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Abstract: We present compiler analyses and optimizations
for explicitly parallel programs that communicate through a
shared address space. Any type of code motion on explicitly
parallel programs requires a new kind of analysis to ensure
that operations reordered on one processor cannot be ob-
served by another. The analysis, based on work by Shasha
and Snir, checks for cycles among interfering accesses. We
improve the accuracy of their analysis by using additional
information from post-wait synchronization, barriers, and
locks.

We demonstrate the use of this analysis by optimizing
remote access on distributed memory machines. The opti-
mizations include message pipelining, to allow multiple out-
standing remote memory operations, conversion of two-way
to one-way communication, and elimination of communica-
tion through data re-use. The performance improvements
are as high as 20-35% for programs running on a CM-5 mul-
tiprocessor using the Split-C language as a global address
layer.

1 Introduction

Optimizing explicitly parallel shared memory programs re-
quires new types of static analysis to ensure that accesses
reordered on one processor cannot be observed by another.
Intuitively, the parallel programmer relies on the notion of
sequential consistency. the parallel execution must behave
as if it were an interleaving of the sequences of memory
operations from each of the processors [12]. If only the lo-
cal dependencies within a processor are observed, the pro-
gram execution might not be sequentially consistent [15].
To guarantee sequential consistency under reordering trans-
formations, a new type of analysis called cycle detection is
required [18].
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Figure 1: If the read of Flag returns 1, the read of Data
should see the new value.

An example to illustrate sequential consistency is shown
in Figure 1. The program is indeterminate in that the read
of Flag may return either 0 or 1, and if it is 0, then the read
to Datamay return either 0 or 1. However, if 1 has been read
from Flag, then 1 must be the result of the read from Data.
If the two program fragments were analyzed by a sequential
compiler, it might determine that the reads or writes could
be reordered, since there are no local dependencies. If either
pair of the accesses is reordered, the execution in which Flag
is 1 and Data is 0, might result.

Even if the compiler does not reorder the shared mem-
ory accesses, reordering may take place at many levels in a
multiprocessor system. At the processor level, a superscalar
may issue an instruction as soon as all its operands are avail-
able, so writes to different locations might be issued in the
order the values become available. Most processors have
write buffers, which allow read operations to overtake write
operations that have been issued earlier. In fact, on the Su-
perSparcs [20] the write-buffer itself is not guaranteed to be
FIFO. Reordering may also take place at the network level
in distributed memory multiprocessors, because some net-
works adaptively route packets to avoid congestion. Even if
packets do not get reordered, two access sent to two different
processors may be handled out of order, since latencies may
vary. Also, on a machine like DASH [13], with hardware
caching, writes do not wait for all invalidations to complete,
so remote accesses might appear to execute in reverse-order.
These architectural features usually come with support to
ensure sequential consistency, such as a memory barrier or
a write-buffer flush to enforce ordering between memory op-
erations, or a test for completion of a remote operation.
However, these new instructions must be inserted by the
compiler. If a standard uniprocessor compiler is used for
generating code, these special instructions would not be au-
tomatically inserted.

The cycle detection problem is to detect access cycles,
such as the one designated by the figure-eight in Figure 1. In



addition to observing local dependencies within a program,
a compiler must ensure that accesses issued by a single pro-
cessor in a cycle take place in order. Cycle detection is neces-
sary for most optimizations involving code motion, whether
the programs run on physically shared or distributed mem-
ory and whether they have dynamic or static thread cre-
ation. Cycle detection is not necessary for automatically
parallelized sequential programs or data parallel programs
with sequential semantics, because every pair of accesses has
a fixed order, which is determinable at compile-time. The
additional problem for explicitly parallel programs comes di-
rectly from the possibility of non-determinism, whether or
not the programmer chooses to use it.

In spite of the semantic simplicity of deterministic pro-
gramming models, for performance reasons many applica-
tions are written in an explicitly parallel model. As we no-
ticed with our toy example, uniprocessor compilers are ill-
suited to the task of compiling explicitly parallel programs,
because they do not have information about the semantics
of the communication and synchronization mechanisms. As
a result, they either generate incorrect code or miss oppor-
tunities for optimizing communication and synchronization,
and the quality of the scalar code is limited by the inability
to move code around parallelism primitives [15].

We present optimizations for multiprocessors with phys-
ically distributed memory and hardware or software support
for a global address space. As shown in table 1, a remote
reference on such a machine has a long latency [2][21][13].
However, most of this latency can be overlapped with local
computation or with the initiation of more communication,
especially on machines like the J-Machine and *T, with their
low overheads for communication startup.

