to model the performance to select a block size
with better performance. Section 5 presents the per-
formance of register blocked multiplication on vari-
ous platforms and section 6 discusses the overhead
of register blocking. The idea of register blocking is
extended to the multiplication of a sparse matrix and
a set of vectors in section 7. Other memory hierarchy
optimizations are discussed with some preliminary re-
sults in section 8 and use of performance models in
compilation is discussed in section 9. In section 10,
we conclude and briefly overview some future work.

2 Related Work

The state of the art in optimizing matrix computation
can be seen from two different points of views. One
is from the compiler writer’s perspective, where the
focus is on how to automatically generate memory ef-
ficient code. The other is from the library developer’s
perspective, in which several optimized versions are
provided and the user selects the routine to use.

For dense matrix operations, Wolf [Wol92] and
Carr [Car94] formulated loop transformation theory
for array-based loop nests; it was used to transform
loops into blocked loops. The problem of determining
the size of a cache block so that cache conflicts be-
tween different array elements is avoided is not easy
even for dense matrices and Lam [MSLW91], Cole-
man [CM95], and Essenghir [Ess93] gave algorithms to
determine blocking sizes using only cache characteris-
tics and matrix size. PHiPAC [BAD97] approaches
this problem in a different way in that blocked code is
generated on a target machine using a parameterized
code generator and the block size is chosen by mea-
suring the performance of those generated codes with
different parameters.

For sparse matrices, Bik [Bik96] and Kotlyar’s
[KPS97] work generates a sparse code from dense code
with the compiler, in order to relieve the program-
mer’s effort in writing complex sparse code and to
increase the flexibility of the code for various stor-
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age formats of sparse matrices. As a result of ef-
fort to provide a generic sparse matrix operation li-
brary, NIST sparseBLAS [PR97] provides generic rou-
tines and TNT (Template Numerical Toolkit) [P0z97]
provides a generic matrix/vector classes. BlockSolve
[PJ95] and Aztec [HST95] are parallel iterative solvers
that include the implementation of optimized sparse
matrix operations. Our research lies between the li-
brary and compiler approaches for sparse operations:
we are building a system to automatically produce
highly tuned libraries, using compilation techniques
as well information about the input matrices to se-
lect optimizations; previous libraries are hand-tuned
to a specific machine and sometimes a specific ma-
trix structure; previous compilers automatically trans-
forms the code, but they do not have ways of selecting
the right set of transformation based on machine and
matrix parameters.

3 Register Blocking

To optimize for register use at the highest level of the
memory hierarchy, we reorganize the data structure
and computation to improve the reuse of values. This
optimization is commonly known as blocking or tiling
for dense matrix operations [MSLW91, CM95].

Register blocking in sparse matrix codes requires
information that is not available at compile time
for several reasons. First, the nonzero structure
of the sparse matrix is not known statically, so
runtime-optimization techniques are needed to deter-
mine which transformations are legal [DHU93]. Sec-
ond, the problem of tile-size selection requires in-
formation about the machine characteristics which
may not be captured in a simple model with the
number of registers and memory costs. Determin-
ing block size even for dense codes requires feedback
from benchmarking, because register level blocking
interacts with instruction scheduling, especially the
use of multiple functional units, prefetching and write
buffers [BADT97, WD]. Third, for sparse matrices,
there is an additional problem of costs that depend
on the sparsity structure of the matrix. Here, we fo-
cus on the latter two problems of selecting the block
size for the specific problem of sparse matrix vector
multiplication.

The storage format of sparse matrices varies across
application domains and programming languages.
One of the more common is the compressed sparse row
format, shown in figure 1. A straightforward sparse
matrix vector multiplication program for this format
is shown in figure 2.
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Figure 1: Compressed sparse row format storage
scheme of sparse matrix. Each nonzero value and
its column index are stored in value and col_idx arrays,
respectively, row by row. The elements of row_start ar-
ray point the starting indices of each rows into value and
col_idx arrays.
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This program is unlikely to exploit temporal local-
ity of elements of vector z by saving them in regis-
ters across rows, in part because the compiler cannot
determine the memory accesses and also because the
set of values needed from x for each row is typically
larger than the number of registers. If one identifies
small blocks of non-zeros in the matrix, however, and
reorganizes the representation to store each of these
block contiguously, values in the source and destina-
tion vectors may be reused. The number of registers
need to compute an r X ¢ block of A is r values from
the destination vector, plus ¢ values from the source
vector, plus one register that is used repeatedly for
each value in the block of A.

