Optimizing Parallel SPMD Programs

Arvind Krishnamurthy and Katherine Yelick*
{arvindk,yelick}@cs.berkeley.edu

University of California at Berkeley

Abstract. We present compiler optimization techniques for explicitly
parallel programs that communicate through a shared address space. The
source programs are written in a single program multiple data (SPMD)
style, and the machine target is a multiprocessor with physically dis-
tributed memory and hardware or software support for a single address
space. Unlike sequential programs or data-parallel programs, SPMD pro-
grams require cycle detection, as defined by Shasha and Snir, to perform
any kind of code motion on shared variable accesses. Cycle detection
finds those accesses that, if reordered by either the hardware or soft-
ware, could violate sequential consistency. We improve on Shasha and
Snir’s algorithm for cycle detection by providing a polynomial time algo-
rithm for SPMD programs, whereas their formulation leads to an algo-
rithm that is exponential in the number of processors. Once cycles and
local dependencies have been computed, we perform optimizations to
overlap communication and computation, change two-way communica-
tion into one-way communication, and apply scalar code optimizations.
Using these optimizations, we improve the execution times of certain
application kernels by about 20-50%.

1 Introduction

Optimizing explicitly parallel shared memory programs requires cycle detection
analysis to ensure proper parallel program semantics. Consider the parallel pro-
gram fragment in Figure 1. The program is indeterminate in that the read of Y
may return either 0 or 1, and if it is 0, then the read to X may return either 0 or
1. However, if 1 has been read from Y, then 1 must be the result of the read from
X. Intuitively, the parallel programmer relies on the notion of sequential consis-
tency, which says the parallel execution must behave as if it is an interleaving of
the sequences of memory operations from each of the processors [9]. As a more
useful program example, assume that X is a data structure being produced by
processor 2 and Y i1s a “presence” bit to denote that it has been produced.

If the two program fragments in Figure 1 were analyzed by a sequential com-
piler, it might determine that the reads or writes could be reordered, since there

* This work was supported in part by the Advanced Research Projects Agency of the
Department of Defense monitored by the Office of Naval Research under contract
DABT63-92-C-0026, by Lawrence Livermore National Laboratory, by AT&T, and by
the National Science Foundation (award numbers CDA-8722788 and CCR-9210260).
The information presented here does not necessarily reflect the position or the policy
of the Government and no official endorsement should be inferred.



Initially X=Y=0

Proc 1 Proc 2

Read Y, , Write X=1
e o o \l/ //\/\\\ \l/ o. e o
Read X Write Y=1
N\ J

Fig. 1. If the read of Y returns 1, then the read of X must as well.

are no dependencies in either case. If either pair of the accesses is reordered,
the execution in which Y is 1 and X is 0, might result. Alternatively, imagine
that the program is executed in a distributed memory environment in which X
is located on a third processor, and Y is located on processor 1. If the writes
are non-blocking, i.e., the second one is initiated before the first is complete,
then again sequential consistency could be violated. Similar scenarios exist for
systems in which the network reorders messages or the compiler keeps copies of
shared data in registers.

The cycle detection problem is to detect access cycles, such as the one desig-
nated by the figure-eight in Figure 1. In addition to observing local dependencies
within a program, a compiler must ensure that accesses issued by a single pro-
cessor in a cycle take place in order. Cycle detection is necessary for basic opti-
mizations in shared memory programs, whether they run on physically shared or
distributed memory and whether they have dynamic or static thread creation.
Cycle detection is not necessary for automatically parallelized sequential pro-
grams or data parallel programs with sequential semantics, because every pair
of accesses has a fixed order. In the example, the semantics would determine
that either the write or read to X (similarly Y) must appear in particular order.

In spite of the semantic simplicity of deterministic programming models, in
practice, many applications are written in an explicitly parallel model. In this
paper, we consider the common special case of Single Program Multiple Data
(SPMD) programs, where multiple copies of a uniprocessor program communi-
cate either through a shared address space [5] or through messages. This model
is popular for writing libraries like Scal.apack and runtime systems for high level
languages like HPF [6] and pC++ [3]. The uniprocessor compilers that analyze
and compile the SPMD programs are ill-suited to the task, because they do not
have information about the semantics of the communication and synchronization
mechanisms. As a result, they miss opportunities for optimizing communication
and synchronization, and the quality of the scalar code is limited by the inability
to move code around parallelism primitives [11].



