A Parallel Completion Procedure
for Term Rewriting Systems !

Katherine A. Yelick Stephen J. Garland
University of California at Berkeley MIT and The Hebrew University

Abstract. We present a parallel completion procedure for term rewriting systems.
Despite an extensive literature concerning the well-known sequential Knuth-Bendix
completion procedure, little attention has been devoted to designing parallel com-
pletion procedures. Because naive parallelizations of sequential procedures lead to
over-synchronization and poor performance, we employ a transition-based approach
that enables more effective parallelizations. The approach begins with a formulation
of the completion procedure as a set of transitions (in the style of Bachmair, Der-
showitz, and Hsiang) and proceeds to a highly tuned parallel implementation that
runs on a shared memory multiprocessor. The implementation performs well on a
number of standard examples.

1 Introduction

We describe a parallel completion procedure for term rewriting systems. A se-
quential completion procedure was formulated first by Knuth and Bendix [13]. Ex-
tensions, modifications, and applications to algebra, theorem proving, and data type
induction are described by Buchberger [3] and Dershowitz [5].

Performance is an important factor that limits the applicability of completion
procedures, and of term rewriting systems in general. We show how parallelism can
lead to significantly better performance. Opportunities for parallelism abound, be-
cause completion is not inherently sequential. But straightforward parallelizations of
the Knuth-Bendix procedure perform poorly. Careful algorithm and data structure
design 1s needed, as in sequential completion procedures, to avoid superfluous work.
How parallel tasks are scheduled must be tuned, because the order in which steps
are performed plays a crucial role in performance.

This paper is divided as follows. Section 2 defines the completion problem.
Section 3 describes the issues that arise in finding good parallel solutions. Sec-
tion 4 presents transition axioms for a completion procedure using the inference
rules of Bachmair, Dershowitz, and Hsiang [2]. Section 5 transforms these axioms
into ones suitable for parallel implementation. Section 6 describes the implementa-
tion. Section 7 describes its performance. Sections 8 and 9 describe related work
and summarize our results.

2 The Completion Problem

We assume a familiarity with the notions of terms and substitutions. An equation
is an unordered pair of terms, written (s = ¢). We write (s = ¢) when we want to
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distinguish an orientation; i.e., (s =) is either (s =1) or (t = s).

A rewrite rule is an ordered pair of terms, written s — ¢. A term rewriting
system R is a set of rewrite rules, which defines a relation —pg on terms such that
s —rt (s rewrites to t) if and only if there is a rule [ — r in R and a substitution o
such that s contains ol as a subterm (/ is said to match this subterm) and ¢ is formed
by replacing the occurrence of ol by or. Let —>1‘|;L, —%, and <% be the transitive,
reflexive transitive, and reflexive symmetric transitive closures of —g. Since <%
i1s symmetric, it 18 well-defined even when R is replaced by a set of equations E.
The relation <% is the equational theory of E and is also denoted by E*; i.e., an
equation (s =1) is in E* if and only if s —7};t.

R is confluent if, whenever r —% s and r —% ¢, there is a term u such that
s —% uw and t —% u. R is noctherian if —>1‘|;L contains no infinite chains. R is
convergent if 1t 18 both confluent and noetherian. If R is convergent, then for any
term ¢ there exists a unique irreducible (i.e., unrewritable) term ¢ |r (called the
normal form of t) such that ¢t —% ¢t |g. When R is simply noetherian, we write ¢ | g
to mean some one of the possibly many normal forms of ¢. When R is convergent,
s—ptifandonlyif s|p=1]g.

Some applications of term rewriting require convergent systems; others attempt
to establish convergence by creating new rules in a process known as completion.
Such applications raise the following related problems.

Definition. Given a set of equations F, the finite completion problem is to find a
convergent rewriting system R such that —7% and <7}, are the same relation.

For some some sets of equations F, no finite R exists that solves the finite
completion problem. In such cases, it 1s sometimes useful to find approximations R;
to F, in the following sense.

Definition. Given a set of equations E, the completion problem is to produce
a (possibly infinite) sequence of rewriting systems Ry, Ry, ... such that each R; is
noetherian, —% is contained in <%, and, for any equation (s = t) in £, there exists
i such that for all j > ¢, s and ¢ have unique normal forms in R, and s |g,=t | ;.