CM-5 | T3D | DASH
Remote Access 400 85 110
Local Access 30 23 26

Table 1: Access latencies for local and remote memory
modules expressed in terms of machine cycles.

Three important optimizations for these multiprocessors
are overlapping communication, eliminating round-trip mes-
sage traffic, and avoiding communication altogether. The
first optimization, message pipelining, changes remote read
and write operations into their split-phase analogs, get and
put. In a split-phase operation, the initiation of an access
is separated from its completion [6]. The operation to force
completion of outstanding split-phase operations comes in
many forms, the simplest of which (called sync or fence)
blocks until all outstanding accesses are complete. To im-
prove communication overlap, puts and gets are moved back-
wards in the program execution and syncs are moved for-
ward. The second optimization eliminates acknowledgement
traffic, which are required to implement the sync operation
for puts. A final optimization is the elimination of remote
accesses by either re-using values of previous accesses or up-
dating a remote value locally multiple times before issuing
a write operation on the final value.

Cycle detection was first described by Shasha and Snir
[18] and later extended by Midkiff, Padua, and Cytron to
handle array indices [16]. In previous work, we showed that
by restricting attention to Single Program Multiple Data
(SPMD) programs, one could significantly reduce the com-
plexity of cycle detection [11]. The primary contribution of

this paper is improved cycle detection that makes use of syn-
chronization information in the program. Shasha and Snir’s
analysis, when applied to real applications, discovers a huge
number of spurious cycles, because cycles are detected be-
tween accesses that will never execute concurrently due to
synchronization. We use synchronization analysis to elimi-
nate these spurious cycles.

The rest of the paper is organized as follows. The source
programming language is described in section 2. We present
basic terminology in section 3 and a brief summary of Shasha
and Snir’s result in section 4. In section 5, we present our
new algorithms that incorporate synchronization analysis,
and in sections 6 and 7, we give code generation and opti-
mizations for distributed memory machines. Section 8 esti-
mates the potential payoffs of our approach by optimizing
some application kernels. Related work is surveyed in sec-
tion 9 and conclusions drawn in section 10.

2 Programming Language

Our analyses are designed for explicitly parallel shared mem-
ory programs. We have implemented them in a source-to-
source transformer for a subset of Split-C [6].

Split-C is an explicitly parallel SPMD language for pro-
gramming distributed memory machines using a global ad-
dress space abstraction. The parallel threads interact through
reads and writes on a shared address space that contains dis-
tributed arrays and shared objects accessible through wide
pointers. The most important feature of Split-C as a target
is its support for split-phase (or non-blocking) memory op-
erations. Given pointers to global objects srcl and dest?2,
and local values src2 and dest1 of the same type, the split-
phase versions of read and write operations on the global
objects are expressed as:

get(destl, srcl)

put(dest2, src2)

/* Unrelated computation */
sync () ;

In the first assignment statement, a get operation is per-
formed on srci, and in the second, a put is performed on
dest2. Neither of these operations are guaranteed to com-
plete (the values of dest1 and dest2 are undefined) until
after the sync statement. A get operation initiates the read
of a remote location, but it does not wait for the value to
be fetched. Similarly, a put operation does not wait for the
acknowledgement that the write occurred on the remote pro-
cessor. The sync operation delays the execution for previous
non-blocking accesses to complete. On a distributed mem-
ory machine, the get and put operations are implemented
using low-level messages sent across the interconnection net-
work. Therefore, split-phase operations facilitate communi-
cation overlap, but the sync construct provides less control
than one might want, because it groups all outstanding puts
and gets from a single processor. Split-C also provides finer
grained mechanisms in which a sync object, implemented
by a counter, is associated with each memory operation.
Examples of these are given in Section 6.

Split-C also provides a store operation, which is a vari-
ant of the put operation. A store operation generates a
write to a remote memory location, but does not acknowl-
edge when the write operation completes. It exposes the ef-
ficiency of one-way communication in those cases where the
communication pattern is well understood. By transforming
a put to a store, we not only reduce network contention by
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Figure 2: The figure shows a shared memory execution and
one possible total order on operations. Executions in which
the Write to Y appears to happen before the Write to X
would not be legal.

reducing the number of packets but also reduce the process-
ing time spent by the processors in generating and handling
the acknowledgement traffic.

