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Abstract

We consider performance tuning, by code and data structure reorganiza-
tion, of sparse matrix-vector multiply (SpM×V), one of the most impor-
tant computational kernels in scientific applications. This paper addresses
the fundamental questions of what limits exist on such performance tun-
ing, and how closely tuned code approaches these limits.

Specifically, we develop upper and lower bounds on the performance
(Mflop/s) of SpM×V when tuned using our previously proposed register
blocking optimization. These bounds are based on the non-zero pattern
in the matrix and the cost of basic memory operations, such as cache
hits and misses. We evaluate our tuned implementations with respect to
these bounds using hardware counter data on 4 different platforms and
on a test set of 44 sparse matrices. We find that we can often get within
20% of the upper bound, particularly on a class of matrices from finite
element modeling (FEM) problems; on non-FEM matrices, performance
improvements of 2× are still possible. Lastly, we present a new heuristic
that selects optimal or near-optimal register block sizes (the key tuning
parameters) more accurately than our previous heuristic. Using the new
heuristic, we show improvements in SpM×V performance (Mflop/s) by as
much as 2.5× over an untuned implementation.

Collectively, our results suggest that future performance improvements,
beyond those that we have already demonstrated for SpM×V, will come
from two sources: (1) consideration of higher-level matrix structures (e.g.,
exploiting symmetry, matrix reordering, multiple register block sizes), and
(2) optimizing kernels with more opportunity for data reuse (e.g., sparse
matrix-multiple vector multiply, multiplication of ATA by a vector).
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1 Introduction

We consider the problem of building high-performance implementations of sparse
matrix-vector multiply (SpM×V), or y = y + A · x, which is an important and
ubiquitous computational kernel. We call x the source vector and y the desti-
nation vector. Making SpM×V fast is complicated both by modern hardware
architectures and by the overhead of manipulating sparse data structures. It
is not unusual to see SpM×V run at under 10% of the peak floating point
performance of a single processor.

In hardware, the oft-cited performance gap between processor and memory
drives the need to exploit locality and the memory hierarchy. Designing locality-
aware data structures and algorithms can be a daunting and time-consuming
task, because the best implementation will vary from processor to processor,
from compiler to compiler, and from matrix to matrix. This need to have a
different data structure for each sparse matrix is a major distinction from the
problem of tuning dense matrix kernels (dense BLAS), since the information
about matrix structure is not available until run-time. Our approach here, as
with prior work in tuning the dense BLAS [3, 31], is to (1) generate a set of
candidate algorithms, any one of which might well be the best, and (2) search
that set by a combination of running the algorithms and performance modeling.
Since the set of candidate algorithms is not known until the matrix structure
is given at run-time, we must be careful not to spend too much time either
generating the set of candidate algorithms or searching. By contrast, all the
algorithm generation and search can be done off-line for the dense BLAS.

In prior work on the Sparsity system (Version 1.0), [17, 16], Im devel-
oped an algorithm generator and search strategy for SpM×V that was quite
effective in practice. The Sparsity generators employed a variety of perfor-
mance optimization techniques, including register blocking, cache blocking, and
multiplication by multiple vectors. In this paper, we focus on register block-
ing (Section 3) and ask the fundamental questions of what limits exist on such
performance tuning, and how close tuned code gets to these limits (Section 4).

First, we develop upper and lower bounds on the execution rate (in Mflop/s)
of SpM×V, based on the nonzero pattern in the matrix and the cost of basic
memory operations, such as cache hits and misses. The two bounds differ only in
their assumption about whether conflict misses occur: in the upper bound any
value that has been used before is modeled as a cache hit (no conflict misses),
whereas the lower bound assumes that all data must be reloaded. We then use
detailed hardware counter data collected on 4 different computing platforms
(Table 1) over a test set of 44 sparse matrices (Table 2) to show that our upper
bound is in fact a quite accurate approximation of reality, i.e., that conflict
misses are rare. We then show the following further results:

• We present a new register block selection heuristic, which significantly
outperforms our previous heuristics on machines that favor non-square
block sizes. Our new heuristic is part of Sparsity Version 2. The new
heuristic can improve SpM×V by as much as 2.5× over an unblocked
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implementation, and takes a modest amount of time to execute. Tuning
works best on matrices with a natural block structure, such as matrices
from finite element modeling (FEM).
• For FEM matrices on Itanium, Pentium III, and Ultra 2i platforms, our

performance tuning heuristic is usually within 20% of the performance
upper bound, indicating that further compiler-level tuning effort is not
warranted for this class of matrices. This is especially surprising on the
Itanium, which has the worst performance of the four machines relative
to hardware peak. For non-FEM matrices performance improvements of
2× or more are still possible.
• For the Power3 architecture, tuning does not significantly improve per-

formance, which is farther below the upper bound than on the other 3
platforms. Our analyses suggest that additional effort toward low-level
tuning (e.g., instruction scheduling) could be beneficial.

