Compiling Sequential Programs for Speculative Parallelism

Chih-Po Wen

Katherine A. Yelick

Computer Science Division

University of California, Berkeley, CA 94720

Abstract

We present a runtime system and a parallelizing
compiler for exploiting speculative parallelism in se-
quential programs. In speculative executions, the
computation consists of tasks which may start before
their data or control dependencies are resolved; depen-
dency violation is detected and corrected at runtime.
Our runtime system provides a shared memory ab-
straction and ensures that shared accesses appear to
execute 1n the proper order. Our compiler transforms
sequential programs into parallel tasks and manages
control dependencies. It also optimizes the parallel
program using data flow analysis to reduce the cost of
speculative execution. We demonstrate our approach
through the parallelization of an example application,
and report on its performance on a distributed mem-
ory multiprocessor.

Keywords: parallel compilers, runtime systems, spec-
ulative parallelism, optimistic concurrency, optimizing
compilers.

1 Introduction

Speculative parallelism can be used to increase the
amount of available parallelism in some applications.
The idea 1s to make the optimistic, or speculative, as-
sumption that no dependencies exist between different
tasks (e.g., loop iterations) in a program; those tasks
are executed in parallel, and the runtime systems de-
tects and corrects any dependencies that occur out

0 This work was supported in part by the Semiconductor Re-
search Consortium under contracts 92-DC-008 and 93-DC-008,
by the National Science Foundation as a Research Initiation
Award (number CCR-9210260) and Infrastructure Grant (num-
ber CDA-8722788), by the Advanced Research Projects Agency
of the Department of Defense monitored by the Office of Naval
Research under contract DABT63-92-C-0026, by Lawrence Liv-
ermore National Laboratory (task number 33), and by AT&T.
The information presented here does not necessarily reflect the
position or the policy of the Government and no official endorse-
ment should be inferred.

of order. Optimistic concurrency has been applied to
transaction management [7] and discrete event simula-
tion [6]. In previous work, we showed that optimistic
concurrency in timing simulation leads to speedups
over 50 on a 64 processor CMb, and that the observed
speedups exceed even the theoretical speedups of the
conservative approach on ideal hardware (assuming
free communication and unlimited processors) [11].

For applications with infrequent, statically unpre-
dictable dependencies, the benefits of speculative par-
allelism are clear. The drawback of the approach is
the programming overhead of developing such appli-
cations. The goal of this work is to provide the benefit
of speculative parallelism with minimal programming
effort. We have built a prototype runtime system that
manages scheduling and side-effects of speculative par-
allelism. It is similar to the timewarp system of Jeffer-
son [6], but whereas timewarp uses a process and mes-
sage view of the computation, we use a shared mem-
ory view. We have also built a parallelizing compiler
that transforms sequential programs into speculative
shared memory parallel programs.

Our compiler differs from most parallelizing com-
pilers. These compilers exploit only conservative par-
allelism, and may therefore fail to discover parallelism
due to the lack of compile-time information. For ex-
ample, loops with unknown loop bounds or array ac-
cesses with unknown indices may prevent the compiler
from obtaining precise dependency information. Run-
ning on conventional shared memory, programs com-
piled by our compiler could produce incorrect results,
but on our shared memory runtime system, they will
have the same functionality as the original sequential
code. Because the runtime overhead of speculation
can be high, another important feature of our compiler
1s extensive optimizations based on data flow analysis.

The remainder of this paper is organized as follows.
Section 2 gives an overview of speculative execution.
Section 3 describes the interface and implementation
of the runtime system and Section 4 describes the com-
piler. Section b demonstrates the use of the compiler
on an example program. Section 6 relates this work to

earlier work on speculative parallelism. In Section 7
we draw our conclusions and describe future work.

2 Overview of Speculative Parallelism

The compiler decomposes a program execution into
tasks, which typically correspond to a structured pro-
gram fragment like a loop body. The sequential execu-
tion of a program defines a total order on tasks, which
we refer to as the fime of a task. Under speculative
parallelism, possibly dependent tasks are started in
parallel. A parallel execution is considered correct if
it conforms to all of the data and control dependencies
of the original sequential program.