The code is not only easier to write, but admits
more compile-time optimizations such as loop un-
rolling and software pipelining of the r X ¢ computation
if the values of r and ¢ are fixed over the entire matrix.
Figure 3 shows a matrix in compressed sparse block
row format, where 2 x 2 blocks are stored contigu-
ously. The blocked matrix vector multiplication code
becomes a series of dense r x ¢ matrix-vector multi-
plications which allow for register reuse; the blocked
storage format also saves storage in the col_idx array
by a factor of r x ¢. Note, however, that there are
some zeros stored in the blocked representation, since

void smvm (int m, double *value,
int *col_idx, int *row_start,
double *x, double *y){
int i,j;
for (i=0;i<m;i++) {
for (j=row_start[i];j<row_start[i+1];j++){
y[i]l += (*value++)*x[*col_idx++];

Figure 2: Basic sparse matrix-vector multiplication
code
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Figure 3: Constant block compressed sparse row
storage format. The elements of each dense r x ¢ block
are stored contiguously in the value array. Only the first
column index for each block is stored in col_idx array and
row_start array points block row starting positions in the
col_idz array.
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Figure 4: Fill overhead of register blocking. The
BSR format in the right figure stores extra 5 zero values
to make 2 x 2 block dense.

the original matrix did not have dense 2 x 2 blocks
throughout.

4 A Model for Block Size Selec-
tion

There is a trade-off in the choice of block size for sparse
matrices. In general, the computation rate will in-
crease with the block size, up to some limit at which
register spilling becomes necessary. In most sparse
matrices, the dense sub-blocks that arise naturally are
relatively small: 2x2; 3x 3 and 6 x6 are typical values.
When a matrix is converted to a blocked format, zero
elements are often filled in to make a complete r x ¢
block as shown in figure 4. These extra zero values
not only consume storage, but will increase the num-
ber of floating point operations since they are involved
in the sparse matrix computation. (Placing branches
in the code to avoid these extra operations proves to
be worse than the computing them.)

We use a simple performance model to determine
the block size for a given matrix and machines, based
in part on profiling information for that machine. The
model has two basic components:

1. An approximation for the Mflop rate of a matrix
with a given block size.



2. An approximation for the amount of unnecessary
computation that will be performed due to ex-
plicitly represented zeros in the blocked matrix.

The first component cannot be determined exactly
without running the resulting blocked matrix (or one
with equivalent nonzero structure) on each machine
of interest. We therefore use an upper bound for this
Mflop rate, which is the performance of a dense matrix
stored in the blocked sparse format. The approxima-
tion is better for large block sizes than for small ones,
as the cost of computing on the dense blocks domi-
nates the other data structure manipulations.

The second component can be computed exactly,
but is very expensive, given that we need to com-
pute this for a range of block sizes under considera-
tion. Multiple sweeps over the array or complex data
structures must be made to compute the number of
zero fills for a set of block sizes. Instead, we devel-
oped an approximation that can be done in a single
pass over only a subset of the matrix.

4.1 Approximating the Performance of
a Blocked Sparse Matrix

Figure 5 shows the performance of sparse matrix vec-
tor multiplication for a dense matrix using register
blocked sparse format; i.e., a dense matrix in sparse
format. We vary the block size within a range of val-
ues for 7 and ¢ until the performance degrades. Each
line shows a particular value of r (number of rows) and
each point on the z-axis shows a value for ¢ (number
of columns). This graph is platform dependent, and
is shown here for a 167 MHz Ultrasparc I. The per-
formance is relatively insensitive to the total matrix
size, as long as the matrix does not fit in cache but
does fit in main memory; the data in the figure uses a
1000 x 1000 dense matrix.