Taken together, these results show that while performance tuning of SpM×V is
beneficial, any additional improvements will likely come from considering higher
level matrix structures (e.g., exploiting symmetry, reordering the matrix, or
cache blocking) and from optimizing kernels with more opportunity for data
reuse (e.g., multiplying A by multiple vectors, multiplying a vector by ATA).

In related work on dense matrices, cache and memory behavior have been
well-studied. A variety of sophisticated static models have been developed,
each with the goal of providing a compiler with sufficiently precise models for
selecting memory hierarchy transformations and parameters such as tile sizes
[8, 11, 22, 7, 32]. However, it is difficult to apply these analyses directly to
sparse matrix kernels due to the presence of indirect and irregular memory
access patterns.

Despite the difficulty of analysis in the sparse case, there have been a number
of notable attempts. Temam and Jalby [29], Heras, et al. [15], and Fraguela,
et al. [10] have developed sophisticated probabilistic cache miss models, but
assume uniform distribution of non-zero entries. These models are primarily
distinguished from one another by their ability to account for self- and cross-
interference misses. In this study, we will see that on current and future ma-
chines, whose cache sizes continue to grow, conflict misses are less important to
accurate miss modeling (Section 4).

Gropp, et al., use bounds similar to the ones we develop to analyze and
tune a computational fluid dynamics code [12]; Heber, et al., present a detailed
performance study of a fracture mechanics code on Itanium [13]. However, we
are interested in tuning for matrices that come from a variety of domains. Fur-
thermore, we explicitly model execution time (instead of just modeling misses)
in order to evaluate the extent to which our tuned implementations achieve
optimal performance.

Finally, we mention examples of work in the sparse compiler literature by
Bik [2], Pugh and Shpeisman [25], and the Bernoulli compiler [28]. The first
analyzes matrices for high-level structure using techniques complementary those
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that we consider; the latter two consider sparse code specification and genera-
tion issues, but do not specialize for specific matrix structures. The tools and
technology developed in these research projects could serve as the code gen-
eration infrastructure of an automatic tuning system such as Sparsity. We
distinguish our work by the use of a hybrid off-line, on-line model for selecting
transformations (register blocking sizes, as described in Section 3).

2 Experimental Setup

Platforms

We conducted our experimental evaluations on machines based on the micropro-
cessors shown in Table 1. This table summarizes each platform’s hardware and
compiler configurations, and performance results on key dense kernels. Latency
estimates were obtained from published sources and confirmed experimentally
using the memory system microbenchmark due to Saavedra-Barrera [27].

Matrices

We evaluate the SpM×V implementations on the matrix benchmark suite used
by Im [16]. Table 2 summarizes the size and source of each matrix. Most of the
matrices are available from either of the collections at NIST (MatrixMarket [5])
and the University of Florida [9].

The matrices in Table 2 are arranged in roughly four groups. Matrix 1 is
a dense matrix stored in sparse format; matrices 2–17 arise in finite element
method (FEM) applications; 18–39 come from assorted applications (including
chemical process engineering, oil reservoir modeling, circuits, and finance); 40–
44 are linear programming examples.

Timing

We use the PAPI v2.1 library for access to hardware counters on all platforms
[6]; we use the cycle counters as timers. Counter values reported are the median
of 25 consecutive trials.1

The largest cache on some machines (notably, the L2 cache on the Power3)
is large enough to contain some of the matrices. To avoid inflated findings, for
each platform we report performance results only on the subset of out-of-cache
matrices. Figures will still always use the numbering scheme shown in Table 2.

For SpM×V, reported performance in Mflop/s always uses “ideal” flops.
That is, if a transformation of the matrix requires filling in explicit zeros (as
with register blocking, described in Section 3), arithmetic with these extra zeros
are not counted as flops when determining performance.

