Draft -- Final version to appear in the proceedings of the Supercomputing '95.

Parallelizing the Phylogeny Problem

Jeff A. Jones Katherine A. Yelick
Computer Science Division
University of California, Berkeley *

Abstract

The problem of determining the evolutionary history of species in the form of phyloge-
netic trees is known as the phylogeny problem. We present a parallelization of the character
compatibility method for solving the phylogeny problem. Abstractly, the algorithm searches
through all subsets of characters, which may be traits like opposable thumbs or DNA se-
quence values, looking for a maximal consistent subset. The notion of consistency in this
case 1is the existence of a particular kind of phylogenetic tree called a perfect phylogeny tree.

The two challenges to achieving an efficient implementation are load balancing and effi-
cient sharing of information to enable pruning. In both cases, there is a trade-off between
communication overhead and the quality of the solution. For load balancing we use a
distributed task queue, which has imperfect load information but avoids centralization bot-
tlenecks. To prune the search space, we use the following property: If a perfect phylogeny
tree does not exist for some set of characters, then none exists for any superset of that set.
This i1s implemented by searching the power set starting with the smallest sets, and storing
failures in an efficient distributed trie. The resulting program shows speedups of 50 on a
64-processor CM-5.

1 Introduction

The problem of determining the evolutionary history for a set of species, known as the phylogeny
problem, is fundamental to molecular biology. Evolutionary history is typically represented by
a phylogenetic tree, a tree of species with the root being the oldest common ancestor and the
children of a node being the species that evolved directly from that node. A path from the
root to a species shows the evolutionary path of that species. The phylogenetic tree shows
relationships between species and is an important tool in the branch of biology known as
systematics. It is valuable in itself, but also provides clues about migration patterns, climate
changes, the formation of the earth, and many other mysteries of the diversity of life.

Methods for solving the phylogeny problem include parsimony, compatibility, maximum
likelihood, and distance matrix methods [5]. Unfortunately, with any of these methods, deriving
phylogenetic trees is often prohibitively expensive. In this paper we describe the parallelization
of a solution to the phylogeny problem; it is the first parallel implementation of this algorithm
and is based on our own sequential implementation which is significantly faster than previous
sequential implementations.

*This work was supported in part by the Advanced Research Projects Agency of the Department of Defense
monitored by the Office of Naval Research under contract DABT63-92-C-0026, by the Department of Energy
grant DE-FG03-94ER25206, by the National Science Foundation as a Research Initiation Award (number CCR-
9210260), and as an Infrastructure Grant (number CDA-8722788), The information presented here does not
necessarily reflect the position or the policy of the Government and no official endorsement should be inferred.



Our algorithm is based on character compatibility [10]. The problem statement is defined
formally in Section 2 and a sequential algorithm outlined in Section 3. Character compatibility
is essentially a search problem and as such has two of the classic problems of parallel search.
First, the search tree unfolds dynamically with unpredictable structure and cost; each node in
the search tree is a parallel task to be assigned to processors while optimizing for both locality
and load balance. Second, as with many search problems, pruning of the search space is essential
to performance, and pruning in a parallel implementation requires sharing information about
the results of the search so far. In something like a game tree search with alpha-beta pruning,
the shared information may be small. In our case, the shared state is a representation of the
result (success or failure) of every node searched so far. Fortunately, there is sufficient structure
in the state that its representation is not prohibitively large.

Because of pruning and irregular task times, the performance of character compatibility
is difficult to predict. Nevertheless, we show how measurements of the sequential algorithm
with typical input values are used to motivate the parallel design. In Section 4 we describe
some of the important performance characteristics of the algorithm and survey its sources of
parallelism.

The parallelization is done by replacing two of the main data structures from the sequential
algorithm, a queue and a trie, with distributed versions. The queue holds search tree tasks
and is replaced by a distributed task queue for dynamic load balance, described in Section 5.
The trie holds the known successes and failures and is represented by a lazily replicated trie,
described in Section 6. Four different implementations of the trie were considered, and we
provide performance numbers that demonstrate the sensitivity to design choices, and show that
for the best choice, the overall speedups are quite good. Section 7 presents our conclusions.

2 The Character Compatibility Problem

Phylogenetic trees are constructed by considering the characters exhibited by the species. The
characters can be skeletal structures, coloring, or other physical characteristics. More often,
the characters are elements of molecular sequences. We represent a species v with a vector of
character values, u[l], ..., u[cpaz], Where ¢4, is the number of characters to be considered. In
the case of molecular sequences, each element of this vector is a nucleotide or amino acid.