Cycle detection requires finding conflicts between concurrent code blocks,
which are pairs of accesses to the same location from two different processors
where at least one is a write. Cycle detection requires alias information, and
is therefore similar to dependence analysis in parallelizing compilers. However,
our goal in optimizing SPMD is more modest: the main source of parallelism
has been exposed by the application programmer, so our job is to optimize the
parallel code by making better use of local processor and network resources.

Cycle detection was first described by Shasha and Snir [15] and later ex-
tended by Midkiff, Padua, and Cytron to handle array indices. Their formulation
gives an algorithm that is exponential in the number of processors and requires
PROCS (the number of processors) copies of the program. We give a polyno-
mial time algorithm for the restricted version of the problem arising in SPMD
programs.

Our target machine is a multiprocessor with physically distributed memory
and hardware or software support for a global address space. A remote reference
on such a machine has a long latency, from roughly 80 cycles on a Cray T3D
[13] to 400 cycles on a CMb5 using Active Messages [16]. However, most of this
latency can be overlapped with local computation or with the initiation of more
communication, especially on machines like the J-Machine and *T, with their
low overheads for communication startup.

Two important optimizations for these multiprocessors are communication
overlap and the elimination of round-trip message traffic. The first optimiza-
tion, message pipelining, changes remote read and write operations into their
split-phase analogs, get and put. In a split-phase operation, the initiation of an
access is separated from its completion [5]. The operation to force completion of
outstanding split-phase operations comes in many forms, the simplest of which
(called sync or fence) blocks until all outstanding accesses are complete. To im-
prove communication overlap, puts and gets are moved backwards in the program
execution and syncs are moved forward. The second optimization eliminates ac-
knowledgement traffic, which are required to implement the sync operation. In
some cases global synchronization information can be used to eliminate the ac-
knowledgement.

Other optimizations are also enabled by our analysis, but are not discussed in
detail in this paper. These include improved scalar optimizations, making local
cached copies of remote values, and storing a shared value in a register. The last
two fall into the general class of optimizations that move values up the memory
hierarchy to keep them closer to the processor [1].

The primary contribution of this paper is a new polynomial time algorithm
for cycle detection in SPMD programs. This improves on the running time of the
algorithm by Shasha and Snir, which 1s exponential in the number of processors.
This analysis 18 used to perform optimizations such as message pipelining by
using the portable Split-C runtime system as an example backend [5].

We describe the compilation and optimization problem for a simple shared
memory language. The target language is Split-C, which is described in section 2.
We present basic terminology needed for the analysisin section 3 and the analysis



itself in section 5.1. Section 6 gives a basic code generation algorithm. Section 7
estimates the potential payoffs of our approach by optimizing a few application
kernels. Related work is surveyed in section 8, and conclusions drawn in section 9.

2 The Target Language

Our target language is Split-C, a SPMD language for programming distributed
memory machines [5]. Split-C provides a global address space through two mech-
anisms: a global distributed heap and distributed arrays. Values allocated in the
global heap can be accessed by any processor using a global pointer; they can
be accessed by the processor that owns that portion of the heap using a local
pointer. Global pointers can be stored in data structures and passed in and out
of functions using the same syntax as normal (local) pointers. Dereferencing a
global pointer is more expensive than dereferencing a local one: it involves a
check (in software on the CMB) to see whether the value is on the current pro-
cessor or not, and if not, a message is sent to the owning processor. Split-C
also provides a simple extension to the C array declaration to specify spread
arrays, which are spread across the entire machine. Each index in the spread
dimensions 1s placed on a different processor, mapping them linearly from zero
to PROCS, wrapping as needed.

Our source language is almost a subset of Split-C, and has the essential
components necessary to present our approach. For simplicity, the source lan-
guage has shared global variables rather than heap-allocated objects. The shared
variables have sequentially consistent semantics. A sample program is given in
Figure 2. Shared variables are designated with the keyword shared: the variable
flag and the array result are shared, while copies of i and sum exist on each pro-
cessor. All processor begin executing the main procedure together, although they
may execute different code in a data-dependent fashion. The pseudo-constant
PROCS denotes the total number of processors and MYPROC denotes the executing
processor’s identity.

