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Abstract

Software developers for distributed memory multiprocessors often com-
plain about the lack of libraries and tools for developing and performance
tuning their applications. While some tools exist for regular array-based com-
putations, support for applications with pointer-based data structures, asyn-
chronous communication patterns, or unpredictable computational costs is se-
riously lacking. In this paper we describe our experience with six irregular
applications from CAD, Robotics, Genetics, Physics, and Computer Science,
and offer them as application challenges for other systems that support irregu-
lar applications. The applications vary in the amount and kind of irregularity.
We characterize their irregularity profiles and the implementation problems
that arise from those profiles. In addition to performance, one of our goals
is to provide implementations that run efficiently with minimal performance
tuning across machine platforms, and our designs are influenced by this desire
for performance portability. Each of our applications is organized around one
or two distributed data structures, which are part of the Multipol data struc-
ture library. We describe these data structures, give an overview of some key
features in our underlying runtime support, and present performance results
for the applications on three platforms.

1 Introduction

This paper reports on several case studies of irregular parallel applications and
the data structures within them. It also describes systems support in the form of a
parallel data structure library, Multipol, that makes such applications easier to de-
velop. In our experience, each application contains a small number of data structures
that need to be replaced when developing a parallel version; in symbolic applica-
tions, these often fall into two categories. The first category is scheduling structures
such as stacks, queues, or priority queues. These structures hold data items that
represent the set of tasks to be computed, so the key issue in parallelization is to load
balance these tasks without destroying locality properties or violating dependencies
between tasks that lead to incorrect semantics or unnecessary work. The second
class of data structures hold shared information about the current approximation to
or partial version of the final solution. In search problems, for example, this might
be a representation of the best solution so far or cut-off values to prune the search
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space. The design problem for these shared state structures is to maximize through-
put of the operations to read and modify the structures. In some applications, a
single data structure serves as both a scheduling structure and for storing computed
values of the solution. Many scientific and engineering applications are simulations,
rather than symbolic programs, but these may contain irregularities as well. For sim-
ulations, the underlying data structure is usually a grid over the physical domain,
which may be a regular multi-dimensional mesh or an unstructured graph.

Our Multipol applications include an eigenvalue computation based on a divide-
and-conquer algorithm [CRY94], an electromagnetics simulation kernel [CDGT93,
Wen95], a symbolic algebra system [CY93a, CY93b, CY94], a timing level circuit
simulator [Wen92, WY93, WY95], a solution to the phylogeny problem from com-
putational genetics [Jon94, JY95], and a game tree search [WCD195, Wen95]. In all
of these projects, the key parallelization task was the development and performance
tuning of distributed data structures. Although several languages and runtime sys-
tems support the development of such data structures [And93, BBG193, FLR92,
SK91, SL93, CCK92], there are no comprehensive data structure libraries, such as
those that exist for uniprocessors. Multipol is such a library.

Multipol is designed to help programmers write irregular applications such as
discrete event simulation, symbolic computation, and search problems. These ap-
plications typically contain conditional control constructs and irregular, non-array
data structures such as graphs or unstructured grids, which make the amount of com-
putation in the program data dependent, leading to dynamic scheduling and load
balancing requirements. They also produce unpredictable communication patterns,
for which runtime techniques must be used for enhancing locality and reducing com-
munication costs. The Multipol data structures and runtime system provide such
support.

One of the key problems in any library effort of this kind is portability. Our
primary targets are distributed memory machines such as Thinking Machines CM5,
IBM SP1, and Intel Paragon, and networks of workstations. While at a functional
level these platforms are very similar, the performance characteristics vary signifi-
cantly. All of the machines have higher costs for accessing remote memory than local
memory, whether this is done in hardware or in software, but the relative speeds of
computation, the startup overhead of communication, the latency and the observed
bandwidth all vary. The interface design and implementation of Multipol structures
are aimed at coping with communication overhead and latency.

Multipol is implemented on a novel runtime layer that provides mechanisms for
lightweight atomic threads, which we call fibers, support for efficient communication
across architectural platforms, synchronization primitives including global snapshot
facilities, and controlled scheduling. Our library-based approach offers several advan-
tages. First, the data structures provide high level programming abstractions that
can be reused across applications. The abstractions also help hide implementation
details, which can be fine-tuned to match the communication and synchronization
needs. Finally, the library defines a set of interface ideas, such as split-phase oper-
ations, and underlying implementation infrastructure that make it easily extensible
to a wider class of data structures and applications.

