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Abstract� We present a parallel completion procedure for term rewriting systems�
Despite an extensive literature concerning the well�known sequential Knuth�Bendix
completion procedure� little attention has been devoted to designing parallel com�
pletion procedures� Because naive parallelizations of sequential procedures lead to
over�synchronization and poor performance� we employ a transition�based approach
that enables more e�ective parallelizations� The approach begins with a formulation
of the completion procedure as a set of transitions �in the style of Bachmair� Der�
showitz� and Hsiang� and proceeds to a highly tuned parallel implementation that
runs on a shared memory multiprocessor� The implementation performs well on a
number of standard examples�

� Introduction
We describe a parallel completion procedure for term rewriting systems� A se�

quential completion procedure was formulated �rst by Knuth and Bendix ��	
� Ex�
tensions� modi�cations� and applications to algebra� theorem proving� and data type
induction are described by Buchberger �	
 and Dershowitz ��
�

Performance is an important factor that limits the applicability of completion
procedures� and of term rewriting systems in general� We show how parallelism can
lead to signi�cantly better performance� Opportunities for parallelism abound� be�
cause completion is not inherently sequential� But straightforward parallelizations of
the Knuth�Bendix procedure perform poorly� Careful algorithm and data structure
design is needed� as in sequential completion procedures� to avoid super�uous work�
How parallel tasks are scheduled must be tuned� because the order in which steps
are performed plays a crucial role in performance�

This paper is divided as follows� Section 
 de�nes the completion problem�
Section 	 describes the issues that arise in �nding good parallel solutions� Sec�
tion � presents transition axioms for a completion procedure using the inference
rules of Bachmair� Dershowitz� and Hsiang �

� Section � transforms these axioms
into ones suitable for parallel implementation� Section � describes the implementa�
tion� Section � describes its performance� Sections � and � describe related work
and summarize our results�

� The Completion Problem
We assume a familiaritywith the notions of terms and substitutions� An equation

is an unordered pair of terms� written �s
��
� t�� We write �s

�
� t� when we want to
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distinguish an orientation� i�e�� �s
��
� t� is either �s

�
� t� or �t

�
� s��

A rewrite rule is an ordered pair of terms� written s � t� A term rewriting
system R is a set of rewrite rules� which de�nes a relation �R on terms such that
s�R t �s rewrites to t� if and only if there is a rule l� r in R and a substitution �
such that s contains �l as a subterm �l is said to match this subterm� and t is formed
by replacing the occurrence of �l by �r� Let ��

R� �
�
R� and �

�
R be the transitive�

re�exive transitive� and re�exive symmetric transitive closures of �R� Since ��
R

is symmetric� it is well�de�ned even when R is replaced by a set of equations E�
The relation ��

E is the equational theory of E and is also denoted by E�� i�e�� an
equation �s

�
� t� is in E� if and only if s��

Et�
R is con�uent if� whenever r ��

R s and r ��
R t� there is a term u such that

s ��
R u and t ��

R u� R is noetherian if ��

R contains no in�nite chains� R is
convergent if it is both con�uent and noetherian� If R is convergent� then for any
term t there exists a unique irreducible �i�e�� unrewritable� term t �R �called the
normal form of t� such that t��

R t�R� When R is simply noetherian� we write t�R
to mean some one of the possibly many normal forms of t� When R is convergent�
s��

R t if and only if s�R� t�R�
Some applications of term rewriting require convergent systems� others attempt

to establish convergence by creating new rules in a process known as completion�
Such applications raise the following related problems�

De�nition� Given a set of equations E� the �nite completion problem is to �nd a
convergent rewriting system R such that ��

R and ��
E are the same relation�

For some some sets of equations E� no �nite R exists that solves the �nite
completion problem� In such cases� it is sometimes useful to �nd approximationsRi

to E� in the following sense�

De�nition� Given a set of equations E� the completion problem is to produce
a �possibly in�nite� sequence of rewriting systems R�� R�� � � � such that each Ri is
noetherian���

Ri
is contained in��

E� and� for any equation �s
�
� t� in E�� there exists

i such that for all j � i� s and t have unique normal forms in Rj� and s�Rj
� t�Rj

�

If the �nite completion problem can be solved for E� the resulting rewriting
system provides a decision procedure for E�� If the completion problem can be
solved� the resulting sequence of rewriting systems provides a semidecision proce�
dure� However� there may not be a solution to the completion problem� For example�
if E consists of a single commutativity axiom� no noetherian rewriting system has
the same equational theory as E�

