Compiling Verilog into Timed Finite State Machines

Szu-Tsung Cheng *f

Robert K. Brayton ¥

Gary York § Katherine Yelick *

Alexander Saldanha 8

January 1, 1995

Abstract

The lack of formal semantics for HDLs has made it
hard to make a formal bridge between simulation
tools based on HDLs and synthesis/verification
tools based on finite state machines. In this paper
we address the problem of finding a larger sub-
set of Verilog HDL (which includes timing con-
structs) and a systematic way of extracting FSMs
from programs built using the subset. Using timed
FSMs as the target language for HDI compilation
gives us two potential advantages. First, FSMs
can be used to model systems that do not have
hardware implementation. Second, FSMs can be
used to model systems that are implementable but
not automatically synthesizable.

1 Introduction

Simulation at various levels (physical, RTL, be-
havioral, etc) has made it possible for many de-
signers to try out various possibilities and pro-
totypes without fabricating designs. It has also
aided designers to find various bugs before the cir-
cuit is manufactured. The fast turnaround time
for simulations has sped up the design process.
The introduction of HDLs for simulation has made
it simple to design systems in terms of their behav-
ior as well as their implementation. This makes it
easy to write and test a partial design since one
need not write the implementation of the whole
design before it can be simulated. In addition,
using behavioral descriptions makes it easy to

*Computer Sciences Division, EECS Department, Uni-
versity of California at Berkeley, California

'This work is supported by Cadence Design System,
Siemens, CA Micro, and Fujitsu

{EECS Department, University of California at Berkeley,
California

$Cadence Berkeley Laboratory, California

write abstractions of designs/environments. Ab-
straction, which can be used to reduce system
complexity, is an important aspect of hierarchi-
cal synthesis/verification of large systems. Using
HDLs, designers can design pretty much the way
they write software programs. Recently, many
existing designs have been written in HDLs like
Verilog[TM91], VHDL[vhd8&8], etc.

However, most of these HDLs are designed for
simulation and their semantics are either defined
in terms of simulation results or left undefined.
One problem with this kind of approach is that
since the simulator results determine the seman-
tics of a Verilog program, different implementa-
tions of a simulator can give different results.
Even worse, the same simulator can give different
results for the same program; just by swapping
two “concurrent” statements.

The lack of a formal semantics makes it hard
to apply advanced synthesis/verification systems
to existing designs written in these HDLs since it
is hard to guarantee that the synthesized/verified
circuit has, in a certain sense, the same behavior
exhibited by a simulator. Many advanced auto-
matic synthesis/verification systems, for example
[ABBT94], make use of formal transition models
such as automata as their underlying model of the
real world. To make it possible to utilize state-of-
the-art synthesis/verification algorithms and sys-
tems we need to bridge the semantics gap (or de-
fine it if it does not exist) between HDLs and
the formal models (such as Finite State Machines)
used by various synthesis/verification tools.

In this paper, we distinguish between the two
terms, synthesizable and implementable. Synthe-
sizable means deciding if a program written in a
certain HDL can be compiled into another lower
level language, which is simple and close to hard-
ware implementation. Implementable means de-
termining, generally automatically, if a design has

a corresponding hardware implementation. Tradi-
tionally, synthesizing a HDL program meant com-
piling it into a circuit, i.e. synthesizable implied
implementable. Using timed FSMs as the target
language for HDI, compilation has the following
advantages. First, timed FSMs can be used to
model systems that do not have implementations
(for example, an abstracted module that gener-
ates ’even’ or 'odd’ nondeterministically). Second,
timed FSMs can be used to model systems that do
have hardware implementation but current syn-
thesizers cannot identify appropriate implementa-
tions for them yet (for example, a signal waveform
generator). Thus, by separating the problem of
synthesizable and the problem of implementable,
we have a technology independent, formal repre-
sentation for Verilog. Potentially, a larger sub-
set of Verilog can be translated into the interme-
diate format since the translation process is free
from the problem of implementability. Thus, algo-
rithms (synthesizers, verifiers, or even simulators)
based on the intermediate format (FSMs) can take
advantage of the larger subset.

In this paper we address the following problems:

o defining a subset of Verilog that is “synthe-
sizable”,

o defining the formal semantics of the subset
of Verilog in terms of timed finite state ma-
chines,

e defining a modeling style (timing machines
and untimed machines) used to “emulate”
Verilog programs,

e providing a systematic way to translate pro-
grams in the above subset of Verilog into fi-
nite state machines.

The translated finite state machines are repre-
sented either using BLIF-MVT [BBC™T] (a timed ex-
tension of BLIF-MV [BCHT91], which is a multi-
valued extension of BLIF) or sMv+ [McM94].
However, since the latter does not support nota-
tion for timing, at present sMv+4 can only rep-
resent Verilog without timing constructs. Algo-
rithms presented in this paper has been incorpo-
rated into a compiler called vI2mv. vI2mv takes a
program in the subset of Verilog described in this
paper and compiles it into FSMs.