The remainder of the paper is organized as follows. Section 2 gives an overview



of the applications and their key data structures. Section 3 introduces the common
issues in designing high-performance, portable applications, and describes some of
the solutions used in the Multipol library. Section 4 sketches the portable runtime
system on which Multipol is built, Section 5 presents some performance data, and
Section 6 draws some conclusions from our experience.

2 The Applications

In this section we give a brief description of our applications and the high level
data structures that are replaced during parallelization. The purpose is to identify
the main data structures and design trade-offs that shaped the Multipol design.

In each of the symbolic applications, we identify two data structure requirements:
a scheduling structure to hold the set of tasks being generated and a solution struc-
ture to hold an approximation to or partial version of the final result. In two cases,
the same data structure will play both roles. A common property of several of the
solution structures is having some type of monotonicity property that allows out-of-
date or incomplete versions to be used. Two of the applications are simulations, and
in each of these cases locality as well as load balance are crucial to performance. For
precise problem statements, alternate approaches, related applications work, and
complete descriptions of our implementations, we refer the reader to more extensive
papers on each application.

2.1 EM3D

The EM3D application computes the flow of electro-magnetic waves through
a three-dimensional object [CDG193]. Each object is modeled by an unstructured
three-dimensional grid of convex polyhedral cells, which is called the “primary grid.”
A dual grid is defined with respect to the primary grid, having grid points at the
centers of the primary grid’s cells. The electric field is evaluated for the faces of the
primary grid, while the magnetic field is evaluated for the faces of the dual grid.
These field values form nodes in a bipartite graph, because the computation of a
face uses data only from the faces of a different grid. The structure of the bipartite
graph remains static throughout the computation.

The sequential algorithm consists of a series of alternating steps for computing
the electric field and the magnetic field on the bipartite graph. The change in the
electric field of a node is a linear combination of the magnetic field of its neighboring
nodes, and is calculated during the odd numbered iterations. Similarly, the change
in the magnetic field of a node is a linear combination of the electric field of its
neighboring nodes, and is calculated in the even numbered iterations. Since the
electric and magnetic field values are calculated in different steps, dependencies
exist only between steps and never within a step.

Although the unstructured grid makes this an irregular application by some def-
initions, it is one of the most regular of the Multipol applications, because the graph
is fixed at program startup time and the amount of computation per node is ap-
proximately the same. This allows for the kind of inspector/executor processing that
is done in the Chaos system [DUSH94], although the EM3D kernel is based on a
synthetic graph, so the inspector phase is unnecessary in our code. The computa-
tional kernel of EM3D reflects the structure of many synchronous simulations; it is a
sequence of bulk-synchronous phases that alternately computes the states of the two



parts of the bipartite graph. The key issues in obtaining high performance are load
balancing the graph nodes across processors, minimizing the number of cut edges
between processors, and packing many small messages into fewer large ones. The
graph partitioning problems are difficult, but all of these optimizations can be done
in a preprocessing phase at runtime.

2.2 CSWEC

The CSWEC application is a classic example of discrete event simulation [WY95].
The program simulates the voltage output of combinational digital circuits, that is,
circuits without feedback signal paths. The program partitions the circuit into
loosely coupled subcircuits that can be simulated independently within a time step.
The time step size is determined independently for each subcircuit based on its cur-
rent state. At the end of a time step, if the subcircuit’s state cannot be extrapolated
linearly from its previous state within some error margin, the new state is prop-
agated to its fanout subcircuits. The propagation of subcircuit state is called an
event. The event-driven approach significantly reduces the computation and com-
munication required for the simulation.

We adopt a conservative approach to parallel asynchronous simulation [CM81],
although in related work we describe a speculative version of this simulator which
is more complex, but useful for circuits with feedback loops [Wen92, WY93]. The
program uses a distributed event graph data structure to represent the circuit. Each
graph node corresponds to a input signal port or a output voltage point of a subcir-
cuit. The directed edges in the event graph are essentially communication channels
for multicasting event messages from the source nodes to their sink nodes. The data
structure guarantees the event messages are delivered in the order sent, and the
maximum number of outstanding event messages do not exceed a specified thresh-
old (called the capacity). A thread is created for each subcircuit on the processor
that owns the part of the event graph representing the subcircuit. The threads com-
municate and synchronize via the event graph data structure, which encapsulates
the connectivity structure of the circuit. The programmer can tune the capacity to
trade off the parallelism of the simulation and the amount of memory used.