1The standard deviation of these trials is typically less than 1% of the median.
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Sun Intel IBM Intel
Property Ultra 2i Pentium III Power3 Itanium

Clock rate 333 MHz 500 MHz 375 MHz 800 MHz
Peak Main 664 MB/s 680 MB/s 1.6 GB/s 2.1 GB/s
Memory
Bandwidth
Peak Flop 667 Mflop/s 500 Mflop/s 1.5 Gflop/s 3.2 Gflop/s
Rate

DGEMM 425 Mflop/s 331 Mflop/s 1.3 Gflop/s 2.2 Gflop/s
(n = 1000)
DGEMV 58 Mflop/s 96 Mflop/s 260 Mflop/s 345 Mflop/s
(n = 1000) (n = 2000)
STREAM Triad 250 MB/s 350 MB/s 715 MB/s 1.1 GB/s
Bandwidth [21]

L1 data 16 KB 16 KB 64 KB 16 KB
cache size
L1 line size 16 B 32 B 128 B 32 B
L1 latency 2 cy 1 cy 1 cy 2 cy (int)

L2 cache size 2 MB 512 KB 8 MB 96 KB
L2 line size 64 B 32 B 128 B 64 B
L2 latency 7 cy 18 cy 9 cy 6 cy (int)

9 cy (double)

L3 cache size N/A N/A N/A 2 MB
L3 line size 64 B
L3 latency 21 cy (int)

24 cy (double)

TLB entries 64 64 256 32 (L1 TLB)
96 (L2 TLB)

Page size 8 KB 4 KB 4 KB 16 KB
Minimum 36 cy 26 cy 35 cy 36 cy
memory
latency (≈)

Maximum 66 cy 60 cy 139 cy 85 cy
memory
latency (≈)

sizeof(double) 8 B 8 B 8 B 8 B
sizeof(int) 4 B 4 B 4 B 4 B

Compiler Sun C Intel C IBM C Intel C
v6.1 v5.0.1 v5.0 v5.0.1

Flags -dalign -O3 -tpp6 -O3 -O3

-xtarget=native -xK -unroll -qalias=allp

-xO5 -qarch=pwr3

-xarch=v8plusa -qtune=pwr3

-xrestrict=all

Table 1: Evaluation platforms. We list the basic configuration data for the
machines and compilers used in our experiments. Performance figures for the
BLAS on the Sun Ultra 2i platform are the best of Sun’s performance library
v6.0 and ATLAS 3.2.0 [31]; on the Pentium III (Katmai) platform: figures
reported are the best of Intel’s MKL v5.2, ATLAS 3.3.5 [31], and ITXGEMM
1.1 [14]; on the Power3 platform: IBM ESSL 3.1.2; on the Itanium platform:
Intel MKL v5.2.
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Name Application Area Dimension Nonzeros