The source language can be trivially compiled into Split-C by allocating
shared values in the distributed heap, and turning the shared variable accesses
into global pointer dereferences. The shared array construct is directly mapped
into a Split-C spread array declaration. The problem of choosing layouts to
reduce communication is orthogonal; layout information could come from the
programmer, as in HPF or Split-C [6, 5], or from a separate analysis phase [4].

The most important feature of the Split-C language is its support for split-
phase memory operations. Given global pointers src1 and dest?2, and local values
src2 and dest1 of the same type, the split-phase operations are expressed simply
as:

destl := *srci;

*desgt?2 := src?;

/* Unrelated computation */
sync () ;

In the first assignment statement, a get operation is performed on srct,
and in the second, a put is performed on dest2. Neither of these operations are



shared event flag;
shared int result[10];

main() {

int i, sum = 0;
if (MYPROC == 0) {
for (i=0; i<10; i++) result[i] = i;

post(flag);
}
wait(flag);

for (i=0; i<10; i++) sum += result[i];

barrier();

Fig. 2. Shared Memory SPMD Program

guaranteed to complete (the values of dest1 and dest?2 are undefined) until after
the sync statement.

This mechanism allows for communication overlap, but the sync construct
provides less control than one might want, because it groups together all out-
standing puts and gets from a single processor. Split-C also provides finer grained
mechanisms in which a sync object (implemented by a counter) is associated with
each memory operation. A family of get_ctr and put_ctr operations are provided
to initiate accesses, along with a sync_ctr operation to wait for completion of an
access. The signatures, in this case for double word values, are shown below:

void d_get_ctr (double #dest, double *global src, Counter *ctr);
void d_put_ctr (double #global dest, double #src, Counter *ctr);
void sync_ctr (Counter *ctr)

The computation from the earlier example can therefore be written:

d_get_ctr (&destl, srcl, ctr);
d_put_ctr (dest2, &src2, ctr);
/* Unrelated computation */
sync_ctr (ctr);

To separate the completion of the get from that of the put, two separate
counters could be used. In general, this makes it possible to synchronize on a set
of accesses, which is useful when two computations (for example two iterations
of a loop) are overlapped.

Split-C also provides a store operation that is a variant of the put operation.
A store operation generates a write to a remote memory location, but does not
acknowledge when the write operation completes. It exposes the efficiency of
one-way communication in those cases where the communication pattern is well
understood.



Split-C runs on top of Active Messages on the CMbH, and there are prototype
implementations for the Paragon, SP-1, and a workstation network [10]. It defines
a portability layer with fast, non-blocking remote accesses that, unlike large
message passing systems, can be implemented without message buffering on
both ends [16]. Tt blurs the distinction between machines with a hardware global
address space and those without, makingit a good choice for an abstract machine
language.

3 Cycle Detection

A parallel execution on n processors is given by n sequences of instruction ex-
ecutions Py, ..., P,. We can ignore the local computation and local accesses,
and therefore take each P; to be the sequence of reads and writes to shared
variables. Given an execution P; = ay,...,a,, we associate with P; a graph,
(Vert, Edge), with vertices Vert = {a1,...,a,} and directed edges Fdge =
{[a1, as], [as, as], ..., [an—1,an]}. The program order, P,is defined to be the union
of these P;’s. A parallel execution will order accesses to shared variables. Such
an ordering of accesses is consistent if the read/write behavior is observed, i.e., if
reads always return value of the latest preceding write. We assume the following
guarantee is made by the architecture:

System Contract 1 Let V, be the set of accesses initiated by the processors
to the variable v. Then there exists a total order, F,, of accesses in V, that s
consistent.

On a distributed memory machine without hardware caching, each of the
FE,’s are totally ordered by the processor that owns the variable. With caching,
it is the hardware designer’s responsibility to ensure this semantics through a
cache coherence protocol. The union of these F,’s defines the execution order,
E, which is partial. Figure 3 illustrates these concepts using solid arrows for P
edges and dashed arrows for E edges.