4.2 Approximating Fill Overhead

The number of added zeros in the blocked representa-
tion are referred to as fill, and the ratio to the original
matrix size as fill overhead:

fill overhead =
number of elements stored in register blocked format
number of nonzeros

The fill overhead is 1 when the matrix has dense
blocks of the chosen size spread throughout the ma-
trix; the matrix may still be sparse, but every nonzero
is within a block. For sparse matrix-vector multiplica-
tion, the number of floating point operations is linear
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Figure 5: Performance of register blocked multipli-
cation taken from 167 MHz Ultrasparc for 1000 x 1000
dense matrix represented in sparse format. Each line is
for a fixed number of rows, varying the number of columns
from 1 to 12.

in the number of stored elements (i.e., one multiplica-
tion and one addition), so the fill overhead is a good
estimate of computation overhead.

We have computed the fill overhead for several
benchmark matrices and several block sizes, but the
computation time was too high to consider using it at
runtime. To approximate fill overhead, we separately
compute a column blocking factor and row blocking
factor by sampling a fraction of the matrix entries.
First, we determine the column blocking factor by ex-
amining every one in k rows of the matrix. (In our
implementation, k£ is chosen to be 100, which gives
reasonably accurate fill overheads.) By dividing the
column index of nonzero elements in the row with the
block size in consideration, we compute a block col-
umn index for each element in the matrix. This gives
us the number of total blocks for each block size, and
thus the fill overhead. For the column block size ¢, the
fill ratio is estimated to be:

estimated fill overhead for column size ¢ =

number of blocks x c

number of nonzero elements in the examined rows

An estimate of fill overhead for various row sizes is
computed independently by an analogous algorithms,
namely, examining every 1 out of k& columns and com-
puting the number of blocks that would result from a
r X r block for that column.



4.3 Instantiating the Model

Given the approximations of performance for a given
machine and overhead for a given matrix, we now
choose a block size by maximizing the predicted real
performance. Since we are measuring performance in
Mflop/s, we calculate the real performance by includ-
ing only those floating point operations that would
have been needed in the unblocked code. Using our
estimates, we predict this performance as:

predicted per formance for column size ¢ =

per formance of a dense matrix in ¢ X ¢ sparse blocked form

Performance of register blocked code on Ultrasparc
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matrix | size(N) | nonzeros Application area

1| 23560 | 484K Airfoil eigenvalue calculation
41092 1.7M 2D PDE problem
30237 1.5M Automobile frame stiffness matrix
13965 1.0M FEM stiffness matrix

estimated fill overhead for row size r
We consider column blocking factors ¢ in the range
from 1 to ¢4, Where ¢p,q, is the column size with the
maximum performance for a dense matrix in sparse
blocked format. Within this range, we choose ¢ by
maximizing the predicted performance. We indepen-
dently do the same to choose the row size r.

5 Performance

Figure 6 shows the performance of register blocked
multiplication performance on sparse matrices that
arise in numerical simulations. It compares the base
performance without register blocking to the perfor-
mance of register blocked multiplication chosen with
the above heuristic and the best performance among
all the register block sizes. In the figure, the block sizes
are shown above the bars, with the block size from the
heuristic on the bottom and the optimal block size on
the top. In computing the performance in Mflop/s of
the blocked code, we use the floating point operation
count from the unblocked code — the machine executes
at a faster rate than indicated, but the reported num-
bers reflects the improvement in running time that a
user would see. Figure 7 shows the same performance
data for two other machines, a 200 MHz Pentium Pro
and a 450MHz DEC Alpha 21164. (Some bars are
missing in the Alpha figure, because our platform did
not have sufficient memory.)