The source language differs from Split-C in two key as-
pects. First, the source language does not provide split-
phase operations; all accesses to shared memory are block-
ing. This design choice stems from the observation that
split-phase operations are good for performance but hard to
use. Second, the global address space abstraction is pro-
vided in the source language only through a distributed ar-
ray construct and through shared scalar values; the global
address space cannot be accessed through global pointers,
which are supported by Split-C. Disallowing global pointers
allows us to implement our analysis techniques without full-
blown pointer alias analysis. However, there are no restric-
tions imposed on the use of pointers into the local address
space. The type system prevents the creation of local point-
ers into the global address space, and this allows us to ignore
local memory accesses and local pointers in our analysis.
Our source language design allows us to write meaningful
parallel programs with optimized local computational ker-
nels and global phases that communicate using either shared
variables or distributed arrays.

3 Sequential Consistency

A vparallel execution £ on n processors is given by n se-
quences of instruction executions Fi,..., F,. We consider
two types of executions: a shared memory execution allows
only atomic reads and writes to shared variables; a weak
memory execution may contain split-phase as well as atomic
operations.

Given a processor execution F; = a1,...,am, We asso-
ciate with F; a total order a1 < a> < ... < am. In a shared
memory execution, reads and writes happen atomically in
the order they are issued, with no predetermined ordering
between accesses issued by different processors. Therefore,
the program execution order, F, is the union of these F,’s.
An execution F is sequentially consistent if there exists a
total order S of the operations in F, i.e., £ C S, such that
S is a correct sequential execution where the reads must re-
turn the value of the most recent preceding write [12]. For
example, in Figure 2, if the read to Y returns a new value
written by E1, then the read of X must also return the value
written by B,

1 This program might come from a case in which Y is acting as a
“presence flag” for the value being written into X.

System Contract 1 Given a shared memory program, a
correct machine must produce only sequentially consistent
executions for that program.

This contract does not specify the behavior of programs
with put and get or other non-blocking memory operations.
In order to extend the system contract for programs with
weak memory accesses, rather than relying on a particular
instruction set with non-blocking memory operations and
synchronizing accesses, we use a more general framework
proposed by Shasha and Snir [18]. A delay set D specifies
some pairs of memory accesses as being ordered, which says
that the second operation must be delayed until the first
one is complete. For example, in Figure 3, F; specifies the
accesses issued by a processor, and D specifies the delay
constraints for executing the accesses. A sync operation,
which is one particular mechanism for expressing delay con-
straints, could be introduced to prevent the get operation
from being initiated before the puts complete. In general,
given an execution F, D is a subset of the ordering given by
FE,ie., D CF. A weak memory execution given by F and
D is weakly consistent if there exists a total order S of the
accesses in D), i.e., D C S, such that S is a correct sequential
execution.

System Contract 2 Given a weak memory program, a cor-
rect machine must produce only weakly consistent executions
for that program.

F is a dynamic notion based on a particular execution.
During compilation, we approximate F by the program order
P, defined as the transitive closure of the n program control
flow graphs, one per processor. The compiler computes a
delay set D, which is a subset of P. We say that a delay
set D is sufficient for P if, on any machine that satisfies
the second system contract, all possible executions of P are
sequentially consistent. Note that if we take D to be P,
which means that we block on every remote memory access,
it forces our machine to produce a sequentially consistent
execution. Our goal during program analysis is to find a
much smaller 1) that still ensures sequential consistency.

4 Shasha and Snir’s Algorithm

A violation of sequential consistency occurs when the “hap-
pens before” relation, which is £ U S, contains a cycle. An
example is shown in Figure 1. In this case, the figure-eight
formed by the arrows is the cycle that violates sequential
consistency. All violations are due to such cycles, although
in general the cycles may extend over more than two proces-
sors and involve as many as 2n accesses. The cross-processor
edges in the cycles are conflicting (read-write or write-write)
accesses to the same variable by two different processors. We
define the conflict set C' to be a conservative approxima-
tion to these interferences: C' contains all unordered pairs
of shared memory operations ai, a2, such that a; and a:
are issued by different processors, both access (or could ac-
cess) the same shared variable, and at least one is a write
operation.

Shasha and Snir proved that there exists a minimum
delay set, Dsgs, that can be defined by considering cycles
in PUC. The primary idea is that if PUC does not contain
any cycles (as in Figure 4), then EUS would not contain any
cycles since P U C'is a conservative compile-time superset
of FUS. We reformulate their result with the following
definitions.
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Figure 3: A weak memory execution with D) containing some of the edges in F. Since the puts in Ej are not ordered, they
may execute in either order. However, an execution in which the get of Z appears to happen before either one of the puts

would be illegal.