If the finite completion problem can be solved for E, the resulting rewriting
system provides a decision procedure for E*. If the completion problem can be
solved, the resulting sequence of rewriting systems provides a semidecision proce-
dure. However, there may not be a solution to the completion problem. For example,
if E consists of a single commutativity axiom, no noetherian rewriting system has
the same equational theory as F.

More general formulations of the completion problem increase the number of sets
of equations for which solutions exist. Some generalizations allow function symbols
in R that are not in I, requiring only that <% be a conservative extension of —7%.
Others include completion modulo equations (such as commutativity) [17]. Although
these generalizations fall in the class addressed by our approach, we do not consider
them in this paper.

Solving the completion problem involves generating additional rules, if necessary,
to ensure confluence. Such rules can be found using unification and critical-pairing.
Two terms s and ¢ are unifiable if there is a substitution o (called their unifier) such
that ¢s = ot. If os = ot, and for all other unifiers o', there is a substitution 7



such that ¢/ = o o 7, then o is a most general unifier of s and ¢. If two terms are
unifiable, then they have a most general unifier. A substitution 7 is a renaming if,
for all variables v in the domain of 7, 7(v) is a variable. Most general unifiers are
unique up to renaming, i.e., up to composition with renaming substitutions.

Let r1 and 7o be the rewrite rules s — ¢t and { — r. Assume r; and ro have
no variables in common. Then (s’ = ¢') is a critical pair between r1 and ry if some
o unifies [ with a non-variable subterm of s, s’ is formed from os by replacing the
subterm ol by or, and t' is ot. Let crit(ry,72) be the set of critical pairs between
r1 and 79, with ro’s variables renamed, if necessary, to avoid conflicts with r;’s. Let
crit_all(R) be J{erit(r1,r2) : r1,72 € R}. Note that crit_all(R) contains crit(r,r)
for all » in R. Both crit and crit_all are unique up to variable renaming.

Solving the completion problem also involves establishing that a rewriting system
1s noetherian, which itself 1s an undecidable problem. The most common approach
to proving that a system is noetherian is to use a reduction ordering on terms, i.e.,
a monotonic well-founded ordering that is stable under substitution [4]. If > is
a reduction ordering and [ > r for every rule [ — r in R, then R is noetherian.
Completion procedures generally employ a fixed reduction ordering and halt with
failure if this ordering is not powerful enough to orient some equations that arise
during completion. This prompts the following definition.

Definition. Given a set of equations I and a reduction ordering >, a completion
procedure produces a possibly infinite sequence R = (Rg, Ry, .. .) of rewriting systems
such that:

1. Each R; is provably noetherian; i.e., l > r for all [ — r in R;.

2. Each R; is consistent with £ i.e., <% is contained in <.

3. If some R; solves the finite completion problem, then the procedure halts with
success, and this R; is the last element in R.

4. If no R; solves the finite completion problem, then either (a) the procedure
halts with failure or (b) R solves the general completion problem, i.e., R is
infinite, and, for any equation s <% t, s [g,= 1t |, for all sufficiently large <.

The first two conditions are safety properties, which prevent completion proce-
dures from producing rewriting systems that do not terminate, or that incorrectly
reduce two terms to a common normal form. The last two conditions are liveness
properties, which require completion procedures to achieve certain results.

Condition (4a) classifies trivial procedures, which always halt with failure, as
completion procedures. Completion procedures typically differ on the set of inputs
for which they fail, and their ability to resist failure is one of the qualities by which
they are judged. Completion procedures can be made failure resistant by allowing
the reduction ordering to be enlarged in restricted ways [8]. Completion procedures
can be made unfailing by leaving some equations unordered and restricting the
application of rewrite rules [2]. Because these generalizations do not raise interesting
new questions concerning parallelism, we do not consider them in this paper.

3  Design Issues for Parallel Completion Procedures

The completion problem provides many opportunities for parallelism. At the
same time, it presents many pitfalls. Ideally, a parallel completion procedure run-
ning on n processors should be close to n times faster than a well-tuned sequential



completion procedure running on a single processor. Such speed-ups, however, may
be difficult to attain. Because of synchronization overhead, tasks cannot be too fine-
grained and parallel data structures must minimize synchronization bottlenecks.
Because all processors must be kept equally busy to achieve maximum performance,
tasks cannot be so coarse-grained as to prevent effective load-balancing. And be-
cause highly parallel processes can exhibit nondeterministic behavior, care must be
taken to maintain correctness while optimizing performance.