A character is compatible with a phylogenetic tree if no value for that character arises
more than once along any path in the tree. For example, if a species loses some trait, such as
opposable thumbs, it cannot regain it. A solution of the character compatibility problem is a
phylogenetic tree with the maximum number of compatible characters.

A perfect phylogenetic tree, or perfect phylogeny for short, for a set of species and a given
set of characters for those species is a phylogenetic tree compatible with all the characters.
Formally, we define a perfect phylogeny for a fixed set of characters as follows:

Definition 1 Given a set of species S and a set of characters C', an undirected tree T is a
perfect phylogenetic tree for S with C' if

1. S CV(T), the vertices of T
2. Fvery leaf in T is in S

3. For all paths ug, . .., uk, for all characters ¢ € C, if uglc] = ugle], then for all i, 0 < i <
ky uile] = uo[c]



o @ W N
species characters
u 1 1 4 b (W —(w—w) YES
\ 1 2 1
W 2 1 2 o (v) 1,1,3 (w) YES

Figure 1: Examples of perfect phylogenetic trees.

species characters
u 11
v 1 2
w 21
X 2 2

Figure 2: Set that does not have a perfect phylogeny.

If a perfect phylogeny exists for a set of species with a particular set of characters, we say
that the set of characters is compatible. This is equivalent to stating that a set of characters
is compatible if there exists a perfect phylogeny for the set of species that is compatible with
every member of the set.

To illustrate the definition, consider Figure 1, which shows a set of n = 3 species, {u, v, w},
with three characters each (¢4, = 3). Each character takes on one of up to 4 possible values.
Tree @ is not a perfect phylogeny because it violates condition 3 in the definition: u[2] = w][2],
but v[2] # u[2].
opposable thumbs, and v to be a species without this trait. Tree a is not a valid phylogeny
because, in some evolutionary path, opposable thumbs were lost and then reappeared.

In contrast, trees b and ¢ are perfect phylogenies because they satisfy the three conditions of
the definition. Notice that the perfect phylogeny for a given set of species may not be unique.
Also, tree ¢ contains the species [1, 1, 3], which was not a member of the original set. The tree
is still a perfect phylogeny, however, because each leaf appears in the original set. In fact, some
sets of species have no perfect phylogenies containing only members of the set, indicating the
existence of an unknown intermediate species, or “missing link,” in the evolutionary history of
the set.

Ideally, we would like to find a perfect phylogeny for our original set of species with the
entire set of characters. Unfortunately, this does not exist for many sets of species. Figure 2

To make the example more concrete, consider u and w to be species with

shows an example. Even adding new internal vertices does not produce a perfect phylogeny.
For this reason, the character compatibility problem is to find the maximal compatible subsets.
If one of the maximal subsets is sufficiently large, the corresponding perfect phylogeny will be
a good estimate of the evolutionary history of the species.

To determine compatibility, we use the algorithm of Agarwala and Ferndndez-Baca [1], mod-
ified according to a suggestion of Lawler [9], as described in our previous work [8]. Examining
all possible subsets (an exponential number) in turn is extremely time-consuming, however.
Fortunately, we can reduce the number of subproblems examined with the following lemma.



111

: 011 110
species characters
u | 1 1 1 1ot
v 1 2 1 010
W 2 1 1 001 100
X 2 2 1 /
000
a) Input species b) lattice of subsets 3) frontier of solutions

Figure 3: Search space of characters subsets.

Recall that a set of characters is compatible if a perfect phylogeny exists for the given set of
species with that set of characters.

Lemma 1 Let S be a set of species, and let Cy and Cy be subsets of the characters of the
species in S, such that Cy C Cy. If Cy is compatible, C'y is compatible.

Proof. If (5 is compatible, there exists a perfect phylogeny T for S that is compatible with
every member of (5. Because any member of 'y is a member of Cy, C'| must also be compatible
with T.
O

Once we find a compatible set, we know that all subsets of that set are also compatible.
Similarly, if we find an incompatible set, we can exclude all supersets of that set from consider-
ation. We can consider the sets as being partially ordered by the subset relation. For example,
Figure 3a shows a set of species with three characters and Figure 3b shows the generic lattice
for the three character case. Figure 3c shows the maximal compatible subsets, marked as solid
circles on the lattice, and the non-maximal but compatible subsets, marked as dashed circles.
In Section 3, we discuss the performance ramifications of this structure.