1 dense1000 Dense Matrix 1000 1000000

2 raefsky3 Fluid structure interaction 21200 1488768

3 olafu Accuracy problem 16146 1015156

4 bcsstk35 Stiff matrix automobile frame 30237 1450163

5 venkat01 Flow simulation 62424 1717792

6 crystk02 FEM Crystal free vibration 13965 968583

7 crystk03 FEM Crystal free vibration 24696 1751178

8 nasasrb Shuttle rocket booster 54870 2677324

9 3dtube 3-D pressure tube 45330 3213332

10 ct20stif CT20 Engine block 52329 2698463

11 bai Airfoil eigenvalue calculation 23560 484256

12 raefsky4 buckling problem 19779 1328611

13 ex11 3D steady flow caculation 16614 1096948

14 rdist1 Chemical process separation 4134 94408

15 vavasis3 2D PDE problem 41092 1683902

16 orani678 Economic modeling 2529 90185

17 rim FEM fluid mechanics problem 22560 1014951

18 memplus Circuit Simulation 17758 126150

19 gemat11 Power flow 4929 33185

20 lhr10 Light hydrocarbon recovery 10672 232633

21 goodwin Fluid mechanics problem 7320 324784

22 bayer02 Chemical process simulation 13935 63679

23 bayer10 Chemical process simulation 13436 94926

24 coater2 Simulation of coating flows 9540 207308

25 finan512 Financial portfolio optimization 74752 596992

26 onetone2 Harmonic balance method 36057 227628

27 pwt Structural engineering problem 36519 326107

28 vibrobox Structure of vibroacoustic problem 12328 342828

29 wang4 Semiconductor device simulation 26068 177196

30 lnsp3937 Fluid flow modeling 3937 25407

31 lns3937 Fluid flow modeling 3937 25407

32 sherman5 Oil reservoir modeling 3312 20793

33 sherman3 Oil reservoir modeling 5005 20033

34 orsreg1 Oil reservoir simulation 2205 14133

35 saylr4 Oil reservoir modeling 3564 22316

36 shyy161 Viscous flow calculation 76480 329762

37 wang3 Semiconductor device simulation 26064 177168

38 mcfe astrophysics 765 24382

39 jpwh991 Circuit physics modeling 991 6027

40 gupta1 Linear programming matrix 31802 2164210

41 lpcreb Linear Programming problem 9648×77137 260785

42 lpcred Linear Programming problem 8926×73948 246614

43 lpfit2p Linear Programming problem 3000×13525 50284

44 lpnug20 Linear Programming problem 15240×72600 304800

Table 2: Matrix benchmark suite. Matrices are categorized roughly as fol-
lows: 1 is a dense matrix stored in sparse format; 2–17 arise in finite element
applications; 18–39 come from assorted applications; 40–44 are linear program-
ming examples.
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3 Improving Register Reuse

This section provides a brief overview of Sparsity’s register blocking optimiza-
tion, a technique for improving register reuse over that of a conventional imple-
mentation [17]. Register blocking, as we describe below, is designed to exploit
naturally occuring dense blocks by reorganizing the matrix data structure into a
sequence of small (enough to fit in register) dense blocks. We close this section
with a description of our new heuristic for selecting the register block size, which
overcomes a short-coming of the previously published Sparsity heuristic [17].
As presented in this section, the Sparsity system including the new heuristic
is Sparsity version 2.0.

For concreteness, we assume a baseline that stores the matrix in compressed
sparse row (CSR) format.2

3.1 The register blocking optimization

In the register blocked implementation, consider an m×n matrix, divided log-
ically into m

r ×
n
c submatrices, where each submatrix is of size r×c. Assume

for simplicity that r divides m and that c divides n. For sparse matrices, only
those blocks which contain at least one non-zero are stored. The computation of
SpM×V proceeds block-by-block. For each block, we can reuse the correspond-
ing c elements of the source vector and r elements of the destination vector by
keeping them in registers, assuming a sufficient number is available.

In Sparsity, the implementation of register blocking uses the blocked vari-
ant of compressed sparse row (BCSR) storage format. Blocks within the same
block row are stored consecutively, and the elements of each block are stored
consecutively in row-major order.3 A 2×2 example of BCSR is shown in Figure
1. When r = c = 1, BCSR reduces to CSR.4

Note that BCSR potentially stores fewer column indices than CSR imple-
mentation (one per block instead of one per non-zero). The effect is to reduce
memory traffic by reducing storage overhead. Furthermore, Sparsity imple-
mentations fully unroll the r×c submatrix computation, reducing loop overheads
and exposing scheduling opportunities to the compiler. An example of a 2×2
implementation appears in Appendix A.

However, Figure 1 also shows that the imposition of a uniform block size may
require filling in explicit zero values, resulting in extra computation. We define
the fill ratio to be the number of stored values (original non-zeros plus explicit
zeros) divided by the number of non-zeros in the original matrix. Whether
conversion to a register blocked format is profitable depends highly on the fill
and, in turn, the non-zero pattern of the matrix. By analogy to tiling in the
dense case, the most difficult aspect of applying register blocking is knowing on

2See Barrett, et al., [1] for a list of common formats.
3Row-major is Sparsity’s convention; column-major or other layouts are possible.
4The performance of this code is comparable to that of the CSR implementation from the

NIST Sparse BLAS [26].
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A =


a00 a01 0 0 a04 a05

a10 a11 0 0 a14 a15

0 0 a22 0 a24 a25

0 0 a32 a33 a34 a35


b row start =

(
0 2 4

)
b col idx =

(
0 4 2 4

)
b value =(
a00 a01 a10 a11 a04 a05 a14 a15 a22 0 a32 a33 a24 a25 a34 a35

)

Figure 1: Block compressed sparse row (BCSR) storage format. BCSR
format uses three arrays. The elements of each dense 2 × 2 block are stored
contiguously in the b value array. Only the first column index of the (1,1)
entry of each block is stored in b col idx array; the b row start array points
to block row starting positions in the b col idx array. In Sparsity, blocks are
stored in row-major order. (Figure taken from Im [16].)

which matrices to apply it and how to select the block size. (We assume a single
block size of r×c is suitable for the whole matrix.)