More general formulations of the completion problem increase the number of sets
of equations for which solutions exist� Some generalizations allow function symbols
in R that are not in E� requiring only that ��

R be a conservative extension of ��
E�

Others include completionmodulo equations �such as commutativity� ���
� Although
these generalizations fall in the class addressed by our approach� we do not consider
them in this paper�

Solving the completion problem involves generating additional rules� if necessary�
to ensure con�uence� Such rules can be found using uni�cation and critical�pairing�
Two terms s and t are uni�able if there is a substitution � �called their uni�er� such
that �s � �t� If �s � �t� and for all other uni�ers ��� there is a substitution �



such that �� � � � � � then � is a most general uni�er of s and t� If two terms are
uni�able� then they have a most general uni�er� A substitution � is a renaming if�
for all variables v in the domain of � � � �v� is a variable� Most general uni�ers are
unique up to renaming� i�e�� up to composition with renaming substitutions�

Let r� and r� be the rewrite rules s � t and l � r� Assume r� and r� have
no variables in common� Then �s�

�
� t�� is a critical pair between r� and r� if some

� uni�es l with a non�variable subterm of s� s� is formed from �s by replacing the
subterm �l by �r� and t� is �t� Let crit�r�� r�� be the set of critical pairs between
r� and r�� with r��s variables renamed� if necessary� to avoid con�icts with r��s� Let
crit all�R� be

S
fcrit�r�� r�� � r�� r� � Rg� Note that crit all�R� contains crit�r� r�

for all r in R� Both crit and crit all are unique up to variable renaming�
Solving the completion problem also involves establishing that a rewriting system

is noetherian� which itself is an undecidable problem� The most common approach
to proving that a system is noetherian is to use a reduction ordering on terms� i�e��
a monotonic well�founded ordering that is stable under substitution ��
� If � is
a reduction ordering and l � r for every rule l � r in R� then R is noetherian�
Completion procedures generally employ a �xed reduction ordering and halt with
failure if this ordering is not powerful enough to orient some equations that arise
during completion� This prompts the following de�nition�

De�nition� Given a set of equations E and a reduction ordering �� a completion

procedure produces a possibly in�nite sequence R � hR�� R�� � � �i of rewriting systems
such that�

�� Each Ri is provably noetherian� i�e�� l � r for all l � r in Ri�

� Each Ri is consistent with E� i�e����

Ri
is contained in ��

E �
	� If some Ri solves the �nite completion problem� then the procedure halts with

success� and this Ri is the last element in R�
�� If no Ri solves the �nite completion problem� then either �a� the procedure

halts with failure or �b� R solves the general completion problem� i�e�� R is
in�nite� and� for any equation s��

E t� s�Ri
� t�Ri

for all su�ciently large i�

The �rst two conditions are safety properties� which prevent completion proce�
dures from producing rewriting systems that do not terminate� or that incorrectly
reduce two terms to a common normal form� The last two conditions are liveness

properties� which require completion procedures to achieve certain results�
Condition ��a� classi�es trivial procedures� which always halt with failure� as

completion procedures� Completion procedures typically di�er on the set of inputs
for which they fail� and their ability to resist failure is one of the qualities by which
they are judged� Completion procedures can be made failure resistant by allowing
the reduction ordering to be enlarged in restricted ways ��
� Completion procedures
can be made unfailing by leaving some equations unordered and restricting the
application of rewrite rules �

� Because these generalizations do not raise interesting
new questions concerning parallelism� we do not consider them in this paper�

� Design Issues for Parallel Completion Procedures
The completion problem provides many opportunities for parallelism� At the

same time� it presents many pitfalls� Ideally� a parallel completion procedure run�
ning on n processors should be close to n times faster than a well�tuned sequential



completion procedure running on a single processor� Such speed�ups� however� may
be di�cult to attain� Because of synchronization overhead� tasks cannot be too �ne�
grained and parallel data structures must minimize synchronization bottlenecks�
Because all processors must be kept equally busy to achieve maximumperformance�
tasks cannot be so coarse�grained as to prevent e�ective load�balancing� And be�
cause highly parallel processes can exhibit nondeterministic behavior� care must be
taken to maintain correctness while optimizing performance�

We explore these issues by discussing various ways to parallelize the sequen�
tial Knuth�Bendix completion procedure ��	
� This procedure has two alternating
phases� internormalization� which rewrites and eliminates equations and rules� and
critical pairing� which creates new rules� Although the requirements for completion
procedures do not mention internormalization� experience with sequential comple�
tion procedures has shown that it is essential for good performance�

��� Granularity

The simplest approach to designing a parallel completion procedure is to keep the
overall sequential structure of the Knuth�Bendix procedure� but to use �ne�grained
parallelism for low level computations� For example� we can use theoretically e�cient
parallel procedures to determine if two terms match during internormalization� Yet
this helps little in practice� even with lightweight threads� terms must be huge�
with hundreds or thousands of operators�before the gains outweigh the overhead of
starting and synchronizing parallel tasks� Although very large terms arise in some
applications� they are not the norm�

At a higher level of granularity� we can parallelize the operations of rewriting and
computing critical pairs� for example� by attempting to match and unify di�erent
subterms in parallel� But this also requires very large terms to justify the overhead�

At better levels of granularity� we can �and do� attempt to rewrite a given term by
several rewrite rules� or to compute critical pairs between di�erent rules in parallel�

��� Load Balancing

A further way to parallelize the sequential completion procedure is to perform the
two processes of internormalization and critical pairing in parallel� thereby creating
a two�stage pipeline with a feedback loop from the critical pairing process to the
internormalization process� Additional parallelism can be used within the two stages
to try to balance the pipeline� Implementing this design taught two lessons that led
us to abandon developing parallel programs from conventional sequential ones�

The �rst lesson is that the amount of time spent in normalization far exceeds
the time spent in critical pairing� The magnitude of the di�erence�a factor of 
�
is not unusual�limits the potential speedup of the pipeline to ��� Furthermore� on
a six�processor machine� dedicating one sixth of the processing power to �� of the
work is not a good use of resources�

The second lesson is that� even with many processors� performance instability
between the two stages makes it di�cult to balance the pipeline� an expensive
critical pairing stage that generates many new rules is generally followed by an
expensive internormalization stage� On typical iterations� the ratio of the time spent
internormalizing to the time spent critical pairing varied between ��
 and ��� We
can address these speci�c performance problems� for example� by having the critical



pairing stage work on more rules to make it relatively more expensive� by further
optimizing internormalization to make it less expensive� or by dividing the stages
into parallel subtasks and dynamically allocating additional processors� But these
solutions avoid the real problem� there is a synchronization point after each iteration
of the pipeline� when each stage gets new rules from the other� The situation is even
worse without the pipeline� there being two synchronization points per iteration� one
after internormalization and one after critical pairing�

Unnecessary synchronization points are artifacts of basing parallel programs on
sequential programs� Hence we use a di�erent� transition�based approach �
	
 that
allows parallelism both between and within critical pairing and internormalization�

��� Correctness

Achieving performance while maintaining correctness requires care in choosing
algorithms and data structures� For example� if we attempt to rewrite both sides
of an equation in parallel� then failed rewrites must not modify the terms being
rewritten� and successful simultaneous rewrites must not interfere with one another�

When internormalizing in parallel� we must be careful to prevent two rules that
are the same up to the names of their variables from reducing one another to trivial
rules� i�e�� to rules with identical left and right sides�

� High�level Transition Axioms for Completion
We base the design of our parallel completion procedure not on traditional se�

quential procedures� but on a reformulation of the original Knuth�Bendix procedure
��	
 by Bachmair� Dershowitz and Hsiang �

 as a set of nondeterministically�applied
transition axioms� Figure � presents transition axioms for a completion procedure
similar to the inference rules in �

� The state consists of a set of equations E and
a set of rewrite rules R� Initially� E holds the user�s input and R is empty� �Our
formulation di�ers slightly from that in �

� which assumes that neither E nor R
contains elements that di�er only by renamings� Such an assumption is di�cult to
implement�� The procedure stops if and when all guards are false� e�g�� because the
fail transition sets both E and R to ordering failure�

The transition axioms preserve the invariant that each rule s� t in R is ordered
with respect to �� i�e�� s � t� An important property of reduction orderings is that
if s � t and r both satisfy this invariant� and if r rewrites t to t�� then s � t� also
satis�es the invariant� hence right reduce preserves the invariant� Because left reduce
may not satisfy the invariant� and because it may reduce a rule to a triviality� it
turns a rewritten rule into an equation�

The requirement �age prevents�s � t� r� in the guard for left reduce prevents
the completion procedure from removing all instances of a redundant rewrite rule�
As noted earlier� when two rules are renamings of one another� either can reduce the
other to a triviality� The details of this problem are not important for this paper�
but the solution a�ects our presentation� We associate an age with each rewrite rule
and de�ne age prevents�r�� r�� to be true if r� is older than r� and the left sides of
r� and r� are renamings of each other� Using the age of rules is mentioned in �

�
and the validity of this solution was con�rmed by Dershowitz ��
�

Any procedure that performs a fair interleaving of these actions solves the com�
pletion problem� CP fairness ensures both that every equation appearing in E is



State Components

E � set�equation
 � ordering failure
R � set�rule
 � ordering failure

Initially

E � user input
R � �

Transition Axioms

simplify � Apply one rewrite step to either side of an equation
�s

��
� t� � E � t�R t� �
E �� E � �s

��
� t� � �s

��
� t��

delete � Delete trivial equation
�s

�
� s� � E �
E �� E � �s

�
� s�

orient � Convert equation into rewrite rule using reduction ordering
�s

��
� t� � E � s � t�
E �� E � �s

��
� t� � R �� R� �s� t�

right reduce � Apply one rewrite step to right side of a rule
�s� t� � R � t�R t� �

R �� R� �s� t� � �s� t��

left reduce � Apply one rewrite step to left side of a rule
�s� t� � R � r � R � s�frg s

� � �age prevents�s� t� r��
R �� R� �s� t� � E �� E � �s�

�
� t�

deduce � Add one critical pair between rules in R to E
�s

�
� t� � crit all�R��
E �� E � �s

�
� t�

fail � Halt if there is an unorderable� nontrivial� normalized equation
�s

�
� t� � E � s 	� t � s �R� s � t �R� t � s 	� t � t 	� s�
E�R �� ordering failure

Liveness

CP fairness� for any nonterminating execution �E�� R��� �E�� R��� � � �
and any i� 
j�iEj � � and� if e � 
j�icrit all�Rj�� then some
renaming of e is in some Ek�

CP termination� if �E�� R��� �E�� R��� � � � is nonterminating� then no
Ri solves the �nite completion problem for E��

Figure �� High�level transition axioms for completion



eventually ordered� simpli�ed� or deleted� and also that every critical pair is eventu�
ally added to E� CP termination ensures that the completion procedure terminates
if and when it solves the �nite completion problem�

The completion procedure can fail if there is a nontrivial equation e in E that
can be neither ordered nor rewritten� since no fair execution can leave e in E forever�
Most implementations� however� will run inde�nitely with an unorderable equation
as long as there is other work to do� These procedures are not CP fair� but this is an
academic point� �nite machine resources will eventually take care of termination�

� Implementable Transition Axioms for Completion
The transition axioms in Figure � are not appropriate for direct implementation�

To make them implementable� we must �nd ways to ensure liveness� balance their
granularity� and simplify their guards� At the same time� we seek to enhance per�
formance by avoiding repetitive work� As in good sequential completion procedures�
we want to avoid normalizing an equation or rule multiple times by the same set of
rules� to avoid computing critical pairs for a given pair of rules more than once� and
to avoid computing critical pairs between unnormalized rules�

��� Liveness

In sequential completion procedures� liveness is generally established by proving
that appropriate invariants are true at di�erent points of control� For example�
nested loops might normalize all equations with respect to all rules� and invariants
about which equations are normalized with respect to which rules may depend on
the control point within each loop�

In our parallel completion procedure� we establish liveness instead by dividing the
state �i�e�� the sets of equations and rules� into components that satisfy appropriate
invariants� e�g�� about which equations and rules have been normalized with respect
to which other rules� and which rules have had their critical pairs computed� A sig�
ni�cant part of the design e�ort for parallel completion involves de�ning appropriate
state components and invariants�

��� Granularity

Most transitions in Figure � perform a single rewrite step or compute a single
critical pair� They incur considerable overhead� and are too �ne�grained to be useful
on a small number of processors� Therefore� we seek to increase their granularity�

Since actions that are too coarse�grained result in insu�cient parallelism� we
avoid both extremes by de�ning transitions that apply a single rule� at most once�
to �at most� every rule or equation in the system� or that apply all rules as many
times as possible to a single equation or rule� We avoid transitions that apply all
rules to all equations�

��� Simple Guards

We simplify the guards for the transitions by turning them into inexpensive tests
for the existence of an element in a state component or into tests involving the value
of a scalar variable� The guards in Figure � involve more costly tests� a term being
in normal form� an equation being orderable� or an equation being a critical pair
between two rules� Fortunately� the same technique that helps with liveness can be



CrittedRules

UncrittedRules

Critter

RightRules

LeftRules

EqRules

NewRulesAllRules

UnorderableEqs

NontrivEqs

NormEqs OldEqs

NewEqs

UnreducedRules

Status

Initially� NewEqs � user input� Status � running � others � ��

Figure 
� Venn diagram of state components for completion

used to simplify guards� we put equations and rules into di�erent state components�
and we de�ne invariants for these components that match the guards of Figure ��

Figure 
 shows our state components� All but one is implemented as a queue� the
queues OldEqs� AllRules� and UnreducedRules share elements with other queues� but
the rest are mutually disjoint� The queues can simply be semiqueues� which ensure
only that anything enqueued will eventually be dequeued� We use FIFO queues� The
�usual� path that data �i�e�� rules and equations� take in Figure 
 is from NewEqs

to OldEqs to AllRules to CrittedRules� A �nal state component� Status� can have
one of two values� running or ordering failure�

The state components that contain equations have the following invariants� Old�
Eqs contains the same elements as NormEqs� NontrivEqs� and UnorderableEqs� All
equations in OldEqs are normalized with respect to AllRules�NewRules � No equa�
tion in NontrivEqs or UnorderableEqs is trivial� No equation in UnorderableEqs can
be ordered by the reduction ordering�

The state components that contain rewrite rules have the following invariants�
UnreducedRules is a subset of AllRules� which has the same elements as the seven
other queues shown in Figure 
� If s� t is in AllRules� then s � t� The left side of
every rule in AllRules is normalized with respect to AllRules�NewRules�EqRules �
The right side of every rule in AllRules�UnreducedRules is normalized with respect
to RightRules� Critter � UncrittedRules� and CrittedRules� Critter contains at most
one rule� all critical pairs between this rule and itself have been added to NewEqs

�but may no longer be there�� For any r� and r� in UncrittedRules or CrittedRules�
crit�r�� r�� has been added to NewEqs� All critical pairs between the rule in Critter

and those in CrittedRules have been added to NewEqs� �UncrittedRules is so�called
because critical pairs have not yet been computed between its rules and Critter ��

Figures 	 and � contain directly implementable transition axioms for completion�
These transitions move rules from one queue to another� maintaining the above
invariants� In their descriptions� rewritable�Q� r� contains the elements of Q that
can be rewritten using r� rewrites�Q� r� contains these elements� each rewritten once
by r� left reducible�Q� r� contains those s� t in Q such that �age prevents�s� t� r�
and s can be rewritten by r� left reduced �Q� r� contains these rules� with s rewritten



Transition Axioms

normalize eqn
e � head�NewEqs��

NewEqs �� NewEqs � e �
NormEqs �� NormEqs � e �AR �
OldEqs �� OldEqs � e �AR

�lter eqn
�s

�
� t� � head�NormEqs��
NormEqs �� NormEqs� �s

�
� t� �

if �s 	� t� then NontrivEqs �� NontrivEqs � �s
�
� t�

orient eqn
�s

�
� t� � head�NontrivEqs��
NontrivEqs �� NontrivEqs� �s

�
� t� �

if �s � t� then NewRules �� NewRules � �s� t�
� AllRules �� AllRules � �s� t�
� OldEqs �� OldEqs � �s

�
� t�

elseif �t � s� then NewRules �� NewRules � �t� s�
� AllRules �� AllRules � �t� s�
� OldEqs �� OldEqs � �s

�
� t�

else UnorderableEqs �� UnorderableEqs � �s
�
� t�

back simplify
r � head�NewRules��

NewRules �� NewRules � r �
EqRules �� EqRules � r �
NewEqs �� NewEqs � rewrites�OldEqs� r� �
foreach X in �NormEqs�NontrivEqs�UnorderableEqs�OldEqs�

X �� X � rewritable�X� r�
left reduce

r � head�EqRules��
EqRules �� EqRules� r �
LeftRules �� LeftRules � r �
NewEqs �� NewEqs � left reduced�AllRules� r� �
foreach X in �NewRules�EqRules�LeftRules�RightRules�Critter�

UncrittedRules�CrittedRules�UnreducedRules�AllRules�
X �� X � left reducible�X� r�

right reduce
r � smallest�LeftRules��

LeftRules �� LeftRules� r �
RightRules �� RightRules � r �
UnreducedRules �� UnreducedRules � right reduced�AllRules� r�

� right reducible�UnreducedRules� r� �
foreach X in �NewRules�EqRules�LeftRules�RightRules�Critter�

UncrittedRules�CrittedRules�AllRules�
X �� X � right reducible�X� r� � right reduced�X� r�

Figure 	� Directly implementable transitions� Part I



right normalize
�s� t� � head�UnreducedRules��

UnreducedRules �� UnreducedRules � �s� t� �
foreach X in �NewRules�EqRules�LeftRules�RightRules�

Critter�UncrittedRules�CrittedRules�AllRules�
if �s� t� � X then X �� X � �s� t� � �s� t �AllRules�

add critical�
r� � head�Critter� � r� � head�UncrittedRules��

UncrittedRules �� UncrittedRules � r� �
CrittedRules �� CrittedRules � r� �
NewEqs �� NewEqs � crit�r�� r��

add critical�
UncrittedRules � � � r � head�RightRules��

UncrittedRules �� Critter � CrittedRules �
CrittedRules �� � �
Critter �� frg �
RightRules �� RightRules� r �
NewEqs �� NewEqs � crit�r� r�

fail
UnorderableEqs 	� � �

Status �� ordering failure
Liveness

Weak fairness� fail must be executed if its guard remains true�

Figure �� Directly implementable transitions� Part II

once by r� right reducible�Q� r� contains those s � t in Q such that t can be
rewritten by r� right reduced�Q� r� contains these rules� with t rewritten once by r�

Note that when orient eqn creates a new rule� the equations in OldEqs must
be renormalized� Back simplify moves an equation rewritten by the new rule to
NewEqs� where it will be renormalized by normalize eqn� Left reduce moves rewrit�
ten rules back to NewEqs� where they can be deleted or oriented in the other di�
rection� Right reduce puts rewritten rules into UnreducedRules� where they will be
renormalized by right normalize�

The liveness property in Figure � is weak fairness between fail and all other
actions� Thus� an unorderable equation may exist in UnorderableEqs for a long time
before the completion process fails� but unless the equation is moved or deleted� the
process must eventually halt with failure� Note that there is no fairness requirement
between any of the other actions��

The axioms in Figures 	 and � can be viewed as an implementation of Figure ��
and standard re�nement mapping techniques ��
 applied to prove correctness� In
these methods� the set of possible executions of the implementation are shown to be
a subset of the executions of the speci�cation� with a re�nement mapping used to
associate states of one with states of the other�

�Weak fairness is stronger than necessary� because the guard on fail may be continuously true

even though UnorderableEqs has no persistent element� Moreover� the fairness condition may be

dropped entirely if the semidecision procedure property is not desired�



��� Designing for Performance

Among the lessons learned from sequential implementations of completion are
that internormalization enhances performance� but redundant normalization is in�
e�cient� The UnreducedRules queue helps balance these con�icting requirements�
When the right side of a rule is rewritten� it may no longer be in normal form with
respect to the other rules� but equations and other rules that were previously un�
rewritable by this rule remain unrewritable� Hence we implement a �reminder� that
the rule must be right�normalized by placing it in UnreducedRules� while at the same
time leaving it in the queue to which it belonged so as not to lose the information
contained in the invariant for that queue�

Although we designed our state components and transitions to avoid extra nor�
malizations and critical pairing� the design does not prevent this from happening
when objects become outdated� This trade�o� keeps communication overhead low�

We implement RightRules as a priority queue� which is a special case of a
semiqueue in which the �smallest� element is dequeued �rst� We choose this imple�
mentation because rules dequeued from RightRules will be used to compute critical
pairs� and sequential implementations have demonstrated the practical importance
of computing critical pairs between small rules before larger ones�

� The Implementation
A two�step implementation based on the transition axioms in Figures 	 and �

follows the transition�based approach described in �
	
� First� we implement each
transition axiom by a transition procedure� Our approach requires that these tran�
sition procedures appear atomic with respect to one another� any concurrent exe�
cution of the procedures must be equivalent to a sequential execution in which each
procedure invocation takes a step speci�ed by some transition axiom� Second� we
implement a scheduler to execute the transition procedures in parallel� The sched�
uler� which is a parallel program that runs on all processors� guarantees liveness�
being application�speci�c� it gives far better performance than would be achieved
by allowing the operating system to schedule tasks� The weak liveness property in
Figure � gives us the freedom to choose a scheduling order that performs well�

An easy way to make the transition procedures appear atomic is to make them
atomic� e�g�� to have them run within critical regions� But this leads to a completely
sequential� albeit nondeterministic� completion procedure� Thus� signi�cant algo�
rithm and data structure design goes into implementing the transition procedures
so that they appear atomic when they are actually highly concurrent�

Instead of describing our concurrent data structures here� we describe some of
their properties and the kinds of parallelism they admit� We lock sparingly� the
few critical regions are typically only a few instructions long� For example� each
queue has two locks�one on the pointer to its head� the other on its pointer to the
tail� each lock is held only long enough to increment its pointer� The queues contain
pointers to rewrite rules and equations� the extra level of indirection allows rules and
equations to be in several queues at once� as indicated by the overlapping regions in
the Venn diagram of Figure 
�

Rewrite rules are modi�ed in place� for example� by the right normalize proce�
dure� which must replace a rule by a right�normalized rule in each of seven queues�
This procedure is implemented by modifying the rule in UnreducedRules � which is a



shared copy of the rules in the other queues�
Rewrite rules are modi�ed without locking� The code relies on the underlying

shared memory� which guarantees that if a memory location is read at the same
time it is written� then the read will observe either the value before or the value
after the write�it will not observe an intermediate nonsensical value� A rewrite
rule is represented by two locations� and simultaneous rewrites to the two terms are
allowed� If two simultaneous rewrites are done to the same term� one may be lost�
However� this loss does not a�ect correctness� It may a�ect performance in that the
lost rewrite may have to be redone� but lost rewrites rarely happen in practice� and
the e�ect on performance is not signi�cant�

The scheduler that runs on each processor consists of a loop that repeatedly in�
vokes transition procedures� Most of the design decisions in the scheduler are related
to performance tuning� and are discussed in Section � along with the performance
results� The problem of detecting termination within the scheduler is nontrivial�
because it requires taking a global snapshot of the system to determine whether all
guards are simultaneously false� If a process examines the queues in turn to see
whether they are empty� by the time it �nishes new elements may have been en�
queued� Therefore� an agreement algorithm must be run between the schedulers on
the separate processors to ensure that all continue running until they agree there is
no work to do�

� Scheduling and Performance
Experiments show that the best scheduler executes the transition procedures in

a loop with the order given by Figures 	 and �� This scheduler repeatedly invokes
the same transition procedure as long as possible� then moves on to the next� The
only exceptions are the add critical procedures� which it executes only once before
repeating the other procedures� This choice was motivated by experience with se�
quential completion procedures� performance� both in time and space� is better if
equations and rules are kept in normal form� Thus� critical pair computations are
stopped as soon as renormalization is required�

Figure � shows the performance of this scheduler on a Fire�y with six CVAX
processors when completing typical sets of equations taken from the term rewriting
literature� The �rst column shows the number of milliseconds taken by the program
running on one processor� The other columns show the relative performance with
more processors� These �gures were obtained by averaging �ve executions for each
example� they show that speedups are better for the larger examples�

The �rst example generates a complete set of rewrite rules for group theory� The
next provides some simple axioms for arithmetic� which �b� extends to compute the
fourth Fibonacci number� Completing homomorphism establishes the fact that a
map from one group into another that preserves group multiplication also preserves
inverses and the identity� Completing group�� produces a complete presentation of
a group of order ��� The last example is due to Ursula Martin�

The time required to complete group�� depends dramatically on the order in
which critical pairs are computed� because one particular critical pair eliminates
most of the other rules ���
� A round�robin scheduler� which executes each transition
procedure once before going on to the next� seems to exhibit super�linear speed�ups
for this example� gaining a factor of eight with two processors and �fteen with six�
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Figure �� Transition�based completion using the best scheduler