Note that since we use FSMs as the tar-

get language, which is essentially synchronously

“clocked”, we need to ensure that the generated
FSMs (modeling logical hardware) can directly
represent implementation hardware. For example,
in a multiple-clock circuit, a physical edge trig-
gered latch is modeled in FSMs using a symbolic
latch (state variable), an edge detector (consisting
of a hidden state variable and a table for finding
the change of a signal), and a mux (used to latch
data input at the appropriate time). However, in
general, the generated FSMs have good hardware
interpretations. So we use “FSMs” and “hard-
ware” interchangeablely when it does not cause
confusion.

The main contribution of the paper is: defining
a subset of Verilog that can be compiled systemat-
ically into Finite State Machines with timing con-
straints. By using timed finite state machines to
model behaviors of Verilog programs, we separate
the problem of determining whether a program is
“implementable” from the problem of deciding if
a program is “synthesizable”. Thus, with timed
FSMs, we can model programs that are not “syn-
thesizable” for most of the advanced hardware
compilers for HDLs (e.g., a signal waveform gener-
ator). It is possible that, with the advant of more
advanced synthesis algorithms, such timed FSMs
can be synthesized and an optimized implemen-
tation can be found. In addition, formal verifiers
for real-time systems [BBC™T] can be applied to ex-
tracted timed FSMs so that systems with timing
constraints (not necessarily implementable) can
be verified.

Note that the compilation process presented in
this paper differs from high-level synthesis. First,
allocation of hardware resources for variables and
operators in Verilog is based on the assumption
of unlimited resources. The resource pool con-
sists of all possible gates expressible in one ta-
ble/equation in the target language. Second, no
scheduling is performed and no optimization is ap-
plied on the Verilog source. Thus, extracted FSMs
are not guaranteed to be “optimal” in any sense.
The goal of our compilation scheme is to extract
timed FSMs to “emulate” Verilog programs.

The organization of this paper is as follows.
In Section 2, basic terminology is introduced. A
modeling style of Verilog programs is given in Sec-
tion 3. Section 4 presents the algorithms used to
compile Verilog programs into timed finite state
machines. Some limitations of our modeling style
are presented in Section 5. Section 6 concludes the

paper. Appendix A deals with miscellaneous Ver-
ilog constructs. Several techniques used to mini-
mize compiled FSMs are given in Apppendix B.

2 Background and Terminology

2.1 Timed Finite State Machines

The timed finite state machines used as the tar-
get language of the compilation process are ba-
sically Timed Automata with Linear Equations
(TALE, [BBC*]). These finite state machines are
traditional FSMs plus some timer variables. Each
transition is labelled with input/output alphabets
as well as linear inequalities among timer variables
and/or actions (generally resetting) on timer vari-
ables.

In the target language we use (BLIF-MVT or
SMV+), each transition is further decomposed into
smaller tables/equations. When multiplied to-
gether, these tables/equations define the input,
output, present-state, next-state (of state vari-
ables) relations. BLIF-MVT allows the labeling
of current-state/next-state transitions with linear
timing constraints which further restrict the set
of possible behaviors that can be exhibited by a
system.

2.2 Terminology

Verilog is intended to be used to model circuits
which are in general composed of several com-
ponents running in parallel. We define a Verilog
process to be the finest unit of program that can
run concurrently with the other processes (or the
largest program unit such that no two sub-units
of it can be executed in parallel). Within a pro-
cess, statements get executed sequentially. Fach
individual continuous assignment, always state-
ment, initial statement, gate instantiation, or
primitive instantiation, is basically a process. In
our subset, the most basic form of a statement
(simple statement) is an assignment statement.
Simple statements are assumed to be executed
instantaneously without being delayed. For ex-
ample, o <= a + b; is a simple statement but o
<= #3 a + b; is not. Compound statements are
built by combining other statements, simple or
compound, using conditionals (if/else), n-way
branches (case), loops (for, while, repeat), or
blocks (begin/end).

In addition, a compound statement may express
timing information by pauses (event guards or de-
lays). An event is defined by the rising or falling
edge of a named signal/variable, say x. In Ver-
ilog, event guards that wait on such events are
specified using one of the following: @(posedge
x), @(negedge x), or @(x). These denote a wait
on a rising edge, falling edge, or any change for
variable x. A delay is specified by the delay op-
erator #, which indicates how long the program
execution should be halted when a control flow
encounters the operator. A conditional statement
containing at least one pause is called a signifi-
cant conditional statement. Otherwise it is called
insignificant.