This difficulty is striking when we examine register blocking performance for
various values of r and c. In Figure 2, we show, for our four hardware platforms,
the performance (Mflop/s) of block sizes up to 12×12 on a very regular “sparse”
problem: a dense n×n matrix stored in sparse (BCSR) format.5 Performance
is a strong function of the architecture, compiler, and block size. Figure 2 is
also an estimate of the potential performance gains from performance tuning:
maximum speedups range from 1.5x on the Itanium and the Power3 to 2.5x on
the Pentium III.

Furthermore, the irregularity of the spaces in Figure 2 suggests that per-
formance will in general be difficult to model. Nevertheless, the profiles shown
clearly contain a lot of information, which we exploit in our heuristic for selecting
a block size (below).

3.2 Selecting the r×c register block size

The best block size r×c depends both on the machine and the matrix. In
general, the best block size may not be square. For instance, even if the matrix
is naturally expressed in 6×6 blocks, 3×1 blocks may be considerably faster, as
suggested by the Itanium register profile shown in Figure 2.

We assume that in the general case, we do not know the matrix until run-
time.6 Depending on the application, the cost of exhaustively searching for the

5Note that for the performance profiles shown, the matrix size is actually
⌈
n
r

⌉
r×
⌈
n
c

⌉
c.

On the Power3, which has a very large 8 MB L2 cache, n = 2000; on the other platforms,
n = 1000. For the block sizes considered, the true matrix size differs from the n×n case by
no more than 2%.

6This mode of usage is not unreasonable; in fact, it is the implied mode of operation in the
new Sparse BLAS standard [4].
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Figure 2: Register profiles. The performance (Mflop/s) of r×c register
blocked implementations on a dense n×n matrix stored in BCSR format, on
block sizes up to 12×12. Results on four platforms are shown, clockwise from
the upper-left: Sun Ultra 2i, Intel Pentium III, Intel Itanium, and IBM Power3.
On the Power3, n = 2000; otherwise, n = 1000. On each platform, each square
is an r×c implementation shaded by its performance, in Mflop/s. The top 10
implementations are labeled by their speedup relative to the 1×1 implementa-
tion; they range from a 1.2x speedup (Power 3) to 2.5x (Pentium III). Though
the performance has irregular structure and therefore appears difficult to model,
the best implementations differ in performance by little more than 10%; further-
more, they appear “semi-clustered.”
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optimal block size could be prohibitive: on Itanium, we have observed that the
cost of reorganizing the matrix once (i.e., for one value of r×c) is 10–30 times
the cost of running the reference SpM×V once.

Sparsity uses the register profiles shown in Figure 2 as an estimate of the
performance of the r×c implementations assuming no fill. When the matrix is
known, Sparsity randomly samples a fraction of the matrix rows to compute
an estimate of the fill for all r×c (see below). Then, Sparsity chooses the block
size by maximizing the following ratio over all r, c:

Dense performance at r×c
Fill ratio estimate at r×c

. (1)

Since the register profile does not depend on any particular sparse matrix, it is
collected off-line only once per machine.

We now describe the new Sparsity version 2.0 heuristic for selecting r and
c, and contrast it briefly with the previous heuristic. To estimate the fill, for
each r we select 1% of the block rows uniformly at random and count the num-
ber of zeros which would be filled in for all c simultaneously. Currently, we
limit our estimate to sizes up to 12×12, though on the matrix benchmark suite
we have not observed optimal sizes greater than 8×8. Also, we perform the
1% scan independently for each r, though this could obviously be improved by
simultaneously scanning r and its factors (e.g., while scanning r = 12, simulta-
neously search r = 1, 2, 3, 6, and 12). As implemented, we scan up to 12% of
the matrix. The cost of this procedure for all r, c is usually less than the cost of
one reorganization; even so, we are able to estimate the fill ratio to within 1%
on FEM matrices, and to within 5–10% on average on the other matrices in our
benchmark suite.7