Definition 1 A path [a1,...,am] € PUC is a simple path,
if for any access a; in the path, if a; 13 an access on processor

Py, then the following hold:

1. If aiy1 is also on Py, then for all other accesses a;

(1 #1and j#i+1), a; is not on Py.

2. Ifa;—q and ai4q exist (i # 1 andi # n) and[a;—1, a;] €
C and [ai,a;41] € C, then for all § # 1, a; is not on
Pr.

Thus, except for the end-points of the path, a simple path
is one that visits each processor at most once, with at most
two accesses per processor during a visit. A special case
of simple paths points to a potential violation of sequential
consistency.

Definition 2 Given an edge [am,a1] in some Pk, a path
[a1,...,am] € PUC is called a back-path, for [am,a1] if
[a1,...,am] is a simple path.

Shasha and Snir define a particular delay set, denoted
here Dgsg s, which is sufficient and in some sense minimal.

Definition 3 Dsgs = {[a:, a;] € Plla:,a;] has a back-path
in PUC}.

Theorem 1 [18] Dses is sufficient.

The minimality results on D sy s says that given straight-
line code without explicit synchronization, if a pair of ac-
cesses in Dses 1s allowed to execute out of order (i.e., is
omitted from the delay set when the program is run), there
exists a weakly consistent execution of that program that
is not sequentially consistent. This notion of minimality is
not as strong as one would like, because it ignores the ex-
istence of control structures and synchronization constructs
that prevent certain access patterns. In the section that fol-
lows, we extend this framework to include synchronization
analysis, which is critical in reducing spurious delay edges
in real parallel programs.

Initially Data=Flag=0

Proc: 1 Proc: 2

LWrite Data=1 }—{ Read Data J
[Write Flag=1 H Read Flag ]

Figure 4: Example of a parallel program that does not re-
quire any delay constraints.

5 Using Synchronization Information

The delay set computation described in the previous section
does not analyze synchronization constructs and is there-
fore overly conservative. It is correct to treat synchroniza-
tion constructs as simply conflicting memory accesses, but
this ignores a valuable source of information, since synchro-
nization creates mutual exclusion or precedence constraints
on accesses executed by different processors. For example,
Figure 5 shows two program segments that access the vari-
ables X and Y. The delay set Dss s contains edges between
these access, prohibiting overlap. However, if synchroniza-
tion behavior is taken into account, the delays are seen to be
unnecessary, because the post will be delayed for the writes
to complete and the reads cannot be started until the wait
completes.

In this section, we modify the delay set computation to
incorporate synchronization analysis for three constructs:
post-waits, barriers, and locks. Our synchronization analy-
sis presumes that synchronization constructs can be matched
across processors, and we describe runtime to ensure this dy-
namically. This analysis only helps if the programmer uses
the synchronization primitives provided by the language.
If the programmer builds synchronization using reads and
writes, we would not be able to detect the synchronization.
In this case our algorithm is still correct, but we would not
be able to prune the delay set.

5.1 Analyzing Post-Wait Synchronization

Post-wait synchronization is used for producer-consumer de-
pendencies. The consumer executes a wait, which blocks un-
til the producer executes a post. This creates a strict prece-
dence between the operations before the post and the opera-
tions after the wait?. We start by considering two examples
that use post-wait synchronization, and then present the
modified delay set construction. In our discussion, we use
a precedence relation R that captures the happens-be fore
property of accesses.

Definition 4 A precedence relation R is a set of ordered
pairs of accesses, [a1,az], such that a1 is guaranteed to com-
plete before as is initiated.

Consider the computation of the delay set for the pro-
gram in Figure 5. Dgesis {[a1, a2], [az, a3], [a1, as], [as, as],
[as,as], [@4, as]}, which will force completion of a1 before the

°In our analysis, we assume that it is illegal to post more than
once on an event variable.
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Figure 5: The post-wait synchronization enables the order-
ing of conflict edges, which results in fewer back-paths.

initiation of a2 and as before ag. The semantics of post-wait
synchronization require a precedence edge from as to a4,
which eliminates one direction of the conflict edge between
as and a4 and leads to a smaller delay set. Starting with
the delay set {[az, as], [a1, az], [as, as], [as, as]}, we can order
the other conflict edges [a1,as] and [a2,as] by transitivity,
and thus destroy the remaining back-paths.