The semantics of the graph multicast operation 1s weakened to reduce synchro-
nization overhead. When the multicast call returns, the data structure guarantees
that the event message will eventually be delivered, but the completion of the call
does not necessarily imply that the event message has been received. The weak
semantics eliminates the hand-shaking between the sending and the receiving nodes
for acknowledging event messages. The application can call a data structure primi-
tive to force the delivery of all event messages, for example, when taking a snapshot
of the graph to perform deadlock detection.

The event graph also takes advantage of the graph structure to optimize com-
munication performance. For example, identical event messages that are sent to
different nodes on the same processor are collapsed into one physical message to
reduce communication. The control messages for managing message buffers are also
collapsed in a similar manner. The collapsing of messages significantly reduces the
amount of communication if the nodes have a large number of fanouts, which is
common in large circuits.



2.3 Eigenvalue

The FEigenvalue program is a classic example of a search problem. We also
have implementations of other search problems, including the n-queens example and
traveling salesman problem, but the basic principles are the same. The scheduling
structure in each case 1s some type of task queue that holds nodes from the search
tree. The solution structure may be something as simple as a single value: in branch
and bound algorithms, the bound represents a current approximation to the solution.

The bisection algorithm, an algorithm used in the ScaLAPACK library [CDPW92],
is a search-based method for computing the eigenvalues of symmetric tridiagonal
matrices. A symmetric tridiagonal N x N real matrix is known to have N real
eigenvalues and it is easy to find an initial range on the real line containing all eigen-
values. Then, given a real number x, it is possible to calculate how many of the N
eigenvalues are less than . This primitive can be used to successively subdivide the
real line and locate all eigenvalues to arbitrary precision.

A parallel implementation of bisection can use a static subdivision of the initial
range, but this has poor parallel efficiency if the eigenvalues are clustered, because
the work load is not balanced [DDR94]. A solution is to use a task queue with
load balancing for the scheduling structure. Because our machine target is a dis-
tributed memory multiprocessor, locality is an obvious concern, but for bisection,
the tridiagonal matrix is relatively small and can be statically replicated, so the
only data associated with each task is the pair of endpoints of each interval. A sim-
ple randomized scheduler pushes each task to a random processor upon insertion.
This scheduling structure has, in a sense, provably optimal performance, but poor
locality properties if there is an advantage to executing tasks on the processor that
created them. Given the replicated matrix, locality is not a concern in the bisection
algorithm [CRY94].

The intervals stored in the task queue act as the approximate solution as well as
the scheduling structure. As the intervals shrink, the approximation improves until
a solution of the desired accuracy is obtained. We will observe this phenomenon of
a single data structure playing both roles in one other application, the Tripuzzle.

2.4 Grobner Basis

The Grobner basis program is a completion procedure used for solving systems
of nonlinear algebraic equations. The problem is: given one set of polynomials,
compute another set that has the same roots but is, in a technical sense, simpler. It
has two large data structures: the current set of polynomials and a queue in which
all pairs of all polynomials are placed. From a high level, the computation is very
similar. For each pair of polynomials, a new polynomial is computed; if the new
polynomial is shown to be an linear combination of existing ones — a computation
that is performed by simplification relative to the set of existing polynomials — the
new one is eliminated. If is does not simplify to zero, it is added to the set, and all
pairs that can be created with it are added to the pair queue.

The creation and simplification of new polynomials constitutes the bulk of the
work, so the data structure that holds pairs of polynomialsis the primary scheduling
structure in the parallel implementation. The ordering of pairs within this schedul-
ing queue 1s quite flexible, although orderings can have a significant effect on the
total amount of work performed. The pair queue is implemented as a task queue,



in which each processor’s portion ordered by heuristics, but no global ordering is
maintained. The set of polynomials is read much more frequently than it is written,
since reduction of polynomials requires reading the set and most of the polynomials
will reduce to zero. One software option is full replication, whereby each polyno-
mial is broadcast when added to the basis. However, polynomials can be large and
the processors are not synchronized, so this disrupts the computation and leads to
poor processor utilization. Instead, we use software caching. Object caching avoids
false sharing and fragmentation problems of hardware caches, but has higher address
translation overhead. It also has an advantage of flexibility: we use a consistency
protocol that is specific to the data structure, and make scheduling decisions based
on cache state. For example, when new polynomials are added or old ones simplified,
other processors may have stale or incomplete copies of the basis. Fortunately, this
does not prevent them from doing useful work. When a processor finds a polyno-
mial that appears to be new, i.e., did not reduce to zero, it locks the basis, obtains a
consistent copy of all elements, performs one final check on reducibility, and finally
adds the polynomial.