To translate Verilog, we need to identify blocks
of code that are free of branches and events and
build a graphical representation of a program. A
basic block is a linear sequence of simple state-
ments free of pauses and branches except at the
very end. A basic pathis a sequence of basic blocks
that has no pauses except at the very end. A
mazimal basic path is a basic path that is not
contained in other basic paths. Note that a basic
path can wrap around a loop and two maximal
basic paths can overlap.

2.3 Graphical Representation of Ver-
ilog Programs

To represent the control flow of the execution
of a Verilog program, we use control flow graphs
(CFG), which are multi-graphs ¢ = (V, + V., F)

where:

o V, is the set of all distinct pauses.

o V. is the set of all conditional statements in
the program. Each node in V, is called a con-
ditional node. More specifically, for each con-
ditional statement, a node is allocated to rep-
resent the beginning of the conditional state-
ment.

o F is the set of edges, e = (vy,v9) € E iff
vi,v2 € V, + V,, v1 occurs before vy for at
least one execution of the program, and the
statements between v; and vy form a basic
path without passing through any conditional
node. An arc originating from a conditional
node is called a conditional arc/edge. Con-
ditional edges are labelled with a logical for-

mula which evaluates to true iff the corre-
sponding branch is taken. The formula is de-
noted by L(e) where e is a conditional arc.

3 Program = Timing Machines
+ Untimed Machines

Conceptually, a Verilog process is logically mod-
eled by the product of two sets of machines; timing
machines and untimed machines.

Timing machines determine how long a pro-
gram (or the resulting product machine) can stay
in a certain state. They control not only the tim-
ing of updating register and wire variables but
also the sequencing of statements. Timing ma-
chines use program context information (values of
logical expressions in conditional statements) from
untimed machines along with values of timers in
timed FSMs to determine their next states.

Untimed machines use program context and
transitions of timing machines to determine
whether “hardware” registers/latches self-loop or
go to the next states. Untimed machines not only
compute the next states of program variables, but
also resolve contention among variable updates.
In addition, untimed machines select appropri-
ate definitions of variables for variable reference.
Within a process, untimed machines control intra-
pause sequencing while timing machines control
inter-pause sequencing.

3.1 System Modeling

A run of a Verilog process consists of a sequence of
two phases, computation phase and idling phase,
as shown in Figure 3.1. During the computation
phase, a process transits from the currently active
pause to the next one that is going to be encoun-
tered during the execution of a program, all the
statements between the two pauses are executed,
and the next state variables are updated accord-
ingly. In the idling phase, a process self loops in
the current pause without changing the content of
any program variables. Idling phases are used to
provide time for the other processes to compute.

3.2 Halting “Hardware Time” When
There are Still Unprocessed Events
in a Certain Time Slot

In the compilation process, “hardware” (ta-
bles/equations in the target language in which
FSMs are described) are allocated according to
operators appearing in the program and intercon-
nected according to their grammatical relation-
ship. If the same piece of code gets executed twice
in the same simulation time, then more than one
computation phase is needed in order to reuse the
same piece of hardware. In the mean time, the
other processes need to self-loop in the same state
and timing machines should stop the progression
of time. Another occasion where timing machines
need to be halted is that there may be a series of
events result from “domino” effects among them.
That is, one process generates an event that is sen-
sitive to the second process which then generates
another event that activates the third process, and
so on. All of these events happen in the same sim-
ulation time so while one process is processing an
event, the other processes need to self-loop and
halt their timers.

4 Algorithms For Extracting
Control Flow Graphs, and
Building Timing and Un-
timed Machines

4.1 Control Flow Graph Extraction

A control flow graph (CFG) can be extracted in a
single pass traversal over a Verilog program. We
have the following correspondence between Ver-
ilog constructs and CFG components.

e always, for, while loop statements intro-
duce backward arcs (so that cycles may be
formed in the generated CFQG).

e if/else, case for, while introduce condi-
tional nodes and conditional arcs.

e Q@(posedge x), @(negedge x), Q(x),

#(num), #(min,max) introduce pauses.

_ T1==d1l
Timing
Machine

reset(T2)

|
|
|
|
|

+ combinational
outputs

latches for
reg variables

Untimed
Machine

T2==d2 \
- T1==d1 |
reset(T1) |
reset(12) |
|

Computation Phase Idling Phase

Computation Phase Computation Phase

Figure 1: System Modeling

4.2 Untimed Machines

4.2.1 Simple Statements - Assignments

There are basically four kinds of assignments in
Verilog, namely blocking procedural assignments,
non-blocking procedural assignments, continuous
assignments, and quasi-continuous assignments.
Among them, each continuous assignment consti-
tutes one process. The other three kinds of assign-
ments are used in procedural statements (state-
ments beginning with always or initial). Each
initial statement is executed only once when a
simulator starts. Fach always statement is exe-
cuted repeatedly forever.