Segment 1 Segment 2 Segment 3
Read A - = Write B--------= > Write B
Rejd Bf*’}{‘i\«/ Rejd C o Wriie c
Write C \:::::::j_% Write A
Read A‘e/"//’“/_//“

Fig.3. P and E for a particular execution



The first part of our system contract is very weak—it says nothing about the
order in which accesses take place relative to the program order. In a sequentially
consistent machine, we would require that there be a single total order that 1s a
superset of the program order, or equivalently, P U F is acyclic.

Our target machine does not necessarily keep the accesses from a single pro-
gram segment in order. The put and get operations specifically permit hardware
reordering. To generate code for such a machine and allow for code motion dur-
ing optimization, we need to determine which of the “happens after” paths in
the program order P can be ignored, and which must be enforced. We augment
our program to mark those orderings in P71, the transitive closure of P, that
must be observed. A delay set, D, for P is a subgraph of Pt. We now extend
our system contract to make sure that the delay set is observed:

System Contract 2 Given a program order P with delay set D, DU E is
acyclic.

Note that if we take D to be P, this forces our machine to produce a se-
quentially consistent execution. Qur goal during analysis, however, is to find a
much smaller D that still ensures sequential consistency. We say that a delay set
D is sufficient for program order P if, on any machine that satisfies the system
contracts, P U F is acyclic, i.e., the execution is sequentially consistent.

P and F are defined for a particular execution of a program, but we would
like our analysis to work with a compile-time representation. We therefore ap-
proximate P and E (conservatively) by some superset of each. We approximate
P by the control flow graph (CFG) of the program segment. Since there are
loops in the control flow graph, CFG is no longer a total order on accesses. Also,
the notion of an access is replaced by that of an access instruction that could
initiate multiple accesses to a particular memory location during the execution
of the program. At compile time, the runtime ordering of accesses to a variable is
also not known. Hence, we approximate F by undirected versions of the E edges,
which are called conflict edges, C'. In general, the conflict edges may be further
approximated if our alias analysis 1s imperfect. The only restriction necessary
for correctness of our compiler is £ C C' for any execution of the program.

4 Shasha and Snir’s Algorithm

Shasha and Snir proved that there exists a minimum delay set, 1D, that can be
defined by considering cycles in PT U C. We present their result in a slightly
different form using the following kinds of paths.

Definition1. A path [ay,...,a,] € PYUC is simple, if for any access a; in the
path, if a; is an access on processor Py, then the following hold:
1. If access ajyq is also in Py, then for all other accesses a; (¢; # a; and
aj # @j41), a; is not in Py,
2. If a;—1 and a;41 exist (i # 1 and ¢ # n) and [a;—1, a;] € C and [a;, a;41] € C,
then for all a; # a;, a; is not in Py.



Thus, a simple path is one that visits each processor at most once, with at
most two adjacent accesses on a processor. The following special case of simple
paths defines the existence of a potential violation of sequential consistency.

Definition2. Given an edge [a,,a1] in some P, a path [ay,...,a,] € PTUC
is called a back-path, for [ay,a1] if [a1, ..., a,] is a simple path.

Shasha and Snir use the notion of a simple cycle, which is given by an edge
in PT along with its back-path. The two are clearly equivalent, but ours lends
itself more naturally to an algorithm presentation. We define a particular delay
set, Dsgg, to be the those edges in Pt possessing back-paths:

Dses = {[ai, a;] € P*t|[a;, a;] has a back-path in Pt UC'}

Shasha and Snir proved that if Dggg i1s observed, the execution will be se-

quentially consistent:

Theorem 3. [15] Dsgs is sufficient.

They also proved that Dgg g in some sense characterizes the minimal delays:
in any execution in which an edge in Dggg executes out of order, there could
be a violation of sequential consistency. This notion of minimality is not as
strong as we would like, because it ignores the existence of control structures
and synchronization that can prevent reorderings from happening even though
the cycles exist statically.