3 Exploring the Space of Subsets

Recall that the character compatibility problem is the problem of finding the maximal com-
patible subsets of characters. We must explore the space of all subsets of the original set of
characters, using the perfect phylogeny procedure to decide success or failure for each subset.
Fortunately, we can eliminate many subsets from consideration using Lemma 1.

The conceptually simplest technique for attacking character compatibility is to enumerate
all subsets of the original set of characters and step through them one by one, calling the
perfect phylogeny procedure each time. This algorithm parallelizes very well: each processor
can explore some portion of the subsets independently. Unfortunately, this method is horribly
inefficient, because it uses none of the information obtained from the solution of other subsets.

As a first refinement, we maintain a store of results from previously examined subsets. We
step through the subsets as before, but before calling the perfect phylogeny procedure for a
subset S, we search the store for any supersets of S already found compatible and for any
subsets of S already found incompatible. We refer to a compatible subset of characters as a
success and an incompatible subset as a failure. If we find either a superset that is a success



0000

011 110 1000 0100 0010 0001
101 e |
1010 1001)/0101 0110 0011
010
001 /100
000
ayn=3 b)n=4

Figure 4: Binomial trees.

or a subset that is a failure, we avoid the cost of the perfect phylogeny procedure. This is a
significant improvement, but it comes at the cost of reducing parallelism, because the processors
must share the two stores, so they no longer work independently.

This method is insufficient, however, to solve large problems. We must eliminate more
redundant work. To estimate the magnitude of the problem, we note that a 60 character
problem has 259 subsets of characters. Even if each were resolved in the store, and the lookup
time was only 1ns, the total time would still be more than 36 years. Because we want to solve
problems with significantly more than 60 characters within a reasonable amount of time, we
must find a way to avoid all computation for an enormous number of subsets.

The lattice in Figure 3 provides the intuition for pruning the search space. Notice that, by
Lemma 1, if a subset is incompatible, all its descendants in the lattice must also be incompatible.
Similarly, if a subset is compatible, all of its ancestors must be compatible. We can begin at
either the top or the bottom of the lattice and continue along each branch until we reach a
failure or a success, respectively.

From the lattice, we remove edges to obtain the search tree shown in Figure 4a. Trees
with this structure are known as binomial trees [7, 12]. Figure 4b shows an example with 4
characters. The tree corresponds to a search in which we begin with small subsets and progress
to larger subsets. Alternatively, we could begin with large subsets and progress to smaller
subsets. This approach, however, is not as efficient [8] because most large subsets will fail,
which gives no information about the rest of the subsets. In contrast, many small subsets will
fail, allowing us to use Lemma 1 to prune large branches of the search tree.

Notice that we can combine the two techniques above. As we explore the search tree,
we refer to the store before calling the perfect phylogeny procedure at each node. In fact, if
we proceed depth first and right to left in our search tree, keeping successes in the store is
unnecessary because we will visit no set of characters until we have visited all its subsets. This
search pattern is very efficient, because the failure store gives perfect information: We will call
the perfect phylogeny procedure on no subset of characters which has an incompatible subset.

Not even this combined technique, however, is fast enough for large problems. Therefore, we
use parallelism to reduce the running time further. Parallelizing this search technique presents
two challenges. First, we must overcome the limitations on parallelism imposed by the structure
of the search tree. The search tree reduces the available parallelism by imposing an ordering
constraint between parent-child pairs in the tree. Furthermore, the search tree causes a load
balancing problem, because neither the shape of the tree that must be explored nor the amount



of computation required for each node is known until run time. We consider these problems in
Sections 4 and 5.

The second challenge is minimizing the overhead of sharing the failure store and the solution
store among processors. There is a trade-off between the overhead of sharing and the cost of
visiting nodes that should have been pruned. Section 6 addresses this point.

4 Characteristics of the Application

Two important factors in determining whether a program can be effectively parallelized is the
amount of parallelism and the granularity of the parallel tasks. Because tasks will be created
and scheduled dynamically, perfect scheduling is not possible; it is therefore important to have
many more tasks than processors to avoid idle time. Because most modern parallel machines
have powerful nodes and significant communication overhead, the tasks must be fairly coarse-
grained.