In our system, if dependencies occur out of order
in the parallel execution, the side-effects of the tasks
are undone, and the system rolls back to a consistent
state, 1.e., a state that exists in the sequential execu-
tion. The state before the execution of a task must be
preserved for rollbacks. Therefore, a task never over-
writes a value created by an earlier task; each write is
made to a fresh copy of the variable, called a version,
which is owned by the task. The copies can be read
by later tasks for speculative execution. Canceling a
task involves discarding all versions of variables owned
by the task, and (transitively) canceling all tasks that
have read such versions. The underlying assumption
is that runtime parallelism exists in the computation,
even if 1t cannot be found statically, and that rollbacks
are seldom necessary.

3 The Runtime System

In this section we present a runtime system that
supports the above execution model. The system en-
sures that data dependencies are respected. Control
dependencies are enforced by the compiler using syn-
chronization variables, which are explained in section

4.
3.1 Interface

The runtime system provides a shared memory
space for all tasks. Tasks communicate their states by
reading and writing shared variables. On distributed
memory multiprocessors, accessing a shared variable
may require communication with a remote processor.
To cope with this latency, shared variable accesses are
separated into an initiation and a completion phase,
so that the latency can be overlapped with useful com-
putation.

The generation and scheduling of tasks are man-
aged by a task queue, which is physically distributed
among the processors. The task queue does not en-
sure any global order on task executions, but within a
processor it prefers tasks with earlier task times. This
preference reduces the chance of task cancellation.

Due to speculation, the states of variables observed
by a task are not guaranteed to be consistent with the
sequential execution. A task is said to have completed
if it has finished executing, it observed only consis-
tent variable states, and all earlier tasks (in sequential
time) have completed. As a parallel execution pro-
gresses, the set of completed tasks will be an increas-
ing prefix of the tasks from the sequential execution.
We provide a primitive to assess the progress of com-
putation, which is the time of the last completed task,
referred to as the global virtual time or GVT.

Global virtual time is to detect termination, and to
determine which variable versions may be discarded.
Since each task creates its own versions of some vari-
ables, memory availability may become a limitation
over time. Fossil collection, which uses GVT, is in-
voked periodically to reclaim the unneeded memory.

The interface of the runtime system is summarized
below:

e enroll(T,P): enqueue a new task T at processor
P.

e read(X,buf,T,flag): initiate the read for the
variable X by the task T. The local variable flag
is decremented by one when buf has the desired
value.

o write(X,buf,T,flag): initiate the write to the
variable X by the task T. buf stores the value to be
written, and the local variable flag is decremented
when the write completes.

e compute GVT(): compute and return the current
GVT. compute GVT is non-blocking, and it may
return the value zero, signaling that the result is
not valid yet.

e collect fossil(X): collect fossils for the vari-
able X.

3.2 Implementation

This section sketches the protocols for maintaining
data dependency in speculative executions. The pro-
tocol we propose eliminates dependencies (read/write
and write/write) due to name conflicts. The protocols
fall into two categories, one for accessing shared vari-
ables, and the other for computing global virtual time

and collecting fossils. In describing the protocols, we
use terms such as “time”, “earlier”, “later”, and “most
recent” to relate objects with different sequential exe-

cution orders; they do not refer to the wall clock time.

Reads: A read by the task T to the variable X returns
the most recent version of X created by some task
earlier than T'. The read access is recorded so that
T can be canceled if a write to X occurs at a time
before T’s time.

Writes: A write by the task T to the variable X
creates a version of X for 7. The new version has
the same time as 7. Each write cancels tasks that
have read a stale version of V; a version is stale for
the task 7" if it is earlier than the newly created
version, and 7" is later than 7. Each write is
recorded in preparation for possible cancellation.

Cancellation: Canceling the task T' invalidates the
versions created by T and reschedules T for exe-
cution.

Invalidation: Invalidating a version discards the
value stored in the version and reclaims its mem-
ory. It also cancels all tasks that have read the
version, which in turn invalidates the versions cre-
ated by such tasks.