A continuous assignment updates its left-side
variable whenever any of its operands changes. A
blocking procedural assignment, when executed,
reads its operands and updates the left-side vari-
able(s) immediately. On the other hand, a non-
blocking procedural assignment, when executed,
evaluates the right-side and “remember” the re-
sult without touching the left-side variable(s).
Then whenever a simulator advances time, left-
side variables get updated using the remembered
values. Quasi-continuous assignments are a pro-
cedural version of continuous assignments. They
override all the other procedural assignments,
blocking or non-blocking. Quasi-continuous as-
signments can be disabled by deassign.

For each assignment, a new hardware (FSM)
signal is allocated to represent the new value of

(a) (b) (c) (d)
s Ve
((-
X
\ \ N
{) £) /1 /\
(1) x = y+z; i ’
(2) z = x-1; => < S \ (\\
\ \
(3) y = z; z / ; |
/ / —
\ \ Lo
\ \ \
Figure 2: Circuit generated from sequence of

statements. (a) Before any statement is encoun-
tered. (b) After x=y+z; is encountered. (c) After
z=x-1; is encountered. (d) After y=z; is encoun-
tered.

the left-side variable(s). A symbol table is used to
store the association between program variables
and allocated signals. There are three separate
symbol tables to store associations resulted from
blocking procedural assignments + continuous as-
signments, non-blocking procedural assignments,

and quasi-continuous assignments, respectively.

4.2.2 Program Sequencing

Variable references (read references) always refer
to the symbol table for blocking assignments +
continuous assignments. The next state variable
associated with a register variable comes from the
last assignment to that variable. Refer to Figure
2 for an example.

However, in the presence of pauses, sequences of
statements inside the same block might not be ex-
ecuted in the same hardware time. Thus, another
level of logic (segment selector) is used for next
state variable selection. We refer to the segment
of code executed at a particular point of time as
active at that time. Next-state values of timing
machines are used to determine which segment of
code is active and should affect the next states of
reg variables. Due to the hierarchical structures

State of Timing Automata
/1 (i.e., the pause the machine is spending time on)

5 begin

#1

||

#1
#3
#7

. #7
of statements (a block of statements may consist :
. register variables

of sub-blocks), segment selectors also have similar i
hierarchical structures (Figure 3). The following
algorithm recursively builds segment selectors for
simple/composite statements. Figure 3: Example hierarchy of segment selector.
segment-selector (composite-statement) Modified
for each sub-statement s in composite-statement do _ . . Mux which

. . . Orlgmal interrogates

Let pns be next state of the timing machine. Conditional timing machines

if (s is simple!)
continue;
fi
if (s is delayed simple!)
let d be the pause controlling s
let p be the set of value signals available
for all reg variables immediately before d
add one branch in segment-selector which says
If there is an inter-pause transition
due to time-out

and if pps == d
then value of p 1s taken.
continue;

fi
if (s is composite!)
pi = segment-selector(s)
d; = set of pauses in s
add one branch in segment-selector which says
If there is an inter-pause transition
due to time-out
and if pns € d;
then value of p; is taken.
continue;

od

4.2.3 Variable Selection for Conditionals

For conditional statements (if/else, for,
while), logic which generates the same truth value
as that of conditional expressions is produced.

The outputs of this logic is used to control muxes

VA delayed simple statement is a simple statement con-
trolled by a pause. A composite statement is a begin/end,
for, while, if/else, or case statement.

Mux

.names p_ps cond sel
.def =cond

Tdp_ps — 1

TS p_ps - 0

cond

cond

Figure 4: p, is the present state of the timing ma-
chine. my(7s) denotes the set of pauses in the true
(false) branch of a conditional statement which
the mux stands for.

which select the appropriate definitions of vari-
ables. Statements following the conditional state-
ment look at outputs of these muxes for read ref-
erences. In the presence of pauses inside branches
of conditional statements, outputs of the condi-
tional logic are pre-empted by the present states
of timing machines (Figure 4). The reason for this
pre-emption is that the outputs of the conditional
logic might be different when execution enters and
when it leaves a conditional statement.

4.2.4 Tri-State Variable Resolution and
inout Ports

In the compilation process, binary functions are
used to model operators in Verilog programs (this
makes it easier to synthesize the generated FSMs).
In order to model tri-state buses and bidirectional
ports, extra logic is introduced.