On all of the platforms, register blocking shows
a significant performance payoff. Our heuristic for
choosing good block size does well on the Ultrasparc
and Alpha, typically getting performance close to that
of the optimal block size, even when it did not choose
that block size. On the Pentium, although register
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Figure 6: Performance of register blocked multipli-
cation on 10 sparse matrices from real applications
taken on a 167 MHz Ultrasparc. The first bar is
the base performance the second bar is the performance of
the register blocked matrix for a block size chosen by our
model, and the third bar is the best performance over all
the block sizes considered. The numbers on the top of the
bars are block size and fill overhead in the parenthesis for
the second bars (bottom) and the third bars (top). The ta-
ble shows the matrix dimension, number of nonzeros, and
the application area of the matrix.

blocking shows significant payoff, our heuristic does
not do quite well. The reason is that our heuris-
tic computes r and ¢ independently, assuming square
block sizes for each computation; it therefore favors
larger block sizes. On the Pentium, with only 8 float-
ing point registers, some of the small non-square block
sizes such as 2x 1 and 3x 1 perform significantly better
than the square sizes.

Note that the benchmark matrices are represen-
tative of numerical simulations, where some natural
locality in the physical domains leads to patterns of
dense sub-blocks in the matrix. Problems from lin-
ear programming and document retrieval, for example,
have no naturally occurring sub-blocks, and register
blocking them did not improve their performance.



Performance of register blocked code on Pentium Pro

3x1(1.00)

3x3(1.00)

w0l 2x3(1.07) 3x1(1.00) ax2(1.11) 4x2(1.00) 4
2x2(1.07) 3x3(1.00) 2x2(1.10) 2x2(1.00)

2x1(1.00) -

2x2(1.35)

2x2(1.23)

L 2x1(1.17)
2x2(1.23)

2x2(1.33)

Mflops/sec.

1x1(1.00)
2x2(198) |

Base performance
Performance of blocked code (chosen size)
Performance of blocked code (best)

matrices
Performance of register blocked code on alpha 21164

100 3x3(1.00) 1
3x3(1.06) 3x3(1.00)

3x3(1.06) 4x2(1.00)
*r 2x2(1.00)

[ 2x2(1.23) 2x2(1.33)
2x2(1.23) 2x2(1.33)
60 1

50~ 2x1(1.00) 1
2x2(1.35) 2x1(1.71)
40 2x2(1.98)

Mflops/sec.

301 1

20l no data |

Base performance
10 Performance of blocked code (chosen size) 7

Performance of blocked code (best)

1 2 3 4 5 6 7 8 9 10
matrices

Figure 7: Performance of register blocked sparse
matrix-vector multiplication. The top figure shows
performance on 200 MHz Pentium Pro and the bottom
figure shows performance on 450 MHz DEC Alpha 21164.
Performances of matrix 5,6, and 7 were not measured on
Alpha due to insufficient memory on our system.

6 Precomputation Overheads of
Register Blocking

There is precomputation overhead of applying register
blocking that is separate from the overhead that ap-
pears during matrix-vector multiplication. The first
of these is the price of determining the block size us-
ing some performance model. As noted earlier, the
cost of doing an exact fill overhead computation was
very expensive, so we developed the heuristic based
on sampling a subset of the rows and columns in a
single pass. The second source of overhead is the time
to reorganize the matrix in the blocked format. Both
of these are paid only once, while computations like
matrix-vector multiplication may be performed many
times on the same sparse matrix structure.

Figure 8 shows the amount of these two pre-
computation overheads, both in absolute time and in
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Figure 8: Pre-computation overhead of register
blocked multiplication on 10 sparse matrices taken
on a 167 MHz Ultrasparc. The top figure shows the
time to perform each of the two pieces, determining the
block size and reorganizing the matrix. The bottom figure
shows the same values divided by the savings of blocked
vs. unblocked code; this tells us the number of times a
matrix-vector multiplication would have to be performed
to amortize the overhead.

the ratio of overhead to savings from the optimization.
If the block size selection and reorganization will be
done at runtime, the bottom figure tells us the num-
ber of sparse matrix-vector multiplications that must
be done before the optimization pays off. While these
numbers are high, the optimizations are still likely to
be useful in practice, since computations such as itera-
tive solvers repeat the matrix vector multiplication on
the same matrix structure many times. If the user is
willing to change the matrix representation through-
out the application, which is likely if the sparse matrix
library is properly encapsulated, the cost of reorgani-
zation can be avoided. In addition, there are many
application domains in which the block size could be
determined for an entire class of applications. For ex-



ample, dense k x k sub-blocks will appear in Finite El-
ement problems with & degrees of freedom. Although
different finite element problems may produce differ-
ent sparse matrix structures, the block size chosen for
one is likely to work well for others with similar struc-
ture (e.g., from the same problem domain) and the
same number of degrees of freedom. We envision a sys-
tem for generating optimized sparse matrix kernels in
which there is a dialog between the application builder
and the code generator.