5 Shasha and Snir’s Algorithm is Exponential

Although Shasha and Snir do not specify the details of an algorithm for comput-
ing back-paths, they claim [15] there is a polynomial time algorithm for detection
of backpaths in a program that “consists of a fixed number of serial program
segments.” In practice, one does not (typically) compile a program for a fixed
number of processors: either the language contains constructs for dynamically
creating parallel threads, or there 1s a single program that will be compiled for
an arbitrary number of processors. We can show that if PROCS is taken as the
problem size, the computation needed for the Shasha and Snir formulation is
NP-complete?.

Theorem4. Given a directed graph G with n vertices, we can construct a par-
allel program P for n processors such that there exists a Hamiltonian path in G
iff there exists a simple cycle in P.

5.1 Cycle Detection for SPMD Programs

In this section we present an efficient algorithm for computing the minimum
delay set in an SPMD program. The algorithm is based on the idea of back-
paths, but uses only two copies of the SPMD code, rather than one for each
processor. It eliminates the condition that a back-path must pass through each
program segment at most once. For SPMD programs, the delay edges computed
by our algorithm is still minimal.

2 The construction and the proof for the following theorem is in [8]



We first describe a transformation of the given control flow graph and then
present an algorithm for detecting back-paths in the resulting graph. We show
that the delay edges computed for the transformed graph are the same as in
Shasha and Snir’s approach.

The Transformed Graph
In an SPMD program graph P = {P;, ..., P,}, all P; are identical. Let V be the
set of vertices in some P; and E be the set of directed edges in P;. The conflict
edges are bi-directional, so we write (u,v) for the pair of edges [u, v] and [v, u].
We define a conflict set, C'spyrp as the set of edges in P such that at least one
of the accesses in the edge is a write.

We generate a new graph Pspyrp with nodes Vspayp and edges Espyp,
defines as follows. Vgpasrp 1s two copies of the accesses in 7, which we label L
and R for left and right.

Vspmp = {< v, L > <wv, R> | v e V}

Th={(<u,L><v,R>), (<v,L><uR>)|(u,v) € Cspyup}
Ty = {(< u, R> <v,R >) | (u,v) € CSPMD}
Ts={(<u,R><v,R>)|[u,v] € P}

Espyup =T1UT2 UTs

This transformed graph has two copies of the original program. A backpath
will have endpoints in the left part of Psparp and internal path nodes in the
right part. The T} edges connect the left and right nodes. The T5 edges are
conflict edges between right nodes. The T3 edges are program edges that link
the right nodes. The left nodes have no internal edges. Therefore, a path from
<wv,L >to < u,L >is composed of a T} edge, followed by a series of 75 and T3
edges and terminated with a 7T} edge. Figure 4 illustrates the construction for a
simple program.

For every edge [< u,L >,< v,L >] € P, we check whether there exists a
path from < v, L. > to < u, I, > in the graph G’. We construct the set Dsparp
that consists of all edges [u, v] having a path from < v, L > to < w, L >. Our
algorithm runs in polynomial time: if n is the number of accesses in the program,
the delay set can be computed in O(n?) time. Our algorithm has nearly the
same sufficiency property as Shasha and Snir’s, but is slightly more conservative
if there are very long backpaths. The length of a backpath is defined as the
number of conflict edges in the path.

Theorem 5. Given an SPMD program for which the longest backpath Psparp
15 less than or equal to PROCS, Dspyp = Dses.
Proof: Omitted for brevity.

Our algorithm is correct regardless of the assumption on the longest back-
path. To see why ours is more conservative in the (probably rare) case in which
the program contains a long backpath, consider such a program. OQur algorithm,
as described, will compute a delay set for an arbitrary number of processors. If
a program with a backpath of length n is run on PROCS < n processors, the



Code: while (turn != MYPROC);
numTrans++;
fund += giftAmt;
turn++;

Transformed Graph:

\ // -
N ’
N ’
Read numTrans SN ,/ .~ Read numTrans ...
TNl i
\ b :

y S
Read fund o // N _~Read fund <

Write fund 11'—/’7/ 7777777777777 Write fund -

\
' i S

’ » Tt LT

’ N -

, \ .
Write turn Write turn g

Fig. 4. Cycle detection using two copies of the original program

execution order identified by that backpath has insufficient number of processors
to actually take place. Thus, the delay edge added for that backpath is unnec-
essary. Even this difference between the algorithms is not fundamental: if the
value of PROC'S is known at compile time, our backpath detection algorithm
can search for backpaths shorter than PROC'S.