However� the round�robin scheduler takes more time in all cases than the scheduler
we use� Hence looking at speedups without considering absolute performance is a
very bad way to tune parallel programs� Furthermore� leaving scheduling to the
operating system is likely to produce terrible results�

Performance depends not just on the way the completion procedure schedules
tasks� but also on the way the operating system allocates processes to processors�
The times in Figure � were obtained using a system scheduler that does not move
processes from one processor to another� thereby preserving cache context� When
processes are allowed to move� performance is signi�cantly worse� the speed�ups
with six processors were about ��� of those in Figure ��

Our parallel completion procedure is consistently faster� even when running on
one processor� than the completion procedure provided by the Larch Prover ��

�
While this comparison is somewhat unfair to the Larch Prover� which has more
functionality� the comparison does show that our parallel implementation is fast
enough to be of practical use�

These performance results are encouraging� For the larger examples� performance
continues to improve as processors are added� This does not guarantee scalability
beyond a small number of processors� but neither does it provide evidence against
scalability�

� Related Work
Dershowitz and Lindenstrauss ��
 describe an abstract concurrent machine for

rewriting a term by a set a rules� and they use it to compare various rewriting
strategies� The parallelism in their model is very �ne grained� They associate a
process with each operator in a term and try to minimize the normalization time for
that term� This is quite di�erent from our implementation� which emphasizes larger
grained parallelism� it allows parallel rewriting during internormalization� but does
not intentionally schedule multiple rewrites of the same term�

Some sequential completion procedures ���� ��� ��
 also divide the state into
components� either to achieve better performance or to facilitate reasoning about
correctness� The data structures used for our state components di�er from these�
however� because they are concurrent and have more control information to allow
for the additional executions that come from parallelism�

Slaney and Lusk �
�
 describe a parallel closure computation� which divides the
problem of completing R � fr�� � � � � rng into tasks that compute critical pairs be�
tween ri and fr�� � � � � rig� adding any results not subsumed by R to a new list S�
and a single task that moves rules from S to R� incrementing n and rechecking



the rest of S for subsumption� Because this method fails to address issues �such as
internormalization� that a�ect the total amount of work performed� any speed�ups it
exhibits are not very meaningful� For example� if two critical pairing tasks generate
members s� and s� of S such that s� subsumes s�� but not vice versa� a task will be
spawned to compute critical pairs between s� and all members of R� without there
being any way to abort such an expensive task when it is found to be super�uous�

A completion procedure that has been parallelized successfully is Buchberger�s
algorithm for computing Gr obner Bases �	
� Like us� Ponder observed performance
problems when using a straightforward parallelization of Buchberger�s algorithm
���
� Vidal �


 redesigned the data structures and rearranged the top�level proce�
dure to get superior speed�ups� His procedure does internormalization in a separate
sequential phase� It is therefore simpler than our procedure� but less e�cient� since
unreduced polynomials may cause extraneous computation�

	 Summary and Conclusions
Completion is a complicated problem� and the design of parallel completion pro�

cedures di�ers in nontrivial ways from the design of sequential procedures� The
nondeterministic description of completion in terms of transition axioms given by
Bachmair et al �

 is a good starting point for a parallel design� particularly because
it avoids some of the unnecessary serialization inherent in parallelizing a conven�
tional sequential program� But there is a large step between their description and
the directly implementable transition axioms that describe our procedure� In par�
ticular� the liveness requirement �CP fairness� must be encoded into data structures
without creating too many serialization points�

Our design technique appears promising as a means of parallelizing other ap�
plications that are highly irregular in their data structures� control structures� and
communication patterns� Examples of problems that have been di�cult to par�
allelize by other means include circuit veri�cation and simulation� certain sparse
matrix problems� and many symbolic applications�

Our implementation runs on a shared memory multiprocessor and performs well
when completing typical sets of equations� generally achieving speedups of �n�� or
better when run with n processors� We are currently porting our implementation to
an eight�processor Sequent� to test the scalability of our implementation�

We believe the completion procedure will scale to more processors as long as
there is su�cient data to keep the transition procedures busy� Because completion
often generates hundreds of intermediate rewrite rules� and because of the combina�
torial nature of applying these rules� an implementation for upwards of a hundred
processors should be interesting� There does not appear to be su�cient parallelism�
however� to support tens of thousands of processors� To utilize that many processors�
one would need to parallelize the processes of rewriting� matching� and uni�cation�
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