We explore these issues by discussing various ways to parallelize the sequen-
tial Knuth-Bendix completion procedure [13]. This procedure has two alternating
phases: internormalization, which rewrites and eliminates equations and rules, and
eritical pairing, which creates new rules. Although the requirements for completion
procedures do not mention internormalization, experience with sequential comple-
tion procedures has shown that it is essential for good performance.

3.1 Granularity

The simplest approach to designing a parallel completion procedure is to keep the
overall sequential structure of the Knuth-Bendix procedure, but to use fine-grained
parallelism for low level computations. For example, we can use theoretically efficient
parallel procedures to determine if two terms match during internormalization. Yet
this helps little in practice: even with lightweight threads, terms must be huge—
with hundreds or thousands of operators—before the gains outweigh the overhead of
starting and synchronizing parallel tasks. Although very large terms arise in some
applications, they are not the norm.

At a higher level of granularity, we can parallelize the operations of rewriting and
computing critical pairs, for example, by attempting to match and unify different
subterms in parallel. But this also requires very large terms to justify the overhead.

At better levels of granularity, we can (and do) attempt to rewrite a given term by
several rewrite rules, or to compute critical pairs between different rules in parallel.

3.2 Load Balancing

A further way to parallelize the sequential completion procedure is to perform the
two processes of internormalization and critical pairing in parallel, thereby creating
a two-stage pipeline with a feedback loop from the critical pairing process to the
internormalization process. Additional parallelism can be used within the two stages
to try to balance the pipeline. Implementing this design taught two lessons that led
us to abandon developing parallel programs from conventional sequential ones.

The first lesson is that the amount of time spent in normalization far exceeds
the time spent in critical pairing. The magnitude of the difference—a factor of 20
is not unusual—limits the potential speedup of the pipeline to 5%. Furthermore, on
a six-processor machine, dedicating one sixth of the processing power to 5% of the
work 1s not a good use of resources.

The second lesson is that, even with many processors, performance instability
between the two stages makes it difficult to balance the pipeline: an expensive
critical pairing stage that generates many new rules is generally followed by an
expensive internormalization stage. On typical iterations, the ratio of the time spent
internormalizing to the time spent critical pairing varied between 1/2 and 79. We
can address these specific performance problems, for example, by having the critical



pairing stage work on more rules to make it relatively more expensive, by further
optimizing internormalization to make it less expensive, or by dividing the stages
into parallel subtasks and dynamically allocating additional processors. But these
solutions avoid the real problem: there is a synchronization point after each iteration
of the pipeline, when each stage gets new rules from the other. The situation is even
worse without the pipeline, there being two synchronization points per iteration, one
after internormalization and one after critical pairing.

Unnecessary synchronization points are artifacts of basing parallel programs on
sequential programs. Hence we use a different, transition-based approach [23] that
allows parallelism both between and within critical pairing and internormalization.

3.3 Correctness

Achieving performance while maintaining correctness requires care in choosing
algorithms and data structures. For example, if we attempt to rewrite both sides
of an equation in parallel, then failed rewrites must not modify the terms being
rewritten, and successful simultaneous rewrites must not interfere with one another.

When internormalizing in parallel, we must be careful to prevent two rules that
are the same up to the names of their variables from reducing one another to trivial
rules, i.e., to rules with identical left and right sides.

4 High-level Transition Axioms for Completion

We base the design of our parallel completion procedure not on traditional se-
quential procedures, but on a reformulation of the original Knuth-Bendix procedure
[13] by Bachmair, Dershowitz and Hsiang [2] as a set of nondeterministically-applied
transition axioms. Figure 1 presents transition axioms for a completion procedure
similar to the inference rules in [2]. The state consists of a set of equations E and
a set of rewrite rules R. Initially, £ holds the user’s input and R is empty. (Our
formulation differs slightly from that in [2], which assumes that neither E nor R
contains elements that differ only by renamings. Such an assumption is difficult to
implement.) The procedure stops if and when all guards are false, e.g., because the
fail transition sets both F and R to ordering_failure.

The transition axioms preserve the invariant that each rule s — ¢ in R is ordered
with respect to >, i.e., s > t. An important property of reduction orderings is that
if 5 — t and r both satisfy this invariant, and if » rewrites ¢ to ¢/, then s — ' also
satisfies the invariant; hence right_reduce preserves the invariant. Because left_reduce
may not satisfy the invariant, and because it may reduce a rule to a triviality, it
turns a rewritten rule into an equation.