4.1 Available Parallelism

We identify two sources of parallelism in the program. The top level of parallelism comes from
the character compatibility problem: solving the perfect phylogeny problem for many different
subsets of the character set. These tasks are independent, except for their effect on the failure
store. The second, lower level of parallelism is within the perfect phylogeny procedure, which
uses a divide-and-conquer algorithm.

Our implementation takes advantage of the first source of parallelism only, because the
number of tasks appears to be large enough to sustain a large number of processors. Figure 5
shows the average number of subsets explored for various problem sizes, as well as the average
number of subsets that were not resolved in the failure store. Even for the moderate-sized
problems shown, the number of tasks is enormous, and grows exponentially with the number
of characters, as expected. Because we want to solve problems with hundreds or thousands of
characters, the parallelism at this level is sufficient.

4.2 Task Granularity

A task in our application is the solution of the perfect phylogeny problem for a given subset
of characters. The data required for each task is the subset of characters and the character
vectors for the entire set of species. Because each task uses the character vector for each species,
we replicate this data on all processors. Therefore, communicating a task between processors
only requires sending the subset of characters. We represent a subset by a bit vector, requiring
one bit for every character in the original set and a small amount of header data. Even a
100-character problem needs only five 32-bit words per task.

Figure 6 shows the distribution of task times for a 60-character problem running on an
Hewlett-Packard 712/80. Approximately 80% of the tasks take less than 50 ps. These are not
shown in the figure. The time taken by the remaining tasks is on the order of 1 ms. The average
task time is about 400 us, or 32000 cycles. The tasks are very coarse: tens of thousands of
cycles requiring only a few words of data. We take advantage of the coarse grain size of the
tasks in designing our implementation.



Frequency

1.8

1.6

-
(S

—_

0.8

0.6

0.4

0.2

all tasks

tasks not in
failure store

Il Il
10 20 30 40 50 60 70 80 20 100
characters

Figure 5: Average number of tasks, logarithmic scale.

x 10

0 1 2 3 4 5 6 7 8

Task Time (sec) -3

Figure 6: Task time distribution.



5 Distributing the Tasks

To explore the search tree, we use a data structure known as a task queue. The task queue will
distribute tasks across the processors to ensure good load balance. This structure supports the
following operations:

e Enqueue(T): insert a task T into the task queue.
e Dequeue(T'): remove the highest priority task in the the task queue and return it in 7.

As mentioned above, each task corresponds to a subset of characters, or, equivalently, a node
of the search tree. Each processor executes a loop consisting of dequeuing a task from the
task queue, executing the task, and, if the node succeeded, enqueuing the children of the task
in the search tree. As mentioned in Section 3, use of the failure store improves performance
significantly. To complete the parallel implementation, we implement the failure store as a
separate distributed data structure, described in Section 6.

We place three performance requirements on the task queue. First, it must provide good
load balancing, even for tasks with unpredictable times and with dependencies between tasks.
Second, the overhead of accessing the task queue must be low, and performance should scale
with the number of processors. This provides an interesting trade-off, because perfect load
information requires centralization, whereas scalability precludes it. The third requirement
on the task queue is that it should respect locality. In the phylogeny problem, this means
leaving tasks on the processor that created them whenever possible. Although the information
necessary to execute the perfect phylogeny procedure is present on all nodes, the information
from the distributed failure store may not be. Because the subsets in a subtree of the search
tree are all supersets of the root of the subtree, they are likely to benefit from the same elements
of the failure store. Therefore, we will be able to resolve more tasks in the failure store if the
tasks in the subtree execute on the same processor. Figure 7 shows the difference in running
times between an implementation that uses a task queue that respects locality and one that
uses a randomized task queue, for three 60-character problems on a 64-processor CM-5.

Along with these performance requirements, we will relax the semantics of the Dequeue
operation on the priority queue. To solve a particular phylogeny problem, we must execute
some subset of the tasks. Besides the parent-child relationship, the order of execution is not
important for correctness. Therefore, the Dequeue operation need not respect the priority of
the tasks. This observation allows a simpler, more efficient distributed task queue, because we
need not maintain global priority information.

Although priority is not a strict functional requirement, it is important to execute tasks
associated with small subsets before larger ones to increase the use of the failure store. As
mentioned in Section 3, exploring the search tree depth first and right to left is most efficient,
because it maximizes the benefit of the failure store. We use priority to encourage this order.