As this example illustrates, the delay set and precedence
relation will be computed through a process of refinement.
Initially, the precedence relation contains only those edges
that directly link a post and a wait. We then create an ini-
tial delay set D¢ with those edges from Dgse s that involve at
least one synchronization construct. This says that some de-
lay edges—those involving synchronization—are more fun-
damental than others. Omnce D is computed, the prece-
dence relation R is expanded to include the transitive clo-
sure of itself and D1. The example provides two key insights
into how we could use synchronization information. First,
by providing a directionality to a conflict edge, we impose
more restrictions on the interleaving of accesses from differ-
ent processors, which results in a smaller delay set. Second,
the precedence relation R serves as the catalyst for initiating
the refinement process.

The process of invalidating a back-path does not always
involve directing a conflict edge. R could be used for re-
moving certain accesses that are not qualified to appear
in back-paths, and thus decrease the number of back-paths
that we discover. In Figure 6, there are simple paths from
a3 to a1 and from ag to as. Furthermore, as and a4 are
synchronization accesses, so [a1,a3] and [a4,as] belong to
the initial delay set D;. This information, when combined
with the precedence edge [as, as], implies that a1 precedes
a¢ for any execution of the program. Since a simple-path
to a1 corresponds to a runtime execution where all the ac-
cesses in the sequence execute before a1, ag will never occur
in a simple-path to a;. We therefore remove as while de-
termining the existence of simple-paths to ¢1. Removal of
ae destroys the simple-path from as to a1, which otherwise

Write B
Post F Write C

Figure 6: An example where synchronization analysis dis-
qualifies certain accesses from appearing in back-paths.

Write C

void foo() {

barrier();

for (i=0; i<n; i++) {
barrier();

}

barrier();

}

Figure 7: Inaccuracies in analysis of barrier statements

would have resulted in [a1,a2] being added to the delay set.

Using these examples as motivation, we propose a gen-
eral scheme for finding a delay set. We initially compute the
delay set Di, which relates synchronizing accesses to non-
synchronizing accesses, and combine it with direct prece-
dence edges to obtain complete precedence information. For
post-wait operations, this combining process requires the
dominator tree of the control flow graph. A node u is said
to dominate a node v if u appears on every path from the
entry node of the graph to v. (Domination information is
efficiently represented using a dominator tree, which stores
only the closest dominators.) We now present the modified
algorithm for computing the delay set.

1. Compute the dominator tree.

2. Compute initial delay restrictions D)4 by restricting
the simple-path algorithm from the previous section
to pairs that include one synchronization access.

3. Compute the set of precedence edges, Ri, between
matching post and wait constructs.

4. For every pair of access statements a1 and a2, check
whether there exists two other statements b1 and bo
that satisfy the following constraints.

(a) a1 dominates by and b, dominates as,
(b) [a1,b1] € D1 and [b2,a2] € D1, and
(c) [b1,b2] € Ba
Add [a1,a2] to R if by and b2 exist.

5. The original conflict set C' contained unordered pairs.
Order the pairs that have a precedence as follows: Let

Ci =C — {[ag,al] | [a1,a2] € R}

6. Let D = D1U{[as,a;] € P | [ai,a;] has a back-path in
PUC}.

By eliminating accesses and ordering conflict edges be-
fore checking for back-paths, we reduce the number of back-
paths that are discovered. There is a corresponding decrease
in the size of the delay set, which results in improvements
in execution times of the programs.

5.2 Analyzing Barrier Synchronization

Barrier statements can be used to separate the program
into different phases that do not execute concurrently. The
analysis for barriers is similar to that of post-wait synchro-
nization, since crossing a barrier introduces a precedence re-
lation. As before, we add the delay edges between accesses
and barriers before compute the delay set for the rest of
the program.



To use barriers for computing precedence, we need to
line up the barriers, which is undecidable in general. Fig-
ure 7 shows a sample program where it is likely that the bar-
rier statements do line up during program execution, but to
prove that assertion at compile-time, our analysis needs to
prove that the function foo gets called by all the processors
at the same time and the loop inside the function executes
the same number of iterations. Rather than adding sophis-
ticated analysis to line up barriers [10], we use a simple run-
time solution that works well for many real programs. We
add a run-time check to each barrier to determine whether
these are the ones lined up during compilation. The com-
piler produces two copies of the code, one with pipelining
optimizations and the other without any optimizations. If
the processors are indeed synchronized and executing the
barrier operations as predicted, the optimized version of the
code is run. This approach to analyzing barriers also allows
us to overcome separate compilation issues for many real
programs.