The locking solves the consistency problems and enforces the uniqueness of ele-
ments, but 1t can lead to performance bottlenecks as processors wait for locks. To
avoid these overheads, we use multi-threading. If a processor cannot acquire the
basis lock to perform the desired task, it suspends the current work and picks up
something unrelated. Multi-threading is done at user level to avoid the cost of saving
complete thread contexts. As with caching, some hardware designers would place
multi-threading support into the hardware. This may lower the cost of threading
operations, but gives up some flexibility. In our approach, the library designer can
decide whether a cache miss may be ignored (because the value is not essential) or
should result in a change of context.

2.5 Phylogeny Problem

The problem of determining the evolutionary history for a set of species, known
as the phylogeny problem, is fundamental to molecular biology. Evolutionary history
is typically represented by a phylogeny tree, a tree of species with the root being the
oldest common ancestor and the children of a node being the species that evolved
directly from that node. Each species in a set is represented by a set of traits or
character values. One technique for solving the phylogeny problem, called character
compatibility, is to search through the power set of characteristics to see which ones
are in a sense consistent. The notion of consistency in this problem is the existence
of a particular kind of phylogeny tree called a perfect phylogeny tree. The specifics
are not important. What is important is the structure of the search space, a power
set, and the following property of the perfect phylogeny trees: if none exists for
some set, of characters S (the set is inconsistent), then none exists for any superset
of S. An important optimization in the sequential program is to keep track of all
inconsistent sets, and before computing a perfect phylogeny tree for a new set, we
check whether the set or any of its subsets have been found inconsistent.

Although the search space has a known structure, the above property allows
for unpredictable pruning, which leads to load imbalance. Aggressive task pushing
is not appropriate in this application, because the child tasks of a given task are
closely related to their parent, and often need the failure information computed by



the parent to avoid rendundant computation. Work stealing, a variation on the task
pushing data structure, provides load balance that is almost as good as pushing,
but with better locality. (Work stealing is provably optimal, in the same sense that
randomized task pushing is [BL94].) The basic difference is that stealing leaves tasks
on the processor that created them until another processor becomes idle.

The choice of a data structure for holding a partial solution is more difficult in
Phylogeny than in the other search problems, because we need a representation of
the result (success or failure) of every node searched so far. Fortunately, because
the structure of the search space, this information can be compressed using a trie.
Each node in the search space 1s a subset of all of the characters, represented as a
bit string, and a binary trie is built using the bit strings as keys. Using the trie,
we can easily look for subsets as well as identical sets, and we compress the trie
as it logically grows by storing only minimal subsets. Ideally, the trie should be
shared between processors, but an out-of-date trie will result in extra work without
changing the program correctness. We therefore avoid communication overhead and
synchronization using a lazily replicated trie with global synchronization points for
making the shared copies consistent.

2.6 Tripuzzle

The Tripuzzle problem is to compute the set of all solutions to a single player
board game. The parallelism comes from considering a set of moves simultaneously,
and the solution 1s the set of all moves that result in a winning game. The parallel
algorithm 1s bulk-synchronous. At each step, all processors look at a set of result-
ing boards from the previous step and compute the set of legal moves. As in the
Eigenvalue problem, a single data structure is used to load balance the computation
and to store the current approximate solution. The data structure i1s a partitioned
hash table: if the same board is found from two different series of moves, they will
clash in the hash table and be collapsed; the hashing function distributes elements
of the hash tables across processors and therefore also acts as a load balancer. The
processors look at the local portion of their hash table when computing the next
step.

2.7 Summary of Application Workload

Figure 1 compares the application workload in the following three aspects: com-
putation, communication, and synchronization.