The requirement —age_prevenis(s — t,r) in the guard for left_reduce prevents
the completion procedure from removing all instances of a redundant rewrite rule.
As noted earlier, when two rules are renamings of one another, either can reduce the
other to a triviality. The details of this problem are not important for this paper,
but the solution affects our presentation. We associate an age with each rewrite rule
and define age_prevents(ry,rs) to be true if vy is older than r2 and the left sides of
r1 and ro are renamings of each other. Using the age of rules is mentioned in [2],
and the validity of this solution was confirmed by Dershowitz [6].

Any procedure that performs a fair interleaving of these actions solves the com-
pletion problem. CP fairness ensures both that every equation appearing in E is



State Components
E : set[equation] + ordering failure
R : set[rule] + ordering failure

Initially
E = user input
R=10

Transition Axioms

simplify % Apply one rewrite step to either side of an equation
(sZt)EE &t —pt' =
E=E—(s=t)+(s=1)
delete % Delete trivial equation
(s=s)e b=
E=F—(s=5s)
orient % Convert equation into rewrite rule using reduction ordering
(s=t)eEF&ks>t=
E=F—-(s=t) &« R:=R+(s—1)
right reduce % Apply one rewrite step to right side of a rule
(s—t)eR&t —pt =
R=R—(s—=1)+(s—1)
left reduce % Apply one rewrite step to left side of a rule
(s—=t)eR&reR&s—y s & nage_prevents(s — ¢,7) =
R=R—(s—1) & E:=F+(s=1)
deduce % Add one critical pair between rules in R to E
(s =t) € critall(R) =
E=FE+(s=1t)
fail % Halt if there is an unorderable, nontrivial, normalized equation
(s=t)eF&s#t&s|lp=s&t|p=t&spt&t$s=
FE, R := ordering_failure

Liveness

CP fairness: for any nonterminating execution (Fy, Ro), (E1, R1), . ..
and any 7, Nj5;E; = 0 and, if e € Nj5;crit_all(R;), then some
renaming of e is in some Ejy.

CP termination: if (Ey, Ry), (F1, R1), ... is nonterminating, then no
R; solves the finite completion problem for Fy.

Figure 1: High-level transition axioms for completion



eventually ordered, simplified, or deleted, and also that every critical pair is eventu-
ally added to . CP termination ensures that the completion procedure terminates
if and when 1t solves the finite completion problem.

The completion procedure can fail if there is a nontrivial equation e in F that
can be neither ordered nor rewritten, since no fair execution can leave e in F forever.
Most implementations, however, will run indefinitely with an unorderable equation
as long as there is other work to do. These procedures are not CP fair, but this is an
academic point: finite machine resources will eventually take care of termination.

5 Implementable Transition Axioms for Completion

The transition axioms in Figure 1 are not appropriate for direct implementation.
To make them implementable, we must find ways to ensure liveness, balance their
granularity, and simplify their guards. At the same time, we seek to enhance per-
formance by avoiding repetitive work. As in good sequential completion procedures,
we want to avoid normalizing an equation or rule multiple times by the same set of
rules; to avoid computing critical pairs for a given pair of rules more than once, and
to avoid computing critical pairs between unnormalized rules.

5.1 Liveness

In sequential completion procedures, liveness is generally established by proving
that appropriate invariants are true at different points of control. For example,
nested loops might normalize all equations with respect to all rules; and invariants
about which equations are normalized with respect to which rules may depend on
the control point within each loop.

In our parallel completion procedure, we establish liveness instead by dividing the
state (i.e., the sets of equations and rules) into components that satisfy appropriate
invariants, e.g., about which equations and rules have been normalized with respect
to which other rules, and which rules have had their critical pairs computed. A sig-
nificant part of the design effort for parallel completion involves defining appropriate
state components and invariants.

5.2 Granularity

Most transitions in Figure 1 perform a single rewrite step or compute a single
critical pair. They incur considerable overhead, and are too fine-grained to be useful
on a small number of processors. Therefore, we seek to increase their granularity.

Since actions that are too coarse-grained result in insufficient parallelism, we
avoid both extremes by defining transitions that apply a single rule, at most once,
to (at most) every rule or equation in the system, or that apply all rules as many
times as possible to a single equation or rule. We avoid transitions that apply all
rules to all equations.