A resolution function is allocated for each “tri-
state variable” (a variable whose value can be high

p_Ps

Parent Module

resolved value of 'bus’ suggested value of 'bus’

(c1)?a:1
e (c2)?b:1
a o

Figure 5: Translation of a tri-state/inout vari-

able.

inout bus;

assign bus=(c1)?a:1°bz;
assign bus=(c2)?b:1°bz;
assign o = a + bus;

2

impedance Z for some time) in each module. The
resolution function is basically an wired-and (refer
to Figure 5). It collects all definitions to the tri-
state variable, say x, replaces high impedance Z
with 1, and takes the logical conjunction of all the
It should be noted that this scheme
does not check if there is an assignment conflict

definitions.

(one statement tries to assign 1 to x while another
one tries to assign 0 to it). One should be sure
that there is no such conflict before applying the
compiler.

Fach bidirectional variable (which is declared
by an inout declaration), say x, is split into two
finite state machine variables. TLocal definitions
(write reference) of x are resolved, sent to its par-
ent so that its parent can use the submitted value
as one of the definitions to the variable. The de-
termined value of the variable is passed down from
a parent to children and all read references to the
variable are redirected to the value given by its
parent (Figure 5).

4.2.5 Intra-Process Arbitration

The next state of a variable, say x, comes from the
last procedural blocking assignment that touches
x. In the presence of non-blocking assignments,
the next state of x will be chosen nondeterminis-
tically from active non-blocking assignments, as
suggested by [BY93]. This is used to model
nondeterminism on state variables. If there is
an active quasi-continuous assignment (the quasi-
continuous assignment is executed some time in
the past and has not been disabled by deassign),
then the next state as well as any read references
to x are redirected to the quasi-continuous assign-
ment. The arbitration among blocking procedu-
ral assignments, non-blocking procedural assign-
ments, and quasi-continuous assignments (in in-
creasing priority order) is translated into a circuit
as shown in Figure 6.

is there a quasi—continuous
assignment executed?
is there a deassign
executed?

is there an non—blocking
assignment executed?

quasi—continuous
assignment to ’X’,

non-blocking
assignment to 'x’,

state
variable
for’x’

blocking
assignment to ’X’,

Figure 6: Arbitration among assignments.

4.2.6 Inter-Process Arbitration

When there is more than one process trying to
change the content of variable a and a conflict
exists between the values being assigned (e.g. 1
and 0), a Verilog simulator outputs a unknown
X. Since we only use binary functions, a nonde-
terministic 0 or 1 is used to model X. A resolution
function which collects all assignments from differ-
ent processes is used to arbitrate among different
processes contending to update the same variable.

4.3 Event Guards, Delays

Fach pause (event guard or delay) is basically a
place in a Verilog program where execution flow
must halt for a specified period or wait for the
occurrence of a designated event. We allocate a
unique state in the timing machine to indicate the
state of waiting. The enabling condition to make a
timing machine leave a waiting state is that either
a specified time has elapsed since the last time a
timer was reset or a specified event has occurred.
To detect the occurrence of an event, we use event
detectors, as shown in Figure 7.

4.4 Timing Machines

4.4.1 always Statements

Each always statement is executed repeatedly for-
ever. The CFG for it is a cycle indicating that the
statement is going to be executed again and again.
The timing machine for an always statement has
a similar structure to its CFG. The following al-
gorithm extracts timing machines from CFGs. It
enumerates all the pause-free paths (except the
source and destination) of a CFG and generates

)
@ Tp<Dmax @

Tp<D
Tp==D Dmin<=Tp<=Dmax
reset next timer reset next timer

(a) (b)

X X_prev

7

(c) rising—edge detector

.names x_prev x rise_edge
.def 0
011

X X_prev

H .names x_prev x fall edge

»| -def 0

101
(d) falling—edge detector

X X_prev

.names x_prev x edge
.def 0

101
011

(e) bidirectional-edge detector

Figure 7: (a), (b) Pauses for timing con-
straints. (c), (d) Rising/Falling edge detector for
@(posedge x), @(negedge x), respectively. (e)
Bidirectional edge detector for @(x).

inter-pause transitions for its corresponding tim-
ing machines.

for each p;,pg € V, do
for each simple path
p:ps ~pa, p O (Vp —{ps,pa}) = ¢ do
/* i.e. no pauses in between */
Let C={l|1l=L((c,v)),c € V.,c € p}
if p,’s corresponding delay is of the form #8,
then put a transition s; — s4 labelled with
C, Ty == 8(ps)t,and Ty = 0
and a self-loop s; — s4 labelled with
Ty < 8(ps)?
if p,’s corresponding delay
is of the form #(émin : dmax),
then put a transition s; — s4 labelled with
C, 6mzn(ps) S Ts S 6max(ps)1; and Td =0
and a self-loop s; — s4 labelled with
Ts < 6max(ps)2
if p,’s corresponds to an edge event control
(e(posedge x)/@(negedge x)/0(x)),
then put a transition s; — s4 activated
by the corresponding edge detector
and a self-loop ss — sg4
when the edge detector gives false

od
od

The preceding algorithm, which enumerates all
the pause-free paths, can spend time exponen-
tial in the number of non-overlapping insignificant
conditional blocks between the source and desti-
nation pause. This could be relieved by a prepro-
cess over the CFG to eliminate all insignificant
conditional blocks, which can be done in O(|V])
[CB94].