The computation in an application can be statically balanced if their granulari-
ties can be predicted (such as in the EM3D program) or reasonably estimated using
application-specific heuristics (such as in the Tripuzzle program and the CSWEC
program). Otherwise, a dynamic load balancer should be used. Choosing the load
balancing strategy involves a tradeoff between load balance and locality. For ex-
ample, locality has little impact on the Eigenvalue program and the Grobner basis
program, so randomized task pushing can be used to improve load balance. How-
ever, the Phylogeny program performs better with task stealing, because it preserves
locality and thereby reduces the amount of communication and redundant work.

Communication performance 1s affected by the the total volume and the nature
of the communication events. Communication overhead is less pronounced if the
volume of communication per event is large, as in the EM3D program. The perfor-



Application Workload
Computation Communication Synchronization
EM3D Statically balanced Some large Predictable
using input structure predictable events global events
CSWEC Statically balanced Many small Independent
using heuristics unpredictable events | events
Eigenvalue | Dynamically balanced, | Some small Independent
locality not important | unpredictable events | events
Grobner Dynamically balanced, | Some small & large | Independent
Basis locality not important | unpredictable events | events
Phylogeny Dynamically balanced, | Some small & large | Independent
locality is important unpredictable events | & global events
Tripuzzle Statically balanced Mostly small Predictable
by randomization unpredictable events | global events

Figure 1: Comparison of application work loads.

mance of such applications are limited by the network bandwidth. In comparison,
small, unpredictable communication events incur more overhead, because they re-
quire additional hand-shaking between the sender and the receiver to set up the
communication. For applications with many small unpredictable communication
events, such as the Tripuzzle program, the performance is likely to be limited by the
communication start-up overhead.

Synchronization events can take place globally for a collection of accesses, such
as the global barriers in the EM3D, Phylogeny, and Tripuzzle programs, or inde-
pendently for the individual accesses, such as retrieving a task in the Eigenvalue
program or acquiring the basis lock in the Grobner Basis program. Global syn-
chronization events has less performance impact if their overhead can be amortized
over a large number of accesses. Bulk synchronous applications such as the EM3D
program and the Tripuzzle program are more likely to take advantage of global
synchronization events. Independent synchronization events may become the main
source of processor idle time, unless their latencies can be overlapped with useful
computation.

3 Data Structure Design Issues

The applications demonstrate varying degrees of irregularity that challenge many
existing systems. We used a library-based approach by providing a set of distributed
data structures that are designed for high performance, clean interfaces, and porta-
bility. Because the architecture targets are large scale multiprocessors, performance
is the priority, and some compromises are made to the interfaces to satisfy perfor-
mance demands. In this section, we discuss some of the programming techniques
that are used to obtain high performance across architectures.

When parallel programs show suboptimal performance, the problem can gen-
erally be identified as time the processors spend doing useless computation, i.e.,
computation that is not required by the sequential implementation, the time they
spend in communication, and the time they are idle. FEach type of overhead is
reduced in Multipol using a combination of the techniques outlined below.



3.1 Latency Masking

The latency of remote operations may cause idle time if the processor waits
for the operation to complete. A remote operation simply reads or writes remote
memory or executes a small remote procedure, for example, a lock acquisition. Thus,
the term latency refers to both the message transit time and the time required for
remote processing. The remote computation time is not necessarily overhead, but
time spent waiting for completion is. The total latency can be quite large when the
network is slow, when the application has highly irregular communication patterns
that make it impossible to make optimal scheduling decisions, or when the remote
requests require nontrivial computation.

Techniques such as pipelining remote operations and multithreading can be used
to hide latency. Even on a machines like the CM-5, with relatively low communica-
tion latency, the benefits from message overlap are noticeable: message pipelining
of simple remote read and write operations can save as much as 30% [KY94] and on
workstation networks with longer hardware latencies and expensive remote message
handlers, the savings may be even higher.

The latency hiding techniques require the operations be nonblocking, or split-
phase. In Multipol, operations that would normally be long-running with unpre-
dictable delay are divided into separate finite-length threads. Multipol operations
execute local computation and may initiate remote communication, but they never
wait for remote computation to complete. Instead, long-running operations take a
synchronization counter as an argument, which the caller can use to determine if
the operation has completed. This leads to a relaxed consistency model for the data
types. An operation completes sometime between the initiation and synchronization
point, but no other ordering is guaranteed.