5.3 Simple Guards

We simplify the guards for the transitions by turning them into inexpensive tests
for the existence of an element in a state component or into tests involving the value
of a scalar variable. The guards in Figure 1 involve more costly tests: a term being
in normal form, an equation being orderable, or an equation being a critical pair
between two rules. Fortunately, the same technique that helps with liveness can be



AllRules | NewRules
‘ NewEgs FEqRules
LeftRules
RightRulks
NormFqs OldEqs ‘ Critter
NonirivEqs Uncritted Rules
UnorderableFgs CrittedRitles
UnreducedRules

Initially, NewF¢s = user input, Status = running, others = .

Figure 2: Venn diagram of state components for completion

used to simplify guards: we put equations and rules into different state components,
and we define invariants for these components that match the guards of Figure 1.

Figure 2 shows our state components. All but one is implemented as a queue; the
queues OldEqs, AllRules, and Unreduced Rules share elements with other queues, but
the rest are mutually disjoint. The queues can simply be semiqueues, which ensure
only that anything enqueued will eventually be dequeued. We use FIFO queues. The
“usual” path that data (i.e., rules and equations) take in Figure 2 is from NewFEqs
to OldEqs to AllRules to CrittedRules. A final state component, Status, can have
one of two values: running or ordering_failure.

The state components that contain equations have the following invariants. Old-
FEqs contains the same elements as NormEqs, NontrivEqgs, and Unorderable Egqs. All
equations in OldFg¢s are normalized with respect to AllRules — NewRules. No equa-
tion in NontrivEqs or Unorderable Fqs is trivial. No equation in Unorderable Eqs can
be ordered by the reduction ordering.

The state components that contain rewrite rules have the following invariants.
UnreducedRules 1s a subset of AllRules, which has the same elements as the seven
other queues shown in Figure 2. If s — ¢ is in AllRules, then s > t. The left side of
every rule in AllRules is normalized with respect to AllRules— NewRules — EqRules.
The right side of every rule in AllRules — Unreduced Rules 1s normalized with respect
to RightRules, Critter, UncrittedRules, and CrittedRules. Critter contains at most
one rule; all critical pairs between this rule and itself have been added to NewFqs
(but may no longer be there). For any r1 and re in UncrittedRules or Critted Rules,
crit(ry, 7o) has been added to NewFqgs. All critical pairs between the rule in Critter
and those in CrittedRules have been added to NewEqs. (UncrittedRules is so-called
because critical pairs have not yet been computed between its rules and Critter.)

Figures 3 and 4 contain directly implementable transition axioms for completion.
These transitions move rules from one queue to another, maintaining the above
invariants. Tn their descriptions, rewritable(@,r) contains the elements of @ that
can be rewritten using r; rewrites(Q), r) contains these elements, each rewritten once
by r; left _reducible(Q), r) contains those s — ¢ in @ such that —age_prevents(s — t,r)
and s can be rewritten by r; left _reduced(Q,r) contains these rules, with s rewritten



Transition Axioms
normalize_eqn
e = head(NewEqs) =
NewEqs := Newkqs — e &
NormEgs := NormEqs+e¢ [4r &

OldEgs := OldEqs + e | ar
filter_eqn

(s =) = head(NormEgs) =
NormEgs := NormEqs — (s =) &
. if (s #t) then NontrivEqs := NontrivEqs + (s = ¢)
orlent_eqn
(s =) = head(NontrivEqgs) =
NontrivEqgs := NontrivEqs — (s = t) &
if (s > t) then NewRules := NewRules + (s — 1)
& AllRules := AllRules + (s — 1)
& OldEqs := OldEqs — (s = 1)
elseif (¢ > s) then NewRules := NewRules + (t — s)
& AllRules := AllRules + (t — s)
& OldEqs := OldEqs — (s = ¢)
else UnorderableEqs := UnorderableEqs + (s = 1)
back_simplify
r = head(NewRules) =
NewRules := NewRules — r &
EqRules := EqRules + r &
NewEqs := NewEqs + rewrites(OldEqs, r) &
foreach X in (NormEgs, NontrivEqgs, UnorderableEqs, OldEqs)
X := X — rewritable( X, r)
left_reduce
r = head(EqRules) =
EqRules := EqRules — r &
LeftRules := LeftRules + r &
NewEqs := NewEqs + left_reduced (AllRules, r) &
foreach X in (NewRules, EqRules, LeftRules, RightRules, Critter,
UncrittedRules, CrittedRules, UnreducedRules, AllRules)
X := X — left_reducible(X, r)
right_reduce
r = smallest(LeftRules) =
LeftRules := LeftRules — r &
RightRules := RightRules 4+ r &
UnreducedRules := UnreducedRules + right_reduced (AllRules, r)
— right_reducible(UnreducedRules, r) &
foreach X in (NewRules, EqRules, LeftRules, RightRules, Critter,
UncrittedRules, CrittedRules, AllRules)
X := X — right_reducible(X, r) + right_reduced (X, r)