Input | Task Queue with Locality Randomized
60:000 89.3 694.1
60:001 180.1 854.9
60:002 221.0 1651.0

Figure 7: Running times (in seconds) for different task queue implementations.



1001 1000

Figure 8: An example trie.

The task queue data structure from the Multipol [13] meets our requirements, and is our
choice for our implementation. The task queue has been used in several other applications,
including an eigenvalue problem, a symbolic application, and several smaller problems [4].

6 Representation of the Store

In this section, we discuss the design decisions in our implementation of the store abstraction.
The same data type can be used to represent both the successes and failures, because they
are duals of one another. To avoid confusion, we will discuss only the failure set store in this
section. The design of the failure store is more important to performance, since it is used for
pruning the search space [8].

The failure store must support the following operations:

e Insert(S): insert a new set S of characters into the store
e DetectSubset(S): determine if any subsets of S are in the store.

For parallel performance, we will weaken the semantics of DetectSubset as we did with the
Dequeue operation on the task queue. We first describe an efficient sequential data structure
and then present four different representations for distributed memory multiprocessors.

6.1 A Sequential Implementation

In previous work, we have determined that a trie is a good data structure for a sequential imple-
mentation of the phylogeny problem [8]. A trie is a tree in which each leaf holds one value, in our
case a character subset. Representing a subset by a bit vector, where a bit is 1 if the correspond-
ing element is in the subset, and 0 otherwise, we locate a particular subset by starting at the root
and, at the nth level, choosing the left subtree if the nth bit is 1 and the right subtree otherwise.
Figure 8 shows a trie representing the set of subsets {{2},{0},{0,3},{0,2,3},{0,1}}, which,
using bit vector representation, is {0010, 1000,1001,1011,1100}. The trie structure reflects,
to some extent, the relation between subsets, so we can implement Insert and DetectSubsets
efficiently.

To reduce memory requirements, we maintain the invariant that no member of the trie is a
subset of another. In fact, in order to correctly execute DetectSubset, we need only keep the
minimal subsets of characters, because if a subset is a superset of any member of the failure
store, then it is a superset of a minimal element. The benefits of reducing memory requirements
include improved cache and virtual memory performance, as well as the ability to complete the



program on machines with a small amount of memory and no virtual memory, such as a node

of the CM-5.

We present performance results for the parallel implementations of the next three sections
below. The benchmarks are two 60 character sections of the mitochondrial third positions in
the D-loop region for various species [6]. Figures 9 and 11 show the speedups on a 64-node
CM-5 and Figures 10 and 12 show the fraction of subsets that were resolved in the failure store.
We will discuss these results in the sections that follow. We were unable to take performance
numbers for the fourth, asynchronous version, but plan to do so for the final version of the

paper.

6.2 Unshared

The simplest approach to distributing the trie is to keep a standard trie on each processor.
Insert operations insert into this trie, and DetectSubset searches only the local trie. Note that
DetectSubset is no longer guaranteed to return the correct result. Because no sets on other
processors are checked, DetectSubset(S) may return FALSE when a subset of S is stored on
another processor. Therefore, this implementation may lead to redundant work, but it is correct.
A processor may call the perfect phylogeny procedure on a subset of characters which has a
subset that another processor has already determined to be a failure. The perfect phylogeny
procedure will proceed unaffected, however, and determine that the subset is a failure, so the
processor will obtain the correct answer and will not explore that branch of the search tree
further. The cost of the lack of information is no more than the cost of a call to the perfect
phylogeny procedure.

For both test inputs, the fraction of subsets resolved in the failure store decreases as the
number of processors increases, as expected. This method is competitive for small numbers of
processors because of the lack of sharing overhead, but the poor performance of the failure store
on large numbers of processor dramatically reduces performance, especially for input 60:001.

6.3 Random

To reduce the amount of redundant work, the processors must communicate information from
their local tries to other processors. One method is to periodically send a random element
from the local trie to another processor. The implementation is relatively simple, and makes
use of an explicit message queue on each processor. The advantage of pushing elements, rather
than pulling them as would happen in a caching system, is that the sending processor has
information about which values need to be propagated. The primary benefit of the randomized
method is lack of synchronization. Unfortunately, the amount of information communicated in
each message is small, so depending on the frequency of sharing, the program suffers insufficient
sharing or excessive communication overhead.