Computing GVT: Each unfinished task has a sequen-
tial task time, also called a local virtual time or
LVT. Global virtual time is the minimum of all
tasks’ LVT, and its computation requires taking
a snapshot of the system.

Fossil collection: Since no rollback can affect ob-
jects with time earlier than GVT, only the lat-
est version of those earlier than GVT will ever
be needed. Collecting fossils simply reclaims the
space of the obsolete versions.

The two main data structures in the system are for
variables and tasks. Each variable is represented by
a linked list of all 1ts unfossilized versions, stored in
increasing time order. Each version V stores V.t, the
time of the task that created V, V.val, the value of
the variable, and V.reads, a link list of pointers to
tasks that have read V. Each task T is represented by
T.writes, a link list of pointers to versions created by
the task. It also stores T.t, the time of the task, and
T.1id, a descriptor that tells what the task does.

4 The Compiler

The runtime environment can be used directly for
writing explicitly parallel code in a shared memory
style. It has built-in support for optimistic concur-
rency, and hides the details of rollbacks and memory
management from the programmer. In this section,
we go one step further and describe a parallelizing
compiler that will automatically produce code for the
runtime system, given an ordinary sequential program.

A naive way to generate code with speculative par-
allelism is to let every basic code block be a task body,
and have every variable be a shared variable. The
resulting code 1s correct, but i1s extremely inefficient.
Instead, our compiler uses data flow analysis to selec-
tively parallelize code fragments. Information on the
definition and use of variables are used to selectively
parallelize loops and to optimize the variable accesses.
The compiler exploits parallelism only across loops.

Using live variable analysis, the compiler recog-
nizes temporary variables whose values are not shared
across statements. Local copies can be used for such
variables; and their accesses do not have to go through
the expensive consistency protocols. To further reduce
the protocol overhead, we employ a caching mecha-
nism to capture repeated accesses to the same vari-
able. Prefetching and write pipelining are also used
when possible to hide the latency of accesses on re-
mote processors. These optimizations and others are
detailed in Sections 4.1, 4.2, and 4.3.

Our current compiler is a prototype, developed to
test the basic approach of compiling for speculative
parallelism. We therefore make a number of simplify-
ing assumptions about the source language. The com-
piler accepts a subset of C with arrays and structures
but no pointers. The transformations do not use in-
terprocedural analysis, so we assume that all functions
(except main()) are side-effect free. Functions that
have side-effects are handled by inlining. Because 1/0
operations are irrevocable, they must be recognized by
the compiler so that they are executed in order. We
require that I/O statements are tagged as such by the
programmer. Exceptions are similarly irrevocable, un-
less non-abortive exception handling mechanisms ex-
ist in hardware for recording the exceptions; we do not
address this issue in the current implementation.

The compiler produces parallel code for a MIMD
multiprocessor with calls to our runtime system. The
system runs on the CM5 multiprocessor from Think-
ing Machines, a distributed memory machine in which
each processor has a separate address space. Com-
munication is performed by the Active Message layer
[10], which supports fast small messages and a form

of lightweight remote procedure call. The design does
not rely on CMb-specific hardware, although a low
overhead message layer is important to performance.
Our compiler is based on the retargetable ANSI C
compiler lec[4]. We augmented lcc to perform data
flow analysis and to generate the parallel code.

We will use the program in Figure 1 as an example
to illustrate our compilation techniques. The program
shown 1s a simulated annealing solver for the travel-
ing salesman problem (TSP). The application itself is
discussed in detail in Section 5.

4.1 Managing Parallelism

Traditional parallelizing compilers prove certain
loops are parallel. The analysis is conservative since
truly parallel loops may not be recognized due to the
lack of runtime information. Our compiler parallelizes
more aggressively by proving certain loops are sequen-
tial. In this case sequential loops may be mistaken as
parallel, but the runtime system guarantees that their
dependency is respected during execution. We believe
that more accurate tests are available to our compiler,
since they do not need to be conservative.

Some basic data-flow information is needed by the
compiler. During parsing, the compiler maintains the
sets def(S) and use(S) to record the variables that are
defined (written) and used (read) in each statement S.
Each of these sets contains the must and may subsets:
a must definition or use will occur in all possible ex-
ecutions; a may definition or use occurs only in some
executions, due to the unpredictable control flow. !