7 Multiple Vectors

The performance of matrix-vector multiplication is in-
herently lower than that of matrix-matrix multiplica-
tion because there is no reuse of element of matrix A
in matrix-vector multiplication. Algorithms such as
block Lanczos [GUTT], which compute a set of eigen-
values and associated eigenvectors, require multiplica-
tion of matrix to a set of vectors. Since there is poten-
tial for much higher performance, we extend the idea
of register blocking to multiplication of sparse matrix
and a set of vectors.

Figure 9 shows the performance of register blocked
multiplication for a varying number of vectors from 1
t0 30. The matrix used is the 5th FEM matrix in figure
6 for which the best block size was 3 x 3. The lines in
figure 9 show the performance of the 1 x 1(unblocked),
1 x3,3x1 and 3 x 3 blocked codes for the multi-
vector case. Each point was measured using different
code which is automatically generated by an optimiz-
ing source code generator and then fed through a C
compiler. The main optimization of the code gener-
ator is to unroll the loops in order to eliminate loop
overheads and to increase the number of operations to
be scheduled. The codes are compiled with -zO2 op-
tions (performance shown in the top of figure 9) and
with -z05 option (performance shown in the bottom
of figure 9) in Sun Workshop C-compiler 4.2. The
main difference between compiler optimization -z02
and -z0J5 is that the latter performs loop unrolling.
This is in addition to the loop unrolling done by our
C code generator.

In the top figure (compiled with option -z02), we
can see the performance improvement is quite large
(from 28 Mflops/s up to 68 Mflops/s for 3 x 3 block)
and the performance is best with 3 x 3, and then 3 x 1,
1x 3, 1 x 1 in sequence for a fixed number of vectors.
The number of floating point registers needed is mod-
eled as k x r +r X ¢+ ¢ where r X ¢ is size of block
and k is the number of vectors. In the bottom figure
(compiled with option -z0$%), the performance is even
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Figure 9: Performance of register blocked sparse
matrix-multiple vector multiplication The multipli-
cation codes for 1 x 1, 1 x 3, 3 x 1 and 3 x 3- blocked
for different number of vectors are extensively generated
by loop-unrolled multiplication source code generator and
compiled with different compiler options (-zO2 for top fig-
ure, and -z0OJ for bottom figure). The performance is
shown in 4 lines in each figure.

better, but we observe that 1 x 3 and 1 x 1 block out-
performs 3 x 1 and 3 x 3 blocks for 5-16 vectors. For a
small number of vectors, the code is loop-unrolled fur-
ther by the compiler with this compiler option -zO35,
incurring register spills due to the demand for more
registers. For 5 to 16 vectors, analysis of generated
assembly code shows the ratio of the number of reg-
ister spills (extra store operations) to the number of
floating point operations (which is fixed for a matrix)
is much smaller for 1 x 3 and 1 x 1 blocks. The ra-
tios are 0-0.12 for 1 x 1, 0-0.02 for 1 x 3, 0.22-1.29
for 3 x 1, and 0.24-0.60 for 3 x 3 block. It was im-
possible to control the loop unrolling factor to keep it
same across different block sizes and different number
of vectors.

From these experiments, we can conclude that



memory hierarchy optimizations for a set of vectors
has even higher performance gains than the single vec-
tor case. However, our simple model would choose the
3 x 3 block size, which is not optimal for when the
highest level of compiler optimizations are used. The
graphs and our analysis of register spilling overhead
indicate that the lower performance of the 3 x 3 is an
anomaly due to lack of control over the final compi-
lation phase. One of three approaches can be used to
address this problem. First, we could adjust the model
to more accurately reflect what the compiler is doing
to the performance of the generated code; that would
lead to a very complex model, and it is not clear we
could capture the features of a large set of compilers
in any reasonable model. Second, the compiler itself
might do a better job of loop unrolling and register
allocation, to avoid generating unnecessary spill code;
a step in this direction would be better control over
loop unrolling in the optimizer. Finally, we could in-
tegrate our code generation into the compiler to help
control the optimization phases done by the compiler.