Consider the following always
always stmtl; #3 stmt2; A Verilog simulator
first executes stmtil, then waits for 3 time units
and executes stmt2 and stmti, and so on. In
the translated FSMs, for the first time the pro-
cess is executed, the logic that is involved (used
to evaluate stmt1;) is different from the logic used
afterward (to evaluate stmt2; stmti;). To emu-
late the first-time execution of a process, an extra
node is introduced in the CFG. Additional arcs
originating from the newly introduced node are
inserted whenever it is possible for a first time
execution to end in the destination node (pause)
without passing through the other pause. A set

statement.

of muxes is also introduced to select the appro-
priate definitions of variables. For example, in
the preceding example, for the first time execu-
tion, variable references from within stmt1 refer
to values given by the initial statement, if there
are any. For non-first time execution, stmt1 asks
stmt2 for variable definitions. The following al-
gorithm is used to extract initial transitions from
a CFG for initial execution of always statements.
po is the node allocated to denote the first-time
execution of a process.

for each pg € V, do
for each simple path
p:po~>pa,pN(Vy —{pa}) = ¢ do
Let C'={l]1=L((c,v)),c €V.,c€p}
put a transition so — s4 labelled with
C,T;=0.
od
od

4.4.2 initial Statements

If an initial statement can be executed instanta-
neously, it is translated into initialization of state

!This kind of timing constraint is called a Time-out-
constraints.

®This kind of timing constraint is called an Idling-
constraints.

initial
begin
stmt1;
#1 stmt2;
#1 stmt3;
end

su<—sd

Quryorw Surwmn jo

Source Program Timing Machine Untimed Machine
Figure 8: FExample initial-statement an its cor-

responding timed FSMs.

variables in the target FSMs. For an initial
statement that can not be executed within zero
hardware time, its CFG is built and an addi-
tional sink state is introduced to denote that the
initial statement has been executed completely
and will stay inactive afterward. As an example,
refer to Figure 8.

4.4.3 for/while/repeat Loops

Given that the iteration count argument of
repeat is compile-time evaluable, a repeat loop
body is simply unrolled. So far our compiler can
not handle a repeat loop with a variable iteration
count.

Each for/while loop statement is basically
a conditional statement except that execution
flow, on finishing executing the loop body, always
jumps back to the beginning of the loop state-
ment. For for and while loops, outputs from
conditional logic (which is translated from condi-
tional expressions in the loop statements) are used
by timing machines to determine appropriate next
states. There are two possible ways to deal with
for and while loops, namely loop unrolling and
legal loops.

e loop unrolling - A loop can be unrolled
if the arguments of the loop statement are
compile-time evaluable so that the number of
copies of the loop body can be determined at
compile-time.

e legal loops - In case a loop is legal, i.e.,
there is no pause-free cycle in its correspond-
ing CFG, a loop can be compiled into a set of
muxes, which are used to select appropriate
definitions of variables, as well as conditional
logic, which is used to control the program

a always
a f\o‘r (init; cond; incr)
loop-body

Untimed Machine

D

Circuit for
loop-body

Main-Loop For-Loop

(always/initial)

(a) A For-loop

~_ _/ N__/

(b) Finite State Machine for a for-loop

Figure 9: Circuit for for-loop. p,, is the present
state of the process’ timing machine.

flow. Figure 9 shows an example for-loop
and its FSMs.

5 Limitations

The limitations of our compilation scheme result
mainly from three factors.

First, FSMs are used as the target language.
Since resources (intermediate variable, transition
function/relation, state variable, timers, etc.) of a
FSM are statically allocated and alphabets of gen-
erated FSMs are always finite, infinite data struc-
tures such as stacks, queues cannot be handled
(and it is called non-“synthesizable”). !

The following are known cases where FSM re-
sources need to be allocated dynamically.

e Statements like o <= #5 a + b; need to al-
locate timer variables dynamically when the
relationship between the frequency that the
statement is executed and the delay inside the
assignment is unknown. It is an open ques-
tion as to how to handle this kind of state-
ment.

e fork/join - The most general way to handle
this kind of construct in programming lan-
guages is to use heap. FSM resources like
intermediate variables, transition relations,

YA possible extension to this is that if the maximum
amount of resources can be statically determined, then it
is still synthesizable.

state variables need to be allocated dynami-
cally if the maximum amount of heap space
needed to handle fork/ join cannot be de-
termined at compile-time.