Induction Variable Elimination. The first step
in parallelizing most loops is to eliminate its induc-
tion variables. We take a simplified view of induc-
tion variables in the current implementation: any as-
signment to an induction variable I has the form I
=I+ corlI =1- c, where c is some integer con-
stant. After parsing, the compiler examines individ-
ual loops to identify induction variables; it recognizes
those whose definitions are must definitions. To elim-
inate the recurrence caused by the induction variable
I, the compiler appends the statement I_0 = I to the
loop initialization statement, where I_0 is a new tem-
porary, and prepends the statement I = I.0 + C *
loopindex() to the loop body, where C is the total
increment to I for one iteration.

IDependence analysis on arrays is beyond the scope of
this project. Our prototype compiler treats array elements as
scalars, and only the may type of data flow information is ap-
plicable to array accesses.

: main()

: {

int adj[20]1[20];

struct {int city[20];} BestSol, NewSol;

float temp;

int i,j,s1,s2,tnp;
int take;

1
2
3
4:
5: int BestCost, NewCost;
6
7
8
9 int mob;

12: for (i=0;1<20;++1)

for (j=0;3j<20;++j)
adj[il[j] = 100000;

15: for (i=0;1<20;++1i)

adj[(i+1)%20]1[i] = 100;

17: srandom();

18: for (i=0, BestCost

21: }

0; i<20; ++ i) {
BestSol.city[i] = i;
BestCost += adjl[i] [(i+1)%20];

22: for (temp=5000.0;temp>1.0;temp=temp*0.9) {

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44 :
45:
46:
47:
48:
49:
50: }

mob = log(temp)+1;
for (i=0; i<1000; ++i) {
NewSol = BestSol;
for (j=0; j< mob; ++j) {
sl random() % 20;
82 = gl;
while (s1 == s2)
s2 = random() % 20;
tmp = NewSol.city[s1];
NewSol.city[s1l] = NewSol.city[s2];
NewSol.city[s2] = tmp;

3

for (j=0, NewCost = 0; j<20; ++ j)
NewCost += adj[NewSol.city[j]1]

[NewSol.city[(j+1)%20]1];

if (BestCost > NewCost)
take = 1;

else if ((random()%1000) <
exp(((double)BestCost-NewCost)/temp)*1000)

take = 1;
else

take = 0;
if (take) {

BegtCost = NewCost;
BegtSol = NewSol;

51: I0(printf("Best Cost = %d\n'",BestCost));

52:}

Figure 1: The sequential TSP program.

Detecting Parallelism After elimination of induc-
tion variables, the compiler computes the live variable
information for each statement. We refer to the set
of live variables upon entry and exit of the statement
S as livein(S) and liveout(S), respectively. The read-
ers are refered to the standard compiler texts [1] for
details.

Consider the parallelization of a loop, with loop
body L. Here, and in the rest of the paper, we
treat the loop initialization statements as separate
from the loop body. Define livedef(L) as the set
of variables I, computes that are used by later state-
ments, i.e., livedef(L) = liveout(L)()def(L). Simi-
larly, liveuse(L) is the set of variables computed by
previous statements and used by L, i.e., liveuse(L) =
livein(L) [use(L). The loop is provably sequential if
livede f(L) () liveuse(L) is nonempty, where livedef
and liveuse refer to the “must” form of def/use infor-
mation.

We regard a loop as potentially parallel if it is not
provably sequential. Among all potentially parallel
loops, we selectively parallelize some based on their
ratio of shared variable accesses to local operations.
We do not parallelize loops with high ratios, since the
runtime system overhead may make the parallelization
nonprofitable. For the same reason we parallelized
only the outermost loop of a nested parallel loop. Note
that the ratio is derived from crude static estimates at
compile time. 2

We use the program in Figure 1 as an example. For
the rest of the presentation, we label each loop by its
first line. Only Loop 18,22, and 35 are sequential; all
other loops are potentially parallelizable. Loop 12,13,
and 15 are not parallelized because of their high com-
munication/computation ratios. Loop 24, instead of
loop 26, is selected for parallelization because it is the
outermost loop.