Several applications can take advantage of relaxed consistency models. For bulk-
synchronous problems such as EM3D [CDG193], cell simulation [Ste94], n-body
solvers, and the tripuzzle problem, data structure updates are delayed until the
end of a computation phase, at which point all processors wait for all updates to
complete. For these applications, the latency can be amortized by packing small
messages into larger ones. Moreover, because all processors reach a communication
phase at roughly the same time, very efficient communication techniques including
synchronous communication or asynchronous messaging with polling can be used.

In our experience, a more significant source of latency is the time one processor
spends waiting for synchronization events from remote processors. These events
are often the completion of remote function invocations, which may be delayed
by scheduling constraints, insufficient polling, or high interrupt overhead. Of the
six applications, latency problems are worst in the application with many small
messages, unpredictable synchronization events, and no separate synchronization
phase, namely the Grobner basis application and CSWEC. In both programs, having
multiple remote operations outstanding is not sufficient, so user level multi-threading
is used to overlap the delays. In CSWEC, multi-threading is fundamental to the
asynchronous simulation semantics, so it is difficult to quantify a pure performance
benefit, but in Grobner basis, the overlap of high level operations saves about 10%.
The Figenvalue problem has many of the same characteristics, but there are few
synchronization events between tasks; it uses a non-blocking operation to insert tasks



into a distributed queue, but does not require the more complex multi-threading.

3.2 Locality

Locality is crucial when the state used by a given task is large and cannot be
replicated for reasons of space or expense of keeping the copies consistent. One way
to improve locality is to reduce the volume of communication by carefully placing
tasks on the processors that own most of the relevant data. Static techniques for
locality optimizations include partitioning, which attempts to divide up the data set
into loosely dependent partitions, and replication, which keeps a copy of infrequently
written data on each processor. The EM3D application is typical of static unstruc-
tured grid problems in that the grid is irregular, but once the program starts the
grid remains fixed, so the application is optimized for load balance and locality using
a static partition of the grid. In some problems where the grid changes slowly over
time, the same technique can be used with some repartitioning steps after a set of
timesteps. Dynamic locality techniques include mobile objects in which a single copy
moves around the system, and caching, which maintains multiple copies, depending
on the runtime usage. For replication and caching, relaxed consistency may be used
to further reduce communication by allowing multiple copies to be inconsistent.

Many applications can take advantage of these relaxed data structures because
there is no strict ordering on updates and because an old value of the data structure
can be used profitably. In two of the applications, the solution data structure has
a kind of monotonicity that can be exploited. In the phylogeny application and
Grobner basis problem, not only are updates to the global set of results lazy, but
each processor keeps partially completed cached copies of the set. This yields a cor-
rect, albeit different, execution than the sequential program [CY93b, JY95]. These
out-of-date copies can lead to parallelism overhead in the form of useless compu-
tation in both applications, so there is a crucial trade-off between the frequency of
communication to update the shared state and the amount of redundancy on the
computation.

3.3 Communication Cost Reduction

Some communication cannot be avoided, but its cost can be reduced by minimiz-
ing the number of messages (as opposed to the volume) and by using less expensive
unacknowledged messages. For machines like the Paragon and workstation networks,
which have high communication start-up cost, the former is very important. Many
small messages are aggregated into one large physical message to amortize the over-
head. Several other systems, including Chaos [DUSH94] and LPARX [Bad91], also
use message aggregation. Even for machines such as the CM5, which have small
hardware packets and therefore a nearly fixed overhead per word, it may still be
advantageous to aggregate messages to reduce the amount of flow-control communi-
cation for sending arbitrary-sized messages which cannot fit into a machine packet.
Message aggregation can be performed statically by the programmer or compiler or
dynamically by the runtime system. Chaos and LPARX uses a static or semi-static
approach, in which small messages are packed by the library and shipped at a user
specified time. We use a more dynamic approach, in which messages accumulate in a
buffer and are sent when the buffer fills or when a certain amount of time has passed
since the last packet was sent. Qur approach is more complicated to implement and



involves subtle issues of liveness and flow control, but 1s essential in applications like
CSWEC and Grobner basis, in which there is no advanced knowledge of communi-
cation events and no global synchronization points at which all communication may
be performed.

There is a down-side to message aggregation in that holding messages until a
sufficiently large amount of data has collected may increase the observed latency to
the higher level software. This must be weighed against the reduction in commu-
nication overhead, but our decision to use aggregation is motivated by a desire to
run on machines with high as well as low communication overhead. The down-side
of aggregation is mitigated by our use of multi-threading since the increased delays
may be hidden by other work. This set of design decisions relies on the availability
of excess parallelism in the application, which is certainly available in our highly
asynchronous applications.