8 Other Optimizations

To address other levels of machine memory hierarchies
below the registers, we have considered two other opti-
mizations, cache blocking and matrix reordering. Ma-
trix reordering is commonly used to reduce the number
of computed nonzeros in direct solvers and to reduce
communication costs. In our experience, reordering
showed some benefit when running on a shared mem-
ory multiprocessor, but none for uniprocessors. Cache
optimizations, however, we found to be extremely ben-
eficial on a particular class of matrices, namely those
with nearly random sparsity structure.

As an extension of the register blocking idea, we
consider an optimization called cache blocking. The
idea of this optimization is to keep ccqcne €lements of
vector z in the cache while an r.qche X Ceache block of
matrix A is multiplied to this portion of vector z. That
is, we limit the vector products so that the elements
of vector x can all be kept in cache and re-used for the
vector product for the next row. A matrix with equal
size cache blocks identified is illustrated in figure 10.

Unlike register blocking, creating dense r.qche X
Ceache blocks by filling in zeros is not practical. Be-
cause the cache size is relatively large, expanding
Tcache X Ceache SParse matrices to dense matrices will in-
cur excessive storage and computation overhead. For
that reason, the blocks in the cache blocked matrix
are stored as sparse matrices in the implementation
of static cache blocking. The sparse matrix is reorga-
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Figure 10: Alignment of cache-blocks in sparse ma-
trix The grey areas are sparse matrix blocks that contain
nonzero elements in the ccache XTcache rectangle. The white
areas are the areas that contain no nonzero elements.
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Figure 11: Storage format of cache-blocked sparse
matrix The nonzero elements of 7cqche X Ceache blocks are
stored in contiguous locations. The cache blocks consist of
block_ptr, col_idr and value arrays. The block_ptr array
keeps track of starting points of each of rcqche rows, as
row_start array did in figure 1. The row_start index array
stores the indices into block_ptr array for every regcpe-th
row.

nized by changing the order of the nonzero elements of
sparse matrix in the storage as shown in figure 11. We
have also considered a variant of cache blocking which
we call dynamic cache blocking in which the represen-
tation is left unchanged, but a set of r.qche pointers
are used to keep track of blocks dynamically. How-
ever, the additional pointer manipulation and control
required for dynamic cache blocking made it less in-
teresting than the static case.

The performance of cache blocked matrix-vector
multiplication is measured for various matrices on 167
MHz Ultrasparc I, which has 512K bytes of off-chip
L2 cache. The block size was chosen empirically as
16K x 16K. Unfortunately, cache blocking shows a
slight degradation in performance for all of the ma-
trices from numerical simulations on which register
blocking has proven useful, but on one matrix, it
showed an enormous payoff.

For a matrix that arises in a document retrieval al-
gorithm called Latent Semantic Indexing (LSI), cache
blocking dramatically improves performance. The un-
blocked code runs at 5.8 Mflops/s on an Ultrasparc,
while the cache blocked code runs at 18 Mflops/s, giv-
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Figure 12: Performance of cache-blocked multipli-
cation on random matrices measured on 64K x 64K
random matrices with different densities 0.02-0.26%. Each
line represents different cache block sizes, and the separate
points at 0.15% are the performance of LSI matrix.

ing a speedup of 3.1. It is interesting to note that
register blocking for the LSI matrix showed no bene-
fit.

The nonzero pattern of the LSI matrix is unusual
compared to most scientific applications, in that it has
little discernible structure.! Combined with the fact
that the size of the matrix is very large, the perfor-
mance of multiplication on LSI matrix before the op-
timization is very low (5.8 Mflops/sec.) relative to the
other matrices (10-25 Mflops/sec.).