Unknown Loop Bounds. To deal with loops with
unknown loop bounds, our compiler speculatively gen-
erates loop iterations and uses synchronization vari-
ables to ensure that the control dependency is re-
spected. We add the synchronization variable SYNC
to each parallelized loop. SYNC'is initialized to 0, and
is read at the beginning of each task. SYNC'is set to
1 when the loop termination criterion is met. A task
aborts immediately if the value read is nonzero. By

2We require that all I/O be marked in the source code by
an I0 directive. These statements receive a special variable
IO_DEVICE, as both a liveuse and livedef variable, so the
analysis will find that a loop containing I/O is not potentially
parallelizable.

enforcing data dependencies on SYNC, we ensure that
extraneous iterations cause no side-effects.

Increasing Task Granularity. Each iteration in a
parallel loop constitutes an indivisible unit of execu-
tion. We can lump multiple iterations into one task
to increase the granularity of parallel execution (the
number of iterations per task is referred to as the inner
loop size).

Using large granularity tasks has two advantages.
First, it reduces the bookkeeping overheads in the con-
sistency protocol, since there are fewer tasks to man-
age. Second, it reduces the amount of communication
due to shared accesses, since multiple iterations can
share data in the local cache (described in Section
4.3).

The disadvantage of large granularity tasks is the
reduction in parallelism. The compiler acknowledges
the tradeoff by making the task granularity a runtime
parameter, which is configured upon execution.

4.2 Managing Variables

After the parallelism is exposed, the compiler de-
termines the layout of the variables and performs ex-
tensive optimizations to reduce interprocessor commu-
nication. We now details the techniques used in the
compiler in optimizing variable accesses.

Each variable in the program is given one of the two
storage types by the compiler: private or shared. The
value of a private variable is always kept valid (up-to-
date) on all processors. The value of a shared variable
i1s valid only on a single owner processor; all other
processors must communicate with that processor to
access the variable.

Each program fragment in the program is given
one of three execution modes by the compiler: re-
dundant execution, sequential execution, and parallel
execution. The modes are described below:

Redundant: all processors execute the same code and
all accesses are local. The execution mode up-
dates the values of all private variable without
requiring interprocessor communication.

Sequential: Only one processor (referred to as the
master processor) executes the code. Accesses
to shared variables may be remote, but do not
need to be protected (e.g., via the runtime sys-
tem) since only one thread can be executing. The
execution mode updates the value of shared vari-
ables.

R: set of private variables.
T: the parse tree for the program.

S: the root node of T. livein(S) = liveout(S) = {IO_DEVICE}

Algorithm classify:
0. R = set of all variables

1. mark every node C that represents a parallelized loop

as parallel
2. for every node C in T that is marked parallel
R = R - livedef(C)
3. R=R -1I0_DEVICE
4. repeat until no change to R:
for every unmarked child node C of S

if (liveuse(C) [livedef(C)) M R) is nonempty,

or C contains a parallel statement
mark C as sequential

R = R - def(C)

Figure 2: Pseudo code for determining execution
modes and storage types. The algorithm always
reaches a fix point, since the size of R is non-increasing.

Parallel:. All processors speculatively execute differ-
ent iterations of the same loop. Access to shared
variables are coordinated by the runtime system
to ensure consistency. This execution mode ac-
counts for all the speedup.

Note that the execution mode of a code fragment
is tied to the set of variables it accesses. For exam-
ple, writing a private variable in sequential or parallel
executions is not allowed, since the update may not oc-
ccur on all processors. Because the execution modes
and storage types are mutually dependent, we use an
iterative algorithm to solve the problem. The pseudo
code is given in Figure 2. The algorithm returns with
the sequential and parallel statements marked. The
unmarked top-level statements (i.e., children of of 8)
are executed in the redundant mode. 3

The only private variable in Figure 1 is the array
adj. The Statements from line 12 thru 17 are exe-
cuted redundantly on all processors. Loop 18, loop 22
(excluding loop 24), and line 51 are executed sequen-
tially on the master processor. Loop 24 are executed
in parallel (speculatively).