Figure 3: Directly implementable transitions, Part 1



right normalize
(s — t) = head(UnreducedRules) =
UnreducedRules := UnreducedRules — (s — t) &
foreach X in (NewRules, EqRules, LeftRules, RightRules,
Critter, UncrittedRules, CrittedRules, AllRules)

if (s —1)€ X then X := X — (s =)+ (5 —t | AllRules)
add_critical;

r1 = head(Critter) & r; = head(UncrittedRules) =
UncrittedRules := UncrittedRules — 5 &
CrittedRules := CrittedRules 4+ r» &

NewEqs := NewEqs U crit(rq, r2)
add_criticals

UncrittedRules = §§ & r = head(RightRules) =
UncrittedRules := Critter U CrittedRules &
CrittedRules := 0§ &

Critter := {r} &
RightRules := RightRules — r &
NewEqs := NewEqs U crit(r, r)

fail
UnorderableEqs # 0 =
Status := ordering failure
Liveness

Weak farrness: fail must be executed if its guard remains true.

Figure 4: Directly implementable transitions, Part 11

once by r. right_reducible(Q),r) contains those s — ¢ in @ such that ¢ can be
rewritten by r; right_reduced(Q, r) contains these rules, with ¢ rewritten once by r.

Note that when orieni_eqn creates a new rule, the equations in OldF¢s must
be renormalized. Back_simplify moves an equation rewritten by the new rule to
NewFqs, where it will be renormalized by normalize_eqn. Left_reduce moves rewrit-
ten rules back to NewkFqs, where they can be deleted or oriented in the other di-
rection. Right_reduce puts rewritten rules into UnreducedRules, where they will be
renormalized by right_normalize.

The liveness property in Figure 4 i1s weak fairness between fail and all other
actions. Thus, an unorderable equation may exist in UnorderableFqs for a long time
before the completion process fails, but unless the equation is moved or deleted, the
process must eventually halt with failure. Note that there is no fairness requirement
between any of the other actions.?

The axioms in Figures 3 and 4 can be viewed as an implementation of Figure 1,
and standard refinement mapping techniques [1] applied to prove correctness. In
these methods, the set of possible executions of the implementation are shown to be
a subset of the executions of the specification, with a refinement mapping used to
associate states of one with states of the other.

2Weak fairness is stronger than necessary, because the guard on fail may be continuously true
even though UnorderableF¢s has no persistent element. Moreover, the fairness condition may be
dropped entirely if the semidecision procedure property is not desired.



5.4 Designing for Performance

Among the lessons learned from sequential implementations of completion are
that internormalization enhances performance, but redundant normalization is in-
efficient. The UnreducedRules queue helps balance these conflicting requirements.
When the right side of a rule is rewritten, it may no longer be in normal form with
respect to the other rules; but equations and other rules that were previously un-
rewritable by this rule remain unrewritable. Hence we implement a “reminder” that
the rule must be right-normalized by placing it in UnreducedRules, while at the same
time leaving it in the queue to which i1t belonged so as not to lose the information
contained in the invariant for that queue.

Although we designed our state components and transitions to avoid extra nor-
malizations and critical pairing, the design does not prevent this from happening
when objects become outdated. This trade-off keeps communication overhead low.

We implement RightRules as a priority queue, which is a special case of a
semiqueue in which the “smallest” element is dequeued first. We choose this imple-
mentation because rules dequeued from RightRules will be used to compute critical
pairs, and sequential implementations have demonstrated the practical importance
of computing critical pairs between small rules before larger ones.

6 The Implementation

A two-step implementation based on the transition axioms in Figures 3 and 4
follows the transition-based approach described in [23]. First, we implement each
transition axiom by a transition procedure. Our approach requires that these tran-
sition procedures appear atomic with respect to one another: any concurrent exe-
cution of the procedures must be equivalent to a sequential execution in which each
procedure invocation takes a step specified by some transition axiom. Second, we
implement a scheduler to execute the transition procedures in parallel. The sched-
uler, which is a parallel program that runs on all processors, guarantees liveness;
being application-specific, it gives far better performance than would be achieved
by allowing the operating system to schedule tasks. The weak liveness property in
Figure 4 gives us the freedom to choose a scheduling order that performs well.