Second, binary functions are used to model op-
erators instead of three or more valued functions.
Thus tri-state variables can only be modeled in
a very restricted way, as explained in Section 4.
In addition, strength reduction (if supply-1 en-
counters charged-0 on a wire, then the result is a
strong-1) is not implemented.

Third, there are a few extreme cases for which
the compiled FSMs can not model behavior given
by a simulator.

e In Verilog, a task is implemented by spawn-
ing a new process and control is transferred
from the calling process. Control is returned
when the created process is finished and exe-
cution continues from the statement immedi-
ate after the task statement. If there exists a
pending update due to a non-blocking assign-
ment inside a task statement when the con-
trol is given back to its parent, the pending
update is “forgotten” when the task gets ter-
minated. Since task is modeled by a parame-
terized macro expansion, this kind of “amne-
sia” of non-blocking assignments can not be
reproduced by the compiled FSMs.

Some versions of a Verilog simulator use a
non-stack mechanism to evaluate functions.
This can lead to different results for nested
functions. For example, suppose the defini-
tion of function add is:

function [3:0] add;
input [3:0] a, b;
add = a + b;

endfunction

For a statement like add(3, add(2, 1)),
compiled FSMs returns 6 but some simulators
can give 5. The reason is that, due to the lack
of a stack, on calling the outer add, 3 is copied
into a. It is then found there is an unresolved
function evaluation. Therefore, inner add is
called and 2 and 1 are copied into a and b,
respectively. When the inner add returns 3 to
the argument b of the outer add, a has been

10

changed to 2. Thus 5 is the final result given
by such stack-less simulators. However, we
will not worry about these incorrect versions

of Verilog.

If the behavior of a design depends on the
order various processes are scheduled, then
the behavior might not be reproducible by
the compiled FSMs. For example, consider
the following two “equivalent” program seg-
ments.

assign al = a-1;
always @(posedge clk) a=b;
always @(posedge clk) b=al+2;

assign al = a-1;
always @(posedge clk) b=al+2;
always @(posedge clk) a=b;

Both segments are the same except for the or-
der of the second and third statements. How-
ever, simulation results of the two programs
are different. Assume that a and b are ini-
tially 0 (and alis -1). When the rising edge
of clk occurs in the left program, a and b
are updated to 0 and 1, respectively. On the
other hand, when the positive edge of clk
occurs in the right program, both a and b
change to 1. This is due to the different order
the two procedural statements are executed.
Similarly, racing can be observed in several
examples. For the preceding two programs,
the generated FSMs give the same trace. The
reason is that all variable references (“read”
references) are made to the current states of
registers and all assignments (“write” refer-
ences) are made to the next states. In this
way, race conditions as in the previous exam-
ple are avoided.

So far, disable, which disable the execu-
tion of a named block, is not implemented in
vI2mv. It can be done by making the untimed
machine of the controlled process (the process
which is to be disabled) consult the transition
of the timing machine of the controlling pro-
cess(es) (the process which has disalbe in-
struction to control the execution of the con-
trolled process).

6 Conclusions

Algorithms presented in this paper have been in-
corporated into a compiler called vI2mv. It has
been tested on over 90 benchmarks (80 are be-
havioral, 10 are structural) by comparing the sim-
ulation results for Verilog simulators with simula-

tion results fom the extracted FSMs. vI2mv ad-
dresses the problem of compiling a large subset of
Verilog HDL into FSMs. With it, engineers can
design in HDL and still have state-of-the-art ver-
ification /synthesis/simulation algorithms to help

verify and optimize their designs.

Acknowledgements

We would like to thank Cadence, Siemens, CA Mi-
cro, and Fujitsu for support during the research. We
want to acknowledge Felice Baralin for helpful advice
and inspiring discussions. We also want to thank the
many users who provided precious opinions, feedback
and field tested vI2mv for the development of the com-
piler.

Appendix

A Miscellansous Verilog Con-
structs

A.1 Primitives

A Verilog primitive basically lists the relation-
ship between input and output values. To trans-
late a combinational primitive, one just tran-
scribes the relation listed in the primitive. For a
sequential primitive, edge detectors are used to
detect specific transitions on a signal. OQutputs of
edge detectors are used to control the update of
state variables in the primitive.

A.2 Tasks, Functions

A function, which is essentially a combinational
block, is compiled into a separate module. FEach
function call is translated into a module instan-
tiation. A task is compiled as a parameterized
macro and expanded in-line wherever it is invoked.
The arguments and parameters are substituted ac-
cordingly.

A.3 Parameters

FSM s
module/function that is invoked with parameter
values different than the default values. The call
to the module/function is then translated into a
module instantiation of the newly created master.