Classifying Variable Accesses. Accesses to vari-
ables are classified as local, remote or speculative. Lo-
cal accesses are to private variables. Remote accesses
are unprotected accesses made to the owner’s copy of

3A sequential statement may contain parallel statements.
This is the only case where the execution mode changes within
a statement.

the shared variables. Speculative accesses use the run-
time system primitives on shared variables.

It appears that accesses to shared variables are al-
ways expensive. However, there exist situations where
local copies can be used. A variable X can be re-
named within the scope of a statement S if X is not
in liveuse(S) | livedef(S). In this case X is a tem-
porary variable for the statement S. Accesses to such
variables in statements containing a single mode of
execution are candidates for optimizations.

Another opportunity for optimization is the re-
mote accesses in parallel executions. Given a paral-
lel loop P, all shared variables in liveuse(P) but not
in livede f(P) can be accessed using the local copies,
provided that their values are prefetched before the
parallel execution begins. Since it is not feasible to
prefetch large arrays, the compiler performs this opti-
mization for scalar variables only.

The rules for accessing variables are summarized
below:

e Accessing private variables: always local.

e Accessing shared variables in sequential state-
ments: local for temporary variables, and remote
for others.

e Accessing shared variables in parallel statements:
local for temporary variables, and for prefetched
shared variables; shared for variables in livedef
of the parallel loop body; remote otherwise.

We use Figure 1 again to illustrate the classification
of accesses. All variables are accessed locally in the re-
dundant execution of statement 12 thru 17. In loop 18
(sequential mode), only BestSol and BestCost need
remote accesses; i is treated as a temporary variable.
In loop 22 (sequential mode), accesses to mob and temp
are remote, since they may be used by the enclosed
parallel loop. In loop 24 (parallel mode), mob and
temp are first prefetched from their owner processors,
and then accessed locally in the parallel execution.
BestCost and BestSol are accessed via the runtime
system routines to ensure consistency. Other variables
in loop 24 uses local accesses since they are tempo-
raries. Finally, statement 51 reads BestCost from the
owner processor and prints i1t to the standard output.

Replicating Shared Variables. Accesses to vari-
ables that may be write-shared in a parallel loop are
serviced by their owner processors. However, if the
loop has much parallelism, writes will occur infre-
quently. Therefore, we can cache the variables based
on a simple write-broadcast scheme to eliminates reads

on remote processors. A variable can be cached on
every processor, or on a subset of processors. The for-
mer is suitable for scalar variables, since they are more
likely to be used by all processors. The latter should
be used for arrays.

For shared array variables, the compiler can per-
form array index analysis to determine the subset of
processors for caching, assuming that loop iterations
are statically distributed among the processors. How-
ever, this is not possible when the array indices cannot
be determined at compile time. We think that a run-
time approach is more suitable. The current imple-
mentation of the compiler does not cache array vari-
ables.

In Figure 1, BestCost and BestSol are replicated
on all processors in the parallel execution of loop 24.
All reads to these variables are still made via the run-
time system. However, they do not incur any com-
munication cost since they are serviced by the local
processor.

4.3 Local Caching

Local caching refers to caching shared variables dur-
ing the life time of a single task. It can be thought of as
introducing new temporaries to store intermediate re-
sults, so that all but one expensive reads or writes (via
the runtime system) to the same variable can be elimi-
nated. A runtime approach is used to implement local
caching. FEach local copy of a variable is associated
with a generation number, which is matched against
the generation number of the current task to validate
the version. Incrementing the task generation number
by one invalidates all cache copies. Note that caching
does not cause consistency problems, since the parallel
loop is derived from a sequential program, where each
iteration appears to execute atomically.

Prefetching can be used for shared variables that
must be used or defined. Prefetches can be pipelined
to reduce latency. All dirty copies must be written
back at the end of the task. A list of variable identifiers
1s used to keep track of dirty copies for write back. The
writes can also be pipelined to reduce total latency.