An easy way to make the transition procedures appear atomic is to make them
atomic, e.g., to have them run within critical regions. But this leads to a completely
sequential, albeit nondeterministic, completion procedure. Thus, significant algo-
rithm and data structure design goes into implementing the transition procedures
so that they appear atomic when they are actually highly concurrent.

Instead of describing our concurrent data structures here, we describe some of
their properties and the kinds of parallelism they admit. We lock sparingly; the
few critical regions are typically only a few instructions long. For example, each
queue has two locks—one on the pointer to its head, the other on its pointer to the
tail; each lock is held only long enough to increment its pointer. The queues contain
pointers to rewrite rules and equations; the extra level of indirection allows rules and
equations to be in several queues at once, as indicated by the overlapping regions in
the Venn diagram of Figure 2.

Rewrite rules are modified in place, for example, by the right_normalize proce-
dure, which must replace a rule by a right-normalized rule in each of seven queues.
This procedure 1s implemented by modifying the rule in UnreducedRules, which is a



shared copy of the rules in the other queues.

Rewrite rules are modified without locking. The code relies on the underlying
shared memory, which guarantees that if a memory location is read at the same
time it is written, then the read will observe either the value before or the value
after the write—it will not observe an intermediate nonsensical value. A rewrite
rule is represented by two locations, and simultaneous rewrites to the two terms are
allowed. If two simultaneous rewrites are done to the same term, one may be lost.
However, this loss does not affect correctness. It may affect performance in that the
lost rewrite may have to be redone, but lost rewrites rarely happen in practice, and
the effect on performance is not significant.

The scheduler that runs on each processor consists of a loop that repeatedly in-
vokes transition procedures. Most of the design decisions in the scheduler are related
to performance tuning, and are discussed in Section 7 along with the performance
results. The problem of detecting termination within the scheduler 1s nontrivial,
because it requires taking a global snapshot of the system to determine whether all
guards are simultaneously false. If a process examines the queues in turn to see
whether they are empty, by the time it finishes new elements may have been en-
queued. Therefore, an agreement algorithm must be run between the schedulers on
the separate processors to ensure that all continue running until they agree there is
no work to do.

7 Scheduling and Performance

Experiments show that the best scheduler executes the transition procedures in
a loop with the order given by Figures 3 and 4. This scheduler repeatedly invokes
the same transition procedure as long as possible, then moves on to the next. The
only exceptions are the add_critical procedures, which it executes only once before
repeating the other procedures. This choice was motivated by experience with se-
quential completion procedures: performance, both in time and space, is better if
equations and rules are kept in normal form. Thus, critical pair computations are
stopped as soon as renormalization is required.

Figure 5 shows the performance of this scheduler on a Firefly with six CVAX
processors when completing typical sets of equations taken from the term rewriting
literature. The first column shows the number of milliseconds taken by the program
running on one processor. The other columns show the relative performance with
more processors. These figures were obtained by averaging five executions for each
example; they show that speedups are better for the larger examples.

The first example generates a complete set of rewrite rules for group theory. The
next provides some simple axioms for arithmetic, which fib4 extends to compute the
fourth Fibonacci number. Completing homomorphism establishes the fact that a
map from one group into another that preserves group multiplication also preserves
inverses and the identity. Completing group56 produces a complete presentation of
a group of order 56. The last example is due to Ursula Martin.

The time required to complete group56 depends dramatically on the order in
which critical pairs are computed, because one particular critical pair eliminates
most of the other rules [16]. A round-robin scheduler, which executes each transition
procedure once before going on to the next, seems to exhibit super-linear speed-ups
for this example, gaining a factor of eight with two processors and fifteen with six.



IT(ms) [1:2(1:3|1:4]1:5]1:6
group 1718 | 2.0 2.4 2.1 4.1 2.9
arith 4666 | 1.9 2.7 3.4 3.3 2.9
fib4 6603 | 1.8 3.1 2.9 2.2 3.5
homomorphism | 11980 | 2.0 2.8 2.5 4.2 4.2
groupb6 18796 | 2.2 2.3 3.1 3.7 3.8
domino 44162 | 2.0 2.9 3.7 3.8 5.1

Figure 5: Transition-based completion using the best scheduler

However, the round-robin scheduler takes more time in all cases than the scheduler
we use. Hence looking at speedups without considering absolute performance is a
very bad way to tune parallel programs. Furthermore, leaving scheduling to the
operating system is likely to produce terrible results.