6 Code Generation

In this section, we describe how the delay set information is used to generate
Split-C style code and some of the trade-offs that arise during this process. The
formulation of a delay set from the previous section is quite general, and can be
used on a variety of memory models. Qur presentation of Split-C code generation
is simply one concrete example of such code generation.

The input to code generation is the control flow graph, the delay graph
computed by the back-path recognition algorithm, and the use-def graph for
local variables (as obtained through standard sequential compiler analysis). Tn
code generation process, we need to satisfy the following constraints:

1. Delay constraints are observed.
2. Before every use of a local variable, the corresponding definition is complete.

Consider the program shown in figure 5. The solid line is the delay edge, and
the dashed line is a def-use edge for the local variable .

6.1 A Simple Code Generation Module

We describe a code generation strategy that is simple, but not optimal, and then
describe some improvements for it.



get(&x, &X, ctrl)

/ X =X y =2
y = 2 if (foo()) {
if (foo()) { __ sync_ctr(ctrl);
\\\;>y=x+l y =x + 1;
}
}
sync_ctr(ctrl);
zZ =1
z =1
_ J

Fig. 5. Code Generation

A simple strategy is to generate a temporary counter for every remote access
statement. One should bear in mind that an access statement might initiate mul-
tiple accesses during a program’s execution. The counter can be used to ensure
completion of all the accesses that have been initiated by the access statement.
A Split-C code generated for a sample program is shown in figure 5. The counter
variable is generated by the compiler. A split-phase get operation is initiated to
fetch the value of X into the local variable x. A later sync_ctr operation on ctrl
ensures completion of all accesses initiated by the access statement.

The sync_ctr operation waits until the accesses are complete by waiting for
the counter value to be reset. A property that makes code generation easy is that
a sync_ctr operation behaves like a null operation if the program has already
executed a sync_ctr on the same counter. In other words, a particular control
path through the program can encounter multiple sync_ctr operations on the
same counter. This suggests the following simple scheme for code generation.

Let a be an access statement in the program. Let [a, b1], [a, bs],..., [a, br] be
the set of delay constraints on this statement, and if « is a remote read operation,
let [a, ¢1], [a, ¢a],..., [a, ¢ci] be the set of def-use edges for the local variable being
defined by the statement. The compiler converts a into a split-phase operation,
and inserts a sync_ctr operation just in front of the access statements by, bo,...,
by, c1, co,..., c;. If, however, a write access does not have any delay constraints,
we transform the write access into a store access, which is more efficient since
it avoids acknowledging the completion of the access.

6.2 Pragmatics of Code Generation

The primary drawback of the simple code generation algorithm is the excessive
use of the sync_ctr operation. Certain obvious improvements can be made to
the simple scheme. However, it is not clear whether an optimal compile-time
technique exists for code generation. As we will discover in this section, the code
generation problem is similar in spirit to other compile-time techniques that
need profiling information to generate near-optimal code.



Even though correctness of the program’s execution is not violated by intro-
ducing extra sync_ctr operations, we would like to minimize their use since there
is a cost attached to executing a sync_ctr operation. The first step is to reduce
the number of program points at which sync_ctr operations are introduced.

Here is the modified algorithm for introducing sync_ctr operations:

1. Every remote access operation a is split into two operations: the correspond-
ing split-phase initiate and a sync_ctr operation.

2. Let s be the sync_ctr operation associated with the split-phase initiate state-
ment . Rules are used for propagating s through the control flow graph in
order to increase the number of instructions between ¢ and s.

(a) If s is ahead of b in a basic block in the control flow graph and if there
are no delay or def-use constraints of the form [é, ], then move s past b.
If there are delay or def-use constraints of the form [, ], s comes to a
halt in front of b.

(b) Tf s is at the end of a basic block, propagate s to all the successors of
the basic block, and continue the motion of the different copies of s.

(c) Tf s is ahead of another copy of s, merge the two s operations into a
single s operation.