5 Example Application

We now explain the simulated annealing TSP solver
in Figure 1. Simulated annealing, also known as prob-
abilistic hill climbing, contains a series of randomized
optimizations based on a cooling schedule. The algo-
rithm starts with a very high temperature and grad-
ually cools down to a terminal temperature. At high

temperatures, the optimization step may accept solu-
tions with higher cost in the spirit of hill climbing;
At low temperatures, the scheme reduces to a greedy
algorithm to zero in to the minimum cost solution.
Simulated annealing is backed by an asymptotic global
convergence theorem, and is frequently used to solve

NP-hard problems in CAD.
5.1 Parallel Code

The parallel code generated for the CM5 multipro-
cessor counts about 660 lines (excluding the runtime
system routines). Therefore, we show only the sketch
of the target code below:

Master processor: Other processor:

line 12-17 Line 12-17

loop 18

loop 22 while not done
line 23
synchronize synchronize
prefetch prefetch
loop 24 loop 24

signal done

line 51

The code generated for each parallel iteration (in
loop 24) is very efficient in terms of communication.
There are only 3 reads to the shared variables; all
of them are made to the local memory, since scalar
shared variables are replicated. There are 2 shared
writes when the variable take evaluates to 1, and one
additional write to the loop synchronization variable
when the loop termination criterion is met. All remote
reads and writes are performed outside the parallel
loop, and their costs are negligible.

5.2 Performance

The parallel program is run on a CMb multipro-
cessor using up to 32 processors. We also vary the
size of the inner loop from 1 iterations to 32 itera-
tions. Figure 3 summarizes the speedups against the
sequential program running on a single node of the
CMb. The TSP example is relatively small, and does
not have enough computation to justify the use of
a large parallel machine. Nevertheless, these results
show that measurable speedups from speculative con-
currency can be obtained automatically, starting from
a sequential program.

The average speedup peaks when there are about
10 processors. This is due to the tradeoff between the

Speedup of Speculative Execution

T~ -8iters

- = —16iters
12 iters

0 I I I I I I)
0 5 10 15 20 25 30 35

#Procs

Figure 3: Speedups of the speculative executions of
TSP. Each curve corresponds to a different task gran-
ularity (inner loop size).

amount of parallelism, and the overheads of specula-
tion (communication and rollback). The graph also
shows that the speedups are best when the inner loop
contains about 6 to 8 iterations. This is due to the
tradeoff between task granularity and parallelism.
The performance tradeoffs are further illustrated
in Figure 4. It indicates that the chance of rollback
(i.e., dependency among tasks) increases when more
processors are used, or when more iterations are pack-
aged in one task. It also shows the average number
of writes made per inner loop iteration, which repre-
sents the communication and computation ratio of a
task, decreases as more iterations are lumped into one
task. The reduction in communication is a result of
local caching. Note that the number of writes are very
low (calculaton shows fewer than 0.1 write broadcasts
per task), which justifies our decision to replicate the
shared variables. The figure also shows that increasing
the number of processors causes more false writes.

6 Prior Work

The difference between the various approaches to
exploiting speculative parallelism lies mainly in the
amount of effort required by the applications program-
mer. On one extreme the programmer parallelizes by
hand, and turns all shared variable accesses into mes-
sages. This section compares the approaches and clar-
ifies their scopes.

At the lowest level, the computation is thought of

Ratio of Rollbacks Writes per Iteration

0.7 0.45¢
1 iters
. 0.4r
0.6F 12 iters
~ ~ -16iters
, 8iters 0.351
- iters
05r 4 iters
0.3r
0.4+ L
° @ 0.25
& § 02 4 iters
0.31 ' 12 iters
0.151 8 iters
0.2r - :/16 iters
o1} -
0.1+
0.051
0 . . .) 0 . . .)
0 10 20 30 40 0 10 20 30 40
#Procs #Procs

Figure 4: Costs of speculative execution. The left fig-
ure indicates the ratio of rollback tasks, and the right
figure indicates the communication (shared writes) in-
duced per iteration. Each curve corresponds to a dif-
ferent task granularity.

as a collection of logical processes exchanging point-to-
point messages. This abstraction is used for discrete
event simulation using the Timewarp system proposed
by Jefferson [6]. Message passing programming is rea-
sonable when communication between processes is re-
stricted to a small set of message types, but in general
it can be cumbersome.