Performance depends not just on the way the completion procedure schedules
tasks, but also on the way the operating system allocates processes to processors.
The times in Figure 5 were obtained using a system scheduler that does not move
processes from one processor to another, thereby preserving cache context. When
processes are allowed to move, performance is significantly worse: the speed-ups
with six processors were about 65% of those in Figure 5.

Our parallel completion procedure is consistently faster, even when running on
one processor, than the completion procedure provided by the Larch Prover [12].
While this comparison is somewhat unfair to the Larch Prover, which has more
functionality, the comparison does show that our parallel implementation is fast
enough to be of practical use.

These performance results are encouraging. For the larger examples, performance
continues to improve as processors are added. This does not guarantee scalability
beyond a small number of processors, but neither does it provide evidence against
scalability.

8 Related Work

Dershowitz and Lindenstrauss [7] describe an abstract concurrent machine for
rewriting a term by a set a rules, and they use it to compare various rewriting
strategies. The parallelism in their model is very fine grained. They associate a
process with each operator in a term and try to minimize the normalization time for
that term. This is quite different from our implementation, which emphasizes larger
grained parallelism; it allows parallel rewriting during internormalization, but does
not intentionally schedule multiple rewrites of the same term.

Some sequential completion procedures [11, 14, 15] also divide the state into
components, either to achieve better performance or to facilitate reasoning about
correctness. The data structures used for our state components differ from these,
however, because they are concurrent and have more control information to allow
for the additional executions that come from parallelism.

Slaney and Lusk [20] describe a parallel closure computation, which divides the
problem of completing R = {ry,...,r,} into tasks that compute critical pairs be-
tween r; and {ry,...,r;}, adding any results not subsumed by R to a new list S|
and a single task that moves rules from S to R, incrementing n and rechecking



the rest of S for subsumption. Because this method fails to address issues (such as
internormalization) that affect the total amount of work performed, any speed-ups it
exhibits are not very meaningful. For example, if two critical pairing tasks generate
members s; and s; of S such that s, subsumes s1, but not wvice versa, a task will be
spawned to compute critical pairs between s; and all members of R, without there
being any way to abort such an expensive task when it is found to be superfluous.

A completion procedure that has been parallelized successfully is Buchberger’s
algorithm for computing Grobner Bases [3]. Like us, Ponder observed performance
problems when using a straightforward parallelization of Buchberger’s algorithm
[18]. Vidal [22] redesigned the data structures and rearranged the top-level proce-
dure to get superior speed-ups. His procedure does internormalization in a separate
sequential phase. It is therefore simpler than our procedure, but less efficient, since
unreduced polynomials may cause extraneous computation.

9 Summary and Conclusions

Completion is a complicated problem, and the design of parallel completion pro-
cedures differs in nontrivial ways from the design of sequential procedures. The
nondeterministic description of completion in terms of transition axioms given by
Bachmair el al [2] is a good starting point for a parallel design, particularly because
it avoids some of the unnecessary serialization inherent in parallelizing a conven-
tional sequential program. But there is a large step between their description and
the directly implementable transition axioms that describe our procedure. In par-
ticular, the liveness requirement (CP fairness) must be encoded into data structures
without creating too many serialization points.

Our design technique appears promising as a means of parallelizing other ap-
plications that are highly irregular in their data structures, control structures, and
communication patterns. Examples of problems that have been difficult to par-
allelize by other means include circuit verification and simulation, certain sparse
matrix problems, and many symbolic applications.

Our implementation runs on a shared memory multiprocessor and performs well
when completing typical sets of equations, generally achieving speedups of 4n/5 or
better when run with n processors. We are currently porting our implementation to
an eight-processor Sequent, to test the scalability of our implementation.

We believe the completion procedure will scale to more processors as long as
there 1s sufficient data to keep the transition procedures busy. Because completion
often generates hundreds of intermediate rewrite rules, and because of the combina-
torial nature of applying these rules, an implementation for upwards of a hundred
processors should be interesting. There does not appear to be sufficient parallelism,
however, to support tens of thousands of processors. To utilize that many processors,
one would need to parallelize the processes of rewriting, matching, and unification.
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