5.3 Lock Based Synchronization

We can extend our synchronization analysis to locks, even
though there are no strict precedence relations implied by
the use of locks. We again compute ;i for pairs of accesses
that include a synchronization construct. We then deter-
mine the set of accesses guarded by a lock. An access a is
said to be guarded by the lock I, if the following conditions
hold:

1. ais dominated by a lock I operation (which we will call
b1), and there are no intervening unlock I operations.

2. a dominates unlock | operation, which we will call b,.

3. [b1,a] € Dy and [a,bg] c D

If access statements a1 and as are guarded by the lock
l, we remove all other access statements that are guarded
by the same lock before checking for a simple-path from a2
to a1. This is a valid operation by the following reasoning.
If az,b1,b2,...,bk, a1 is a simple-path, then the accesses cor-
responding to b1, b2, ...,bx must occur after a> and before
a1. It follows from our definition of being guarded by a lock
that none of b1,b2,...,bx can be guarded by the same lock
and still appear in a violation sequence. This improvement
to the delay set construction allows accesses within critical
regions to be overlapped.

6 Code Generation

The notion of a delay set can be used to generate code for
a variety of memory models, one of which is the put, get
model provided by Split-C. In this section we describe our
source level transformer for Split-C, which uses cycle detec-
tion and synchronization analysis.

The input to the code generation phase is the control
flow graph, the delay set computed by the back-path recog-
nition algorithm, and the use-def graph for each processor’s
variable access (obtained through standard sequential com-
piler analysis). As we mentioned in section 4, to compute
the delay set, we can use a conservative approximation to
the conflict set C without affecting the correctness of our
analysis. This is crucial to our analysis since there are in-
herent inaccuracies in the array analysis that is required to
generate conflict edges for array accesses.

During the code generation process, both the delay con-
straints and local dependencies must be observed. The gen-
erated code contains put, get, and store constructs, as well
as various types of sync statements. Normally, a sync state-
ment will force completion of all previous puts and gets
from the issuing processor. However, Split-C also provides
a mechanism called synchronizing counters to wait for the
completion of a subset of outstanding accesses. The pro-
grammer specifies a counter when issuing puts and gets,
and again when issuing the sync, which will wait for only
those accesses with a matching counter.

The first step in code generation is to split remote ac-
cesses into an initiation and synchronization. A remote read
of X into y is transformed into get_ctr(y, X, counter) fol-
lowed by sync_ctr (counter), where counteris either a new
or reused synchronizing counter. This transformation is al-
ways legal, but analysis is needed to move the two opera-
tions away from each other, thereby allowing communication
overlap.

Separating Initiation from Completion. Figure 8 shows an
example of code that might be generated after calculating
delay and def-use edges. The synchronization of the get on
X has been moved away from the initiation, but because of
the conditional, two synchronizing points are needed. The
duplication may result in unnecessary overhead, but is legal
because sync_cntr operations are idempotent.

The algorithm for moving a sync_ctr operation a.ync
away from its corresponding initiation a;n,+ involves repeated
applications of the following rules:

1. If async is at the end of a basic block, propagate @¢.ync
to all the successors of the basic block and continue
the motion on each copy of a.yne.

2. If async is in the middle of a basic block, let a' be the
operation the immediately follows it.

(a) If there is a delay or def-use constraint of the form
[@init, a'], terminate the movement of acyne.

(b) Tf a’ is another copy of the synchronization async,
merge the two a.yn. operations.

(c) Otherwise, move async past a’.

The above algorithm moves sync_ctr operations as far
away from initiation as possible. As shown in Figure 8, this
may not be the best strategy, since it can lead to multiple
synchronization points in the same control path. Similarly,
if a sync_ctr is propagated into a loop body, it will be ex-
ecuted in every iteration, even though the first execution
is sufficient. Our compiler uses heuristics to avoid some of
these cases, since data on average executions of control paths
and machine parameters would be needed to choose the best
placement.