Bacon and Strom [2] describes optimistic paral-
lelization in the context of CSP (Communicating Se-
quential Processes). Starting from a parallel language,
their approach is more general than ours since they
can, for example, express nondeterministic programs.
They also require that the user tag processes with a
set of guesses for it’s incoming messages.

Another approach consists of processes sharing the
same address space. Dependencies among processes
are arbitrated by their timestamps, which are man-
aged explicitly by the programmer. Partitioning and
scheduling are also left to the programmer. Work at
this level includes our runtime system and the space-
time memory proposed by Ghosh and Fujimoto [5].

The simplest programming model is to allow the
programmer to write a sequential program (with a sin-
gle flat address space), and have the compiler and run-
time system do all the consistency management and
optimization. This is the goal of our project. Tin-
ker and Katz also describe a runtime approach in the
context of Scheme programs [9]. Their work is simi-
lar to our runtime system, but without the extensive

compiler optimizations.

7 Summary

Speculative parallelism is known to be a useful tech-
nique for achieving high performance for certain appli-
cations such as discrete event simulations. To alleviate
the programming difficulties of such applications, we
present a system for automatic speculative paralleliza-
tion of sequential programs. The results of this paper
are listed below:

e We designed and implemented a runtime system
which provides a shared memory abstraction for
exploiting speculative parallelism.

e We developed a prototype parallelizing compiler
on top of the runtime system. The compiler in-
puts sequential programs and produces code for
the CM5 distributed memory multiprocessor. It
also performs extensive optimizations to make the
target code communication efficient.

e We demonstrated our approach on a simulated
annealing program, and highlighted some of the
performance tradeoffs.

Further work 1s needed to improve the performance
of compiled code by incorporating further optimiza-
tions, for example, better analysis of array indexes.
In addition, To support an application like the PAR-
SWEC circuit simulator [11], we believe it is necessary
to use information about the data types in the pro-
gram, rather than reducing the analysis to the level
of reads and writes on simple variables. We are cur-
rently investigating the compilation of abstract data
types such as priority queues, which will make it pos-
sible to write programs with dynamic dependence pat-
terns. This paper is the first step towards this more
general system for speculative parallelism: we have
demonstrated that it is possible to exploit speculative
parallelism with minimal programming effort, using a
combination of compiler and runtime support.

References

[1] A.V. Aho, R. Sethi, and J. Ullman. Compil-
ers: Principles, Techniques, and Tools. Addison-

Wesley, 1986.

[2] D.F. Bacon and R.E. Strom. Optimistic paral-
lelization of communicating sequential processes.

In Proc. Third Symposium on Principles and Prac-
tice of Parallel Programming, April 1991.

C.W. Fraser and D.R. Hanson. A code generation
interface for ansi c¢. Software — Practice and Fzxpe-
rience, 21(9), September 1991.

Kaushik Ghosh and Richard M. Fujimoto. Parallel
discrete event simulation using space-time mem-
ory. In Proc. International Conference on Parallel
Processing, 1991.

D.R. Jefferson. Virtual time. ACM Transactions
on Programming Languages and Systems, 7(3),

July 1985.

H.T. Kung and J.T. Robinson. On optimistic
methods for concurrency control. ACM Trans. on
Database Systems, 6(2), June 1981.

Pete Tinker and Morry Katz. Parallel execution
of sequential scheme with paratran. In Proc. ACM
Conference on Lisp and Functional Programming,

July 1988.

Thorsten von Eicken, David E. Culler, Seth Copen
Goldstein, and Klaus Erik Schauser. Active mes-
sages: a mechanism for integrated communication
and computation. In International Symposium on
Computer Architecture, 1992.

Chih-Po Wen and Katherine Yelick. Parallel tim-
ing simulation on a distributed memory multipro-
cessor. In International Conference on CAD, Santa
Clara, CA, November 1993. An earlier version ap-

peared as UCB Technical Report CSD-93-723.