A second technique for reducing communication cost is to avoid acknowledgement
traffic. Acknowledgements may consume a significant fraction of available bandwidth
when the messages are small. In the hash table, a factor of 2 in performance was
gained when split-phase inserts with acknowledgements were replaced by batches
of inserts followed by periodic global synchronization points. A Split-C version of
the EM3D problem based on fine-grained communication also showed a noticeable
improvement [CDGT93].

3.4 Multi-ported Structures

In addition to communication overhead, many parallel applications lose perfor-
mance on the local computation. Languages that support a global view of distributed
data structures, for example, may incur costs from translating global indices into
local ones [Ste94] or from checking whether a possibly remote address is actually
local [CDGT93]. Message passing models in which objects cannot span processor
boundaries avoid these overheads, but lose the ability to form abstractions across
processors. We take an intermediate position, in which each data structure has both
a local view, which refers to the sub-object that is on the processor, and the global
view, which refers to the entire distributed data structure. For example, many of
the data structures allow for iteration over the local components of the object, and
for operations that modify or observe only the local data. In the tripuzzle program,
this means iterating over the elements of the local hash table to compute the next
set of board values, while insertions are performed across processors. In Grobner
basis and Phylogeny, search operations are performed on the local view of a list or
tree, but modifications are logically applied to the global view. The data structures
are therefore said to be multi-ported: each processor has its own fast handle to a
structure, while access to the global structure is also permitted.

3.5 Load Balance

Load balance of data structures requires that the data be spread evenly among
the processors to avoid hot spots, while load balance of tasks requires that work be
spread evenly across processors. In applications with high locality, the two kinds of
load balancing are intimately linked. There is typically a trade-off between locality
and load balance, since increased load balancing moves more tasks away from their
creating processor, which is likely to be the processor holding their data.



For applications with predictable computation costs and fixed data structures,
like EM3D, static load balancing techniques apply. In problems with highly un-
predictable computational costs, dynamic decisions are often the right choice. The
Grobner basis application, phylogeny problem, and eigenvalue problem all use a
kind of task queue to balance work. The loss of locality is acceptable, because the
shared state 1s replicated or cached for other reasons. However, we find a signifi-
cant difference between aggressively pushing tasks to remote processors and stealing
them only when idle: the former gives better load balance and performs better in
the eigenvalue problem in which the shared state is replicated read-only; the latter
gives better performance in the phylogeny problem, because the local copy of the
solution set is much more likely to avoid redundant work than another processor’s
copy. The tripuzzle uses an unusual form of dynamic load balancing that is similar
to task pushing: the hash table holds both the current approximation to the solution
and the set of tasks for the next step, and the load balance comes from the hash
function’s distribution across processors.

The CSWEC application is unusual, because it uses static load balancing in
spite of high task time variability. Subcircuits are randomly assigned to processors
at program startup time, using some heuristics to balance the workload. This works
reasonably well because even at runtime there is very little information that could
be used in advance to schedule tasks. More importantly, the state associated with
each subcircuit is large and should not be duplicated, so the avoidance of high
communication costs from moving subcircuits outweighs the advantage of improved
load balancing.

4 The Multipol Runtime Layer

A Multipol program consists of a collection of threads running on each processor,
where the number of physical processors is exposed so that the programmer can op-
timize for locality. Multipol threads serve two purposes. They are invoked locally to
hide the latency of split-phase operations and can also be invoked remotely to per-
form asynchronous communication. The Multipol runtime system provides support
for thread management, as well as a global address space spanning the local memory
of all processors. In this section, we describe the runtime support in Multipol.

4.1 Overview of Multipol Threads

Multipol threads are designed to facilitate the composition of multiple data struc-
tures and to enhance portability of the data structures. This section describes the
features of Multipol threads and explains our design decisions.

Multipol threads run atomically to completion without preemption or suspension.
Atomicity of thread execution reduces the amount of locking required, and makes
it easy to implement common read-modify-write operations. Since threads are not
preempted, spinning is prohibited — to suspend a computation awaiting the result
of a long latency operation, the thread that issues the operation explicitly creates
a continuation and passes the required state. The issuing thread then terminates,
and 1ts continuation thread can be scheduled to resume the computation when the
result becomes available. Synchronization between the continuation thread and the
completion of the operation is achieved by waiting for a counter to exceed a given
value.