One-Way Communication Optimization. Another trans-
formation that provides large performance benefits on some
machines is to transform two-way communication into one-
way communication. The put operation has an acknowl-
edgement that signals the completion of the operation. If
there are no delay constraints that require the completion
of a put access, we can transform the access into a one-way
operation, called a store. One way to ensure completion
of stores is with a global synchronization point that stalls
until all stores across the machine have completed. This
transformation is usually valid if the sync_ctr operation
propagates all the way to a barrier synchronization.



Source code

get _ctr(&x, &X, ctrl)

y = 2

if (foo()) {
sync_ctr(ctrl);
y =x + 1;

}

sync_ctr(ctrl);

z =1

Target code

Figure 8: Code Generation: Upper case letters are shared variables, lower case letters are local variables, the solid line is a

delay edge, and the dashed line is a def-use edge.

Figure 9: Barrier synchronization guarantees that X is read-
only in the second phase.

Figure 10: X can be cached by FE> since the updates to X
are guaranteed to be complete.

7 Eliminating Remote Accesses

Delay sets are needed for any transformation that involves
code motion on explicitly parallel code. In this section we
consider a second class of transformations for distributed
memory machines, which lead to the elimination of remote
accesses through a kind of common-subexpression elimina-
tion.

Consider two accesses a1 and ap within a single basic
block that are gets to the same variable X. If X is not be-
ing written concurrently, then the second get can be elim-
inated. Two examples are shown in Figure 9. In the first
case, there is a barrier that marks the transition to X being
read-only, and in the second, the post-wait synchronization
ensures that the gets are issued only after the put is com-
plete. The synchronization analysis described in Section 5
identifies these synchronization regions and orders the con-
flict edges between the gets and puts to X. Since there will
not be a delay edge between the two gets to X, the second
one can be eliminated.

Mutually exclusive access is sufficient but not necessary
for elimination of repeated gets. It may be possible to
reuse a previously read value even when there are inter-
vening global accesses, as long as it is legal to move the
second get up to the point of the first one. The algorithm
used for remote access elimination is essentially the reverse

of that used for sync_ctr propagation: the second get is
moved backwards in the code until it reaches a operation
that shares a delay edge or local dependence. If this propa-
gation is successful, we will end up with a sequence like:

get(locall, X, counterl)

sync_cntr(counterl)
get (local2, X, counter2)

sync_cntr(counter?)

At this point, the second get is replaced by a local assign-
ment of locallto local?2, and the second sync_cntr is elim-
inated, along with any of its copies.

The examples presented so far eliminate redundant reads,
which is similar to saving a value in register. The tech-
nique can be applied to a variety of other communication-
eliminating optimizations as illustrated in Figure 11. For
simplicity, they are shown as transformations on the higher
level code, with temporaries introduced to minimize con-
flicts during code motion. Reading a remote variable that
has recently been written can be avoided if the written value
is still available. When a thread issues two successive writes
to the same variable, the earlier writes can be buffered in
a local variable and the final value written to the remote
copy at a later point. This is equivalent to using write-back
cache, rather than a write-through cache.

8 Experimental Results

We quantify the benefits of our approach by studying the
effect of the optimizations on a set of application kernels
that use a variety of synchronization mechanisms. A brief
description of the applications is given below:

Ocean: This benchmark is from the Splash benchmark
suite[19], and studies the role of eddy and boundary currents
in large-scale ocean movements. The primary data structure
is a grid, and the core of this application is a stencil-like
computation.

EM3D: Em3d models the propagation of electromagnetic
waves through objects in three dimensions [14]. The com-
putation consists of a series of “leapfrog” integration steps:
on alternate half time steps, changes in the electric field are
calculated as a linear function of the neighboring magnetic
field values and vice versa.

Epithelial Cell Simulation: Biologists believe that the
geometric structure of the embryo emerges from a few sim-
ple, local rules of cell movement. This application is a cell
aggregation simulation that allows scientists to posit such
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Figure 11: A set of transformations to eliminate remote accesses that are similar in spirit to standard uniprocessor op-
timizations like common subexpression elimination. Upper case letters denote global variables, and lower case ones local

variables.
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Figure 12: The figure gives the execution times, normalized so that the execution time of the code generated without analyzing
synchronization constructs is 1. Thus, a relative speed of 0.5 corresponds to a factor of 2 speedup.

rules. At each time-step of the simulation, a Navier-Stokes
solver calculates the fluid flow over a large grid by perform-
ing 2-D FFTs.

Cholesky: Cholesky computes the factors of a symmet-
ric matrix. The primary data structure is a lower triangu-
lar matrix, which is distributed in a blocked-cyclic fashion.
The computation is structured in a producer-consumer style,
and synchronization is ensured using post-wait operations
on flags.