The speedup figures this method is competitive for to input 60:000, but performs extremely
poorly for input 60:001. The performance of the failure store explains this difference. For input
60:000, the fraction of subsets resolved in the failure store remains high except for the largest
number of processors. For input 60:001, however, random sharing does not maintain sufficient
sharing, causing overall performance to plummet.

10



6.4 Synchronous

An alternative method is to periodically synchronize and communicate all information in local
tries to all processors in a global reduction. This reduction is performed in log P steps, where
P is the number of processors. At each step, each processor reads the members of the trie on
another processor and inserts them into its trie. The sequence of processors that processor 7
communicates with is ¢ xor 1, then processor i xor2, then i xor4, and so forth up to processor
ixor P/2. (Here xor denotes bitwise exclusive or.) All processors synchronize between steps by
executing a barrier. The communication pattern is the familiar butterfly reduction tree. After
this reduction, all processors have the same information in their local tries.

This method has a tradeoff between completeness of information on each processor and
overhead: Communicating more frequently requires more time for communication and synchro-
nization, but gives the processors better information so that they can increase the number of
subsets resolved in the failure store, thereby reducing computation time.

The speedup figures demonstrate that this method is superior to the previous two for large
numbers of processors because it maintains high performance of the failure store.

An additional benefit of this method is reduced memory requirement. According to intuition,
increasing the amount of information stored on each processor should increase the amount of
memory required. Because each local trie maintains the invariant that no member is a subset of
another, however, the number of elements in the local trie tends to decrease after the combine
operation. The random method above does not benefit from this effect, however, because
the sharing is very haphazard. This consideration is important for solving large problems on
machines with limited memory. In fact, the random method could not run on less than 32
processors because of its memory requirements.

6.5 Asynchronous

The synchronous version makes use of fast sychronization and global communication that was
available on the CM-5. On machines like a network of workstations, which do not have this
support, we considered a method that performs the global reduction lazily. Instead of syn-
chronizing all processors to perform the reduction, a processor reads the tries from each of the
processors that it would have communicated with in the reduction and adds their elements to
its own trie. Eventually, this procedure will broadcast all elements to all processors, just as in
the synchronous case, but no barrier is necessary.

This method does involve some additional overhead, both in memory and in processing time.
Because the processors are not synchronized, a processor will need to preserve old versions of its
local trie that other processors are in the process of reading. Also, some processing is necessary
to garbage collect these old versions. If the network has reasonably high bandwidth, however,
we expect the number of old versions maintained to be small, because the time required to read
a trie from another processor will be small.

Another source of overhead is the unsynchronized communication. As noted by Brewer and
Kuszmaul [3], on an architecture such as the CM-5, unsynchronized communication can lead to
the formation of hot spots. For example, several processors may read from the same processor
at the same time, which will cause each of the reading processors to be delayed. The barriers
of the synchronous method prevent this occurrence. For this reason, the asynchronous method
is well suited to networks on which a barrier is expensive, but may not perform as well as the
synchronous method on an architecture such as the CM-5, which has very fast barriers.

As mentioned above, we were unable to take performance numbers for this method. Some

11



speedup

6500 —

60.00 —

55.00 —

50.00 —

4500 —

40.00 —

35.00 —

30.00 —

25.00 —

20.00 —

15.00 —

10.00 —

5.00 —

000 — .
\ \ \ \ \ \ \

0.00 10.00 20.00 30.00 40.00 50.00 60.00

processors

Figure 9: Speedup vs. processors for Input 60:000.

preliminary measurements, however, show performance that is inferior to that of the syn-
chronous version on the CM-5.

7 Conclusion

We have described the design and implementation of a parallel algorithm for solving the phy-
logeny problem based on the character compatibility method. The application has irregular
data structures, asynchronous communication inside the task queue and within some versions
of the trie, and an irregular task graph with unpredictable task times due. Guided by our mea-
surements of the sequential implementation [8], we developed a parallel version based on two
data structures. The task queue from Multipol [13] distributes the tasks and maintains load
balance, and the failure store, represented as a distributed trie, manages the sharing of informa-
tion among processors. We studied four implementations of the failure store and found that the
implementation that synchronized periodically to communicate information to all processors
was the best. In addition to the usual amortization of overhead that results from sending a
few large messages rather than many small ones, in this application a larger set of values may
actually require less space, because the combined the representation may shrink.