Because the programmer explicitly specifies the state to be passed to the con-
tinuation, there is no need to implement a machine dependent thread package for
saving the processor state and managing separate stacks. Our approach improves
the portability of the runtime system, and may have lower thread overheads for
machines with large processor states.

The runtime system provides a two-level scheduling interface for threads. The
programmer can write custom schedulers to schedule the data structure or applica-
tion threads. The runtime system, for example, uses a FIFO scheduler for interpro-
cessor communication, and applications such as discrete event simulators can have
their own priority based schedulers. The top-level system scheduler guarantees that
each custom scheduler is called once within finite time, and the frequency of calls
can be configured by the programmer.

The scheduling interface localizes scheduling decisions to the custom schedulers,
which can be individually fine-tuned for performance. It also facilitates the compo-
sition of data structures, or the addition of new runtime support. The scheduling
policy used by one data structure can be changed without introducing anomalies,
such as unexpected livelock or deadlock, into other parts of the program.

The Multipol threads are designed for direct programming, in contrast to compiler-
controlled threads such as TAM [CSST91], in that Multipol provides more flexibility
such as arbitrary size threads and custom schedulers. A set of macros can be used
to facilitate programming. These macros make the Multipol programs resemble
sequential programs with blocking operations (as opposed to thread continuations
with split-phase operations).

4.2 The Multipol Communication Primitives

The runtime system supports two types of communication primitives: remote
thread invocation and bulk accesses of the global memory. A thread may be invoked
on a remote processor to perform asynchronous communication, such as requesting
remote data, or to generate more computation, such as dynamically assigning work
to processors. Invoking a remote thread is a non-blocking operation which returns
immediately, and its completion guarantees that the remote thread will be invoked
in finite time. The programmer can also use bulk, unbuffered put and get primitives
to access remote data. The put and get operations are split-phase operations which
use a counter to synchronize the calling computation when all data arrive at the
destination.

The runtime system aggregates messages to improve communication efficiency
for programs that generate many small, asynchronous messages. These messages
are accumulated into large physical messages to amortize the communication start-
up overhead. Experiments with a circuit simulation application and the Tripuzzle
example show that message aggregation can reduce the running time by as much as
50% on machines such as the TIBM SP1.

5 Performance

We implemented all five applications except Grobner Basis on top of the Multipol
runtime layer and data structure library. The programs are analyzed and optimized
using Mprof, a performance profiling toolkit for programs that use the Multipol
library [Wen95]. The Multipol programs are portable across several distributed



memory platforms, including the Thinking Machines CM5, the Intel Paragon, and
the IBM SP1/SP2. Figure 2 gives the speedups of the SWEC, Eigenvalue, Phylogeny,
and Tripuzzle programs on these three machines. The Grobner basis implementation
was originally developed before Multipol, and although it was converted to use the
library and runtime support, it contains some machine-specific functions that limit
its execution to the CMb5.

The performance of these applications, like many irregular problems, is highly
dependent on the input and the machine architecture, and there is no obvious notion
of problem scaling. The generally good results from the Multipol implementations
show that our approach achieves performance portability on a variety of architec-
tures.

6 Conclusions

We have described several irregular parallel applications and shown that common
programming techniques, software caching, replication and dynamic load balancing
can be used across applications, and in some cases the data structures themselves
can be re-used. We identified two types of data structures that are common in
symbolic applications, one used for load balancing and another used for sharing
partial solutions.

The Multipol library fills the gap in the parallel software tools for programming
irregular applications on distributed memory machines. We have identified some
of the primary performance issues in the Multipol design, namely, locality, load-
balance, latency hiding, and communication elimination, and gave an overview of
our solution based on a multi-threaded runtime layer. The split-phase interfaces in
Multipol are a concession to performance demands, and while they complicate the
interface from the client’s perspective, they significantly improve performance on dis-
tributed memory machines. The use of one-way communication eliminates acknowl-
edgement traffic and is a significant performance enhancement for data structures
with small messages. The multi-ported aspect of the structures allows the users to
switch between global and local views, providing the abstraction of the former and
performance of the latter.

The irregular applications described here represent some of the more challenging
problems for parallelism. We believe that the library approach is a good compromise
between hand-coded, machine-specific applications, and approaches based entirely
on high level languages and compilers.
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