This algorithm propagates the sync_ctr operations as far away from the ini-
tiation as possible. Also, if the access a is constrained to complete before the
set of access statements by, ba,..., by and if for some statement b; there is no
possible flow of control that hits b; without encountering one of the other b;
statements, then the algorithm does not introduce a sync_ctr operation ahead
of b;. The simple algorithm would have incurred the penalty of an extra sync_ctr
operation.

However, the algorithm still suffers from two drawbacks. First, there could
be still certain control paths that execute more than one sync_ctr operation (as
in figure 5). Second, if there is a delay constraint in which the initiation and the
sync_ctr are nested within different conditionals and loops, our algorithm could
execute unnecessary sync_ctr operations.

For example, given a delay constraint [a, b] where b appears inside a loop,
but a does not, we would not want to introduce a sync_ctr operation inside
the loop since that would require the operation to be executed as many times
as the loop would be executed. All but the first sync_ctr operation would be
redundant. To avoid the cost of unnecessary sync operations, we could employ a
loop-unrolling technique. We could separate the first iteration of the loop from
the other iterations and introduce the sync_ctr operation only in the code for
the first iteration.

The opposite problem occurs for a delay [a, b] where a appears inside a con-
ditional, but b does not. It is not clear where the sync_ctr operation should be
introduced to ensure optimal performance. If we have the sync_ctr operation just
ahead of b, we could suffer the penalty of executing the operation even when a a
access had not been executed. Note that this does not affect the correctness of
the code due to the nature of Split-C counters. On the other hand, if we intro-
duce the sync_ctr operation at the end of the conditional containing a, we might



be hiding only part of the latency by prematurely waiting for its completion.
Static analysis cannot help in choosing between the two alternatives. Relative
costs of remote accesses and local memory operations (for updating counters)
could be used as an heuristic for code generation.

7 Potential Benefits

We quantify the benefits of our approach by studying the effect of the optimiza-
tions on a set of computational kernels. The four applications in our benchmark
suite:

1. FFT: Computing the fast-fourier transform.

2. Stencil: 4-point stencil computation on a regular grid.

3. Cg: Computing the conjugant gradient of a sparse matrix.
4

. Em3d: Solving Maxwell’s equations on an irregular grid.

The prototype compiler automatically introduces the message pipelining and
one-way communications optimizations for F'F'T" and Stencil. For C'g and E'm3d,
the loops appearing in the benchmarks were manually unrolled before invok-
ing the compiler®. The execution times of these applications were improved by
20-50% through message-pipelining and one-way communication optimizations.
These were measured on the CM5 multiprocessor. The relative speedups should
be even higher on machines with lower communication startup costs or longer
relative latencies (when the fraction of the latency that can be overlapped is

higher).

- Unoptimized
- Pipelined communication

l:l One-way communication

FFT  Stencil Cg EM3D

Fig. 6. Normalized Execution Times

% The loop-unrolling transformation is done as a pre-processing transformation that
enlarges the size of basic blocks, thereby increasing the scope of prefetching and
pipelining.



Figure 6 gives the performance results of these experiments. The figure gives
the execution times, normalized so that the unoptimized execution time is 1.
Thus, a relative speed of 0.5 corresponds to a factor of 2 speedup. Other opti-
mizations, such as caching remote values, are also enabled by our analysis, and
result in additional performance improvements on some of these applications

8],
8 Related Work

Most of the research in optimizing parallel programs has been for data parallel
programs. In the more general control parallel setting, Midkiff and Padua[l1]
describe eleven different instances where standard optimizations (like code mo-
tion and dead code elimination) cannot be directly applied. Analysis for these
programs is based on the pioneering work by Shasha and Snir[15], which was
later extended by Midkiff et al[12] to handle array based accesses. However,
their analysis technique is computationally expensive even for programs with
a small degree of parallelism since both the minimal cycle detection problem
and the array subscript analysis problem have exponential running times. The
algorithm presented in this paper for SPMD programs does not deal with array
analysis, but we believe their techniques for handling array subscripts could be
incorporated into our SPMD framework.