A new master allocated for each

s bidirectional

— edge detector

hidden latch for s —]

Figure 10: Circuit for always @(s or a or b) o
= (8)7a:b;

A.4 Nondeterminism

Nondeterminism plays an important role in ab-
Verilog HDI. does not have a well-
defined way of describing nondeterminism. We
use non-blocking assignments to model next state
nondeterminism [BY93]and NDset to model com-
binational nondeterminism.

straction.

B Optimization for Special

Cases

B.1 Combinational Reduction

assign o = (s)7a:b; and always @(s or a or
b) o = (s)7a:b; are effectively the same (given
the same scheduling). However, from the schemes
given in previous sections, a circuit shown in Fig-
ure 10 is generated for the second statement. A lot
of redundant latches and logic are generated. This
redundant logic and state variables can introduce
an unnecessary burden on synthesizers/verifiers
which use the generated FSMs as input. We
use the following sufficient conditions to optimize
FSM generation.

1. A variable is used only in one procedural
statement where the procedural statement
has only one event guard.

2. An event guard is only sensitive to bidirec-
tional change of the variables listed in the
event guard.

3. All variables used as operands are listed in
the sensitivity list.

4. The control flow graph for the process is legal.

5. All conditional statements are complete. i.e.,
all if statements are accompanied by an else

11

branch. Branches in a case statement cover
all possible values of the switching variable.

Note that the last condition is quite restrictive.
A possible relief for this is to use a data-flow anal-
ysis and make sure that each variable used on the
left-hand-side is assigned for each possible pause-
to-pause execution over the process.

Once the above sufficient conditions are met,
behavior of assigned variables, say x, is “combi-
national”. i.e., whenever an operand that can po-
tentially affect x changes, x is re-evaluated. No
latch is allocated for x and no edge detectors are
allocated for the variables that x is sensitive to.

B.2 Explicit Clocking v.s.
Clocking

Implicit

Given that a system is synchronous, can be judged
to have only one global clock, and every process
updates its local variable at the same phase of the
clock, it is sufficient to allocate one state variable
in the generated FSM for each register variable
in the Verilog program. We call this kind of de-
sign implicitly clocked % since the main purpose
of the global clock is to make sure every process
has a consistent idea about how time progresses.
The global clock may or may not have a corre-
sponding hardware wire. In translating an im-
plicitly clocked design, no edge detectors are nec-
essary; thus a lot of logic can be saved in the target
FSM to model the source program. On the other
hand, if a design is not implicitly clocked (it is
called explicitly clocked), edge detectors and aux-
iliary logic are allocated in order to model clocking
mechanism on different phases (rising, falling, or
bi-directional) of various signals.

References

[ABB*94] Adnan Aziz, Felice Balarin, Robert K.
Brayton, Szu-Tsung Cheng, Ramin Ho-
jati, Sriram C. Krishnan, Rajeev K. Ran-
jan, Alberto L. Sangiovanni-Vincentelli,
Thomas R. Shiple, Timothy Kam Vigyan
Singhal, Serdar Tasiran, and Huey-Yih
Wang. HSIS: A BDD-based environment
for formal verification. In DACY4, San
Diego, CA, June 1994.

2Tmplicit /explicit clocking should be distinguished im-
plicit/explicit FSMs used by Cadence for their hardware
compiler for Verilog.

12

[BBCH]

[BCH*91]

[BY93]

[CBY4]

[McM94]

[TMY1]

[vhd8s]

Felice Balarin, Robert K. Brayton, Szu-
Tsung Cheng, Desmond A. Kirkpatrick,
Alberto L. Sangiovanni-Vincentelli, and
Ephrem Wu. A methodology for formal
verification of real-time systems. To be sub-

mitted to DAC’96.

R. K. Brayton, M. Chiodo, R. Hojati,
T. Kam, K. Kodandapani, R. P. Kurshan,
S. Malik, A. Sangiovanni-Vincentelli, E. M.
Sentovich, T. Shiple, K. J. Singh, and H.-Y.
Wang. BLIF-MV: An interchange format
for design verification and synthesis. Mem-
orandum UCB/ERL M91/97, University of
California at Berkeley, 1991.

Felice Balarin and Gary York. Verilog HDL
modeling styles for formal verification. In

CHDL. North-Holland, 1993.

Szu-Tsung Cheng and Robert K. Brayton.
Compiling verilog into automata. Memo-
randum UCB/ERL M94/37, University of
California at Berkeley, 1994.

Kenneth L. McMillan. Symbolic Model
Checking. Kluwer Academic Publishers,
1994.

Donald E. Thomas and Philip R. Moorby.
The Verilog Hardware Description Lan-
guage. Kluwer Academic Publishers, Now-
ell, Massachusetts, 1991.

IFFE Standard VHDL Language Reference
Manual. Institute of Electrical and Elec-
tronics Engineers, 1988.