Health: This benchmark is from the Presto application
suite. Health simulates the Colombian health service sys-
tem, which has an hierarchical service-dispensing system.
Exclusive access to shared data structures is guaranteed by
the use of locks.

The prototype compiler automatically introduces the mes-
sage pipelining and one-way communications optimizations
for all the applications. The execution times of these appli-
cations were improved by 20-35% through message-pipelining
and one-way communication optimizations. These were mea-
sured on a 64 processor CM-5 multiprocessor. The relative
speedups should be even higher on machines with lower com-
munication startup costs or longer relative latencies. Fig-
ure 12 gives the performance results of these experiments.
The base program is the executable generated after apply-
ing Shasha and Snir’s cycle analysis. Our synchronization
analysis results in much smaller delay sets, which in turn
enables greater applicability of the message pipelining opti-
mizations.

As a result of introducing the message pipelining opti-

mizations, the speedup characteristics of the program changes.

Figure 13 shows that the efficiency of a parallel program
increases when we transform blocking operations by asyn-
chronous operations. The increase in efficiency is a direct
result of the reduction in either the time spent waiting for
remote accesses to complete or the overhead of sending mes-
sages.
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Figure 13: Speedup curves for the Epithelial application
kernel with varying degrees of optimization. As expected,
the optimized versions scale better with processors

9 Related Work

Most of the research in optimizing parallel programs has
been for data parallel programs. In the more general con-
trol parallel setting, Midkiff and Padua [15] describe eleven
different instances where standard optimizations (like code
motion and dead code elimination) cannot be directly ap-
plied. Analysis for these programs is based on the pioneering
work by Shasha and Snir [18], which was later extended by
Midkiff et al [16] to handle array based accesses.

We analyze the synchronization[5] accesses in the pro-
gram and obtain precedence and mutual exclusion informa-
tion regarding remote accesses. Others have proposed algo-
rithms for analyzing synchronization constructs in the con-
text of framing data-flow equations for parallel programs,
where strict precedence information is necessary [4][8]. Our
algorithm for analyzing post-wait synchronization is simi-
lar in spirit; however, we can also exploit mutual-exclusion



information on accesses. Also related to our work is the re-
search that proposes weaker memory models [1, 7]. Those
approaches change the programmer’s model by giving pro-
gramming conventions under which sequential consistency is
ensured. Our work shifts this burden from the programmer
to the compiler. Our analysis could also be used for com-
piling weak memory programs since it can determine when
code motion is legal, which is critical for generating prefetch
instructions.

Compilers and runtime systems for data parallel lan-

guages like HPF and Fortran-D [9] implement message pipelin-

ing optimizations and data re-use. The Parti runtime system
and associated HPF compiler uses a combination of com-
piler and runtime analysis to optimize communication [3],
and these optimizations have also been studied in the con-
text of parallelizing compilers [17]. However, as discussed
earlier, compiling data parallel programs is fundamentally
different from compiling explicitly parallel programs. First,
in a data parallel program, it is the compiler’s responsibility
to map parallelism of degree n (the size of a data structure)
to a machine with PROCS processors, which can sometimes
lead to significant runtime overhead. Second, the analysis
problem for data parallel languages is simpler, because they
have a sequential semantics resulting in only directed conflict
edges. Standard data-dependence techniques can be used in
data parallel language to determine whether code-motion or
pipelining optimizations are valid.

10 Conclusions

We presented analyses and optimizations for explicitly par-
allel programs on distributed memory multiprocessors. The
main optimization is masking latency of remote accesses by
message pipelining and prefetching. Other optimizations
similar to subexpression elimination and constant propaga-
tion are also enabled by the analysis. We have a prototype
compiler that implements these optimizations, and we quan-
tified the potential payoff of a few of these optimizations on
a set of application kernels. The performance improvements
are as high as 35% on the CM-5, with even better improve-
ment expected on future architectures with lower communi-
cation startup.

A new form of analysis called cycle detection is needed for
explicitly parallel programs in a general (not data-parallel)
execution model. The analysis computes the constraints on
access order to ensure a sequentially consistent program-
ming model. We improved on the accuracy of the analysis
by using synchronization information. This analysis is im-
portant, since most parallel programs reduce the number of
conflicting accesses through synchronizing operations. We
also show how to use this analysis to generate code for an
abstract machine language, Split-C.
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