Compilers and runtime systems for data parallel languages like HPF and
Fortran-D[7] implement message pipelining optimizations. The Parti runtime
system and associated HPF compiler uses a combination of compiler and runtime
analysis to generate code for overlapping communication, aggregating groups
of messages, and other optimizations [2]. These optimizations have also been
studied in the context of parallelizing compilers[14]. However, as discussed ear-
lier, compiling data parallel programs is fundamentally different than compiling
SPMD programs. First, it is the compiler’s responsibility to map parallelism
of degree n (the size of a data structure) to a machine with PROCS processors,
which can sometimes lead to significant runtime overhead. Second, the analysis
problem for data parallel languages is simpler, because they have a sequential
semantics resulting in directed conflict edges. Standard data-dependence tech-
niques can be used in data parallel language to determine whether code-motion
or pipelining optimizations are valid.

9 Conclusions

We have presented analysis techniques and optimizations for SPMD programs
on distributed memory multiprocessors. The potential payoff of a few of these
optimizations is estimated using hand optimizations on a small set of appli-
cations. The performance improvements are as high as a factor of two on the
CMb5b, with even better performance expected on future architectures with lower
communication startup.

The new form of analysis that is needed for explicitly parallel programs in
a general (not data-parallel) execution model, is cycle detection, as introduced
by Shasha and Snir. We showed that their formulation of the analysis led to
an NP-complete problem and, therefore, an algorithm that was exponential in



the number of processors. Applied to an SPMD program, their algorithm relied
on analyzing PROCS copies of the code. We improved on their basic algorithm
by giving an alternate formulation that uses only two copies of the code and
computes nearly the same set of cycles in polynomial time. Finally, we showed
how to use this analysis to generate code for an abstract machine language,

Split-C.

References

1
2

10.

11.

12.

13.

14.

15.

16.

B. Alpern, L. Carter, and E. Feig. Uniform memory hierarchies, Oct. 1990.

H. Berryman, J. Saltz, and J. Scroggs. Execution time support for adaptive sci-
entific algorithms on distributed memory multiprocessors. Concurrenty: Practice
and Ezperience, pages 159-178, June 1991.

. F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Maloney, and

B. Mohr. Implementing a parallel C++ runtime system for scalable parallel sys-
tem. In Supercomputing *93, pages 588-597, Portland, Oregon, November 1993.
S. Chatterjee, J. Gilbert, R. Schreiber, and S.-H. Teng. Optimal evaluation of
array expressions on massively parallel machines. In Workshop on Languages,
Compilers and Run-Time Fnvironments for Distributed Memory Multiprocessors,
pages 68-71, 1993.

. D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von

Eicken, and K. Yelick. Parallel programming in Split-C. In Supercomputing '93,
pages 262-273, Portland, Oregon, November 1993.

. High Performance Fortran Forum. High Performance Fortran language specifica-

tion version 1.0. Draft, Jan. 1993.

S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiler optimziations for For-
tran D on MIMD distributed-memory machines. In Proceedings of the 1991 Inter-
national Conference on Supercomputing, 1991.

. A. Krishnamurthy. Optimizing explicitly parallel programs. Technical Report

(CSD-94-835, University of California, Berkeley, September 1994.

. L. Lamport. How to make a multiprocessor computer that correctly executes mul-

tiprocess programs. IEEE Transactions on Computers, C-28(9):690-691, Septem-
ber 1979.

S. Luna. Implementing an efficient global memory portability layer on distributed
memory multiprocessors. Master’s thesis, University of California, Berkeley, May
1994.

S. Midkiff and D. Padua. Issues in the optimization of parallel programs. In
International Conference on Parallel Processing - Vol I, pages 105-113, 1990.

S. P. Midkiff, D. Padua, and R. G. Cytron. Compiling programs with user paral-
lelism. In Languages and Compilers for Parallel Computing, pages 402—422, 1990.
W. Oed. The Cray research massively processor system: T3D. Ftp from
ftp.cray.com, Nov. 1993.

A. Rogers and K. Pingali. Compiling for distributed memory architectures. ITEFFE
Transactions on Parallel and Distributed Systems, march 1994.

D. Shasha and M. Snir. Efficient and correct execution of parallel programs that
share memory. ACM Transactions on Programming Languages and Systems,
10(2):282-312, April 1988.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages:
a Mechanism for Integrated Communication and Computation. In International
Symposium on Computer Architecture, 1992.