As further evidence that cache blocking is effective
on matrices with evenly distributed nonzeros, we also
measured the performance on random matrices. The
results are shown in figure 12, with the z-axis varying
the density of nonzero elements between 0.02% and
0.26%. The size of the random matrix was 64K X 64K,
and the performance was measured for different cache
block sizes. The performance of LSI multiplication
for the same cache block sizes are shown in the same
figure as separate points above z = 0.15%, the density
of the LSI matrix. The performance characteristics of
the LSI matrix are very similar to those of a random
matrix.

1Sparse matrix-vector multiplication is the kernel of the LSI
algorithm. Our matrix came from NERSC/LBNL in collabo-
ration with the Inktomi company, and is a subset of real data
from the web. They use an algorithm different from LSI, which
is also based on sparse matrix-vector multiplication.
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9 Models Used in Compilation

The register blocking optimization uses profiling infor-
mation specific to the target machine, namely the per-
formance of a dense code in sparse format for various
block sizes. Note that even for this fixed problem, the
choice of optimal block size is not a simple function of
the number of registers available on the machine. Sim-
ilarly, although our current implementation of cache
blocking does not make use of a performance model for
determining block size, we showed that performance
of a random matrix on the target machine could be
the basis for a reasonable model. More importantly,
information about matrix structure is needed to de-
termine which optimizations are likely to be effective,
and given that choice, how to select parameters like
register block size based on the fill overhead. In a
full compilation environment, we imagine this input-
specific information to come from feedback from pre-
vious executions of the program. Although the actual
matrix might change from one run to another, the
characteristics, such as whether it contains dense sub-
blocks or other regular patterns, are likely to persist
over multiple runs. Note that decisions about register
and cache block size are not only used to reorganize
the matrix representation, but also to select the code
from a set of automatically-generated, loop-unrolled
codes for the various block sizes.

10 Conclusions

In this paper, we explored memory hierarchy opti-
mizations for sparse matrix vector multiplication, pri-
marily for register level optimizations. We demon-
strated the need for profiling information based on the
target machine and runtime information in the form
of the nonzero structure of the matrix. We introduced
a performance model for choosing register block size,
and examined the performance advantages of block-
ing and the overheads associated with changing an
unblocked representation to a blocked one. We also
extended the register blocking idea to multiplication
by a set of vectors and gave some preliminary perfor-
mance results on cache-level blocking.

The conclusion is that register blocking and cache
blocking can significantly improve the performance of
sparse matrix-vector multiplication. There are differ-
ent domains in which each technique is effective. Reg-
ister blocking works well for matrices from numeri-
cal simulations that have some natural clustering of
nonzeros, sometimes in the form of dense sub-blocks
throughout the matrix. For matrices with less struc-



ture, in particular nearly random patterns of nonzeros,
register blocking proves to be ineffective, but cache
blocking showed extremely favorable results; for a ma-
trix use in document retrieval, performance improved
by a factor of 3 using cache blocking.

Because these optimizations depend on details of
the memory hierarchy that are not captured by a sim-
ple set of parameters, profiling information was used
to build a performance model that was specific to a
machine and to the nonzero structure of a matrix.
This model is used to select register block size, which
in turn determines the optimized code that is gener-
ated for a given matrix/machine pair. We showed that
our block size selection technique usually gave perfor-
mance close to that of the optimal block size.

We plan to use these results in building a system
to automatically generate highly tuned sparse matrix
kernels. At the moment, some codes are automatically
generated and the rest are written by hand. We en-
vision a dialog between application developer and the
code generation system to collect information about
sparsity structure and the performance of certain op-
erations (such as multiplication using a dense matrix
in sparse format) for the machine of interest.

Generating optimized sparse matrix kernels is very
difficult, especially given the importance of sparsity
structure and the difficulty of predicting performance
on modern machines. We plan to develop additional
models for memory hierarchy optimizations on sparse
matrix kernels, both to determine parameters of indi-
vidual optimizations and to help select the best set of
transformation from a larger set of possibilities. One
of the keys to automatic optimization of sparse matrix
codes is the development of performance models that
can be evaluated quickly and are accurate enough to
select good code transformations.
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