Our goal throughout was to solve larger problems in a reasonable amount of time and to

12



fraction resolved in failure store

\ \ \
1.00 — -

095 — B
0.90 — B
0.85 — B
0.80 — B
075 — B
00 —T—— e B
0.65 — B
0.60 — B
0.55 — B
0.50 — B
045 — B
040 — B
035 — B
030 — B
025 — B
020 — B
0.15 — B
0.10 — B
005 — B
0.00 — B

-0.05 U ‘ ‘ ‘ ‘ ‘ ‘ processors
0.00 10.00 20.00 30.00 40.00 50.00 60.00

Figure 10: Fraction of subsets resolved in the failure store vs. processors for Input 60:000 .

13



speedup

65.00 —

60.00 —

55.00 —

50.00 —

4500 —

40.00 —

35.00 —

30.00 —

25.00 —

20.00 —

15.00 —

10.00 —

5.00 —

0.00 — =
\ \ \ \ \ \ \

0.00 10.00 20.00 30.00 40.00 50.00 60.00

processors

Figure 11: Speedup vs. processors for Input 60:001.

14



fraction resolved in failure store

\ \
1.00 — -

095 |- —
0.90 |- —
085 - —
080 — X
075 -
0.70
0.65 - —
0.60 |- —
0.55 |- —
0.50 - —
045 |- —
040 |- —
035 —
030 —
025 |- —
020 —
0.15 —
0.10 |- —
005 |- —
0.00 —

005 ‘ ‘ ‘ ‘ ‘ ‘ processors
0.00 10.00 20.00 30.00 40.00 50.00 60.00

Figure 12: Fraction of subsets resolved in the failure store vs. processors for Input 60:001.

15



identify general techniques that are useful across similar application. The implementation is,
we believe, the fastest implementation of the character compatibility problem. The sequential
algorithm for solving the perfect phylogeny problem tasks is due to Agarwala and Ferndndez-
Baca [1], with an improvement suggested by Lawler [9]. Using the full character compatibility
application, we were able to solve problems with 60 characters in a few minutes, demonstrating
speedups of 50 on 64 processors.

References

[1] R. Agarwala and D. Fernandez-Baca. A polynomial-time algorithm for the perfect phylogeny
problem when the number of character states is fixed. In Proceedings of the 34th Annual
Symposium on the Foundations of Computer Science, pp. 140-147, 1993.

[2] H. Bodlaender, M. Fellows, and T. Warnow. Two strikes against perfect phylogeny. In Pro-
ceedings of the 19th International Colloquium on Automata, Languages, and Programming,
pp- 273-283, Springer-Verlag, Lecture Notes in Computer Science, 1992.

[3] E. Brewer and B. Kuszmaul. How to Get Good Performance from the CM-5 Data Network.
In Proceedings of 8th International Parallel Processing Symposium, Cancun, Mexico, 1994.

[4] Soumen Chakrabarti, Abhiram Ranade, and Katherine Yelick. Randomized load balancing
for tree-structured computation. In Proceedings of the Scalable High Performance Comput-
ing Conference, Knoxville, TN, May 1994.

[5] J. Felsenstein. Numerical methods for inferring evolutionary trees. Q. Rev. Biol, 57:379-404,
1982.

[6] M. Hasegawa, H. Kishino, K. Hayasaka, and S. Horai. Mitochondrial DNA evolution in
primates: transition rate has been extremely low in the lemur. J. Molecular Evolution,
31(2):113-21, 1990.

[7] J.M. Hullot. Associative-commutative pattern matching. 5th IJCAI, Tokyo, Japan, 1979.

[8] J. Jones. Parallelizing the Phylogeny Problem. Master’s thesis., University of California,
Berkeley, California, 1994.

[9] E.L. Lawler. Personal communication. August 1993.

[10] W.J. Le Quesne. A method of selection of characters in numerical taxonomy. In Syst.
Zool., 18:201-205, 1969.

[11] F.R. McMorris, T.J. Warnow, and T. Wimer. Triangulating vertex colored graphs. In
Proceedings of the 4th Annual Symposium on Discrete Algorithms, Austin, Texas, 1993.

[12] J. Vuillemin. A data structure for manipulating priority queues. C. ACM, 21(4), 1978.

[13] K. Yelick, S. Chakrabarti, E. Deprit, J. Jones, A. Krishnamurthy and C. Wen. Data struc-
tures for irregular applications. DIMACS Workshop on Parallel Algorithms for Unstructured
and Dynamic Problems, 1993.

16