The previously published Sparsity heuristic [17] estimated the fill ratio not
for all r×c sizes, but only for r×1 and 1×c block sizes. Then, r and c were
selected independently by maximizing separately the following two ratios:

Dense performance at r×r
Fill ratio estimate at r×1

Dense performance at c×c
Fill ratio estimate at 1×c

(2)

For most matrices, the previous heuristic tended to selected square block sizes,
which led to performance that was as much as 30–40% below that of the best
block sizes on the Itanium platform.

4 Bounds on Register Blocking Performance

Below, we develop upper and lower bounds on performance to understand and
evaluate Sparsity’s register blocking optimization with the new heuristic.

7This level of accuracy is probably more than adequate, though a detailed study is currently
the subject of investigation.
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4.1 Preliminaries

We use the BCSR format outlined in Section 3. We can count the number of
loads and stores required for SpM×V using this format as follows. Let A be an
m×n matrix with k non-zeros. Let Krc be the number of r×c non-zero blocks
required to store the matrix in r×c BCSR format; for 1×1 blocks, K1,1 = k.
The matrix requires storage of Krcrc double precision values, Krc integers for
the column indices, and

⌈
m
r

⌉
+ 1 integers for the row pointers. The fill ratio is

frc = Krcrc
k , and is always at least 1.

Every matrix entry must be loaded once. We assume that SpM×V iterates
over block rows, and that all r entries of the destination vector can be kept
in registers for the duration of a block row multiply. Thus, we only need to
load each element of the destination vector once, and store each element once.
Finally, we assume that all c source vector elements can be kept in registers
during the multiplication of each block, thus requiring a total of Krcc = kfrc

r
loads of the source vector. In terms of the number of non-zeros and the fill ratio,
the total number of loads of floating point and integer data is

Loads(r, c) = kfrc +
kfrc
rc

+
⌈m
r

⌉
+ 1︸ ︷︷ ︸

matrix

+
kfrc
r︸ ︷︷ ︸

source vec

+ m︸︷︷︸
dest vec

= kfrc

(
1 +

1
rc

+
1
r

)
+m+

⌈m
r

⌉
+ 1 (3)

and the total number of stores is m.
Observe that if there were little or no fill (e.g., for a dense matrix stored

in sparse format), then increasing the block size would reduce the overhead for
storing the column indices by 1

rc . Also note that the source vector load term
depends only on r, introducing a slight asymmetry in the number of loads as a
function of block size.

4.2 Bounds based on modeling cache misses

We can estimate an analytic upper-bound on performance by specifying a lower
bound on cache misses.

We start with the L1 cache. Let l1 be the L1-cache line size, in double-
precision words. One compulsory L1 read miss per cache line is incurred for
every matrix element (value and index) and destination vector element. The
source vector miss count is more complicated to predict. If the source vector size
is less than the L1 cache size, in the best case we would incur only 1 compulsory
miss per cache line for each of the n source vector elements. Thus, a lower
bound M

(1)
lower on L1 misses is

M
(1)
lower(r, c) =

1
l1

[
kfrc

(
1 +

1
γrc

)
+

1
γ

(⌈m
r

⌉
+ 1
)

+m

]
+
n

l1
. (4)

where the size of one floating point value equals γ integers. In this paper, we use
double-precision (64-bit) floating point data and 32-bit integers, so that γ = 2.
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The factor of 1
l1

accounts for the L1 line size. An analogous expression applies
at the other cache levels by simply substituting the right line size.

In the worst case, we will miss on every access to a source vector element
due to capacity and conflict (both self- and cross-interference) misses; thus, an
upper bound on misses is8

M (1)
upper(r, c) =

1
l1

[
kfrc

(
1 +

1
γrc

)
+

1
γ

(⌈m
r

⌉
+ 1
)

+m

]
+
kfrc
r
. (5)

We model execution time as follows. First, since we want an upper bound
on performance (lower bound on time), we assume we can overlap the latencies
due to computation with memory access. Let hi be the number of hits at cache
level i, mi be the number of misses. Then the execution time T is

T =
κ−1∑
i=1

hiαi +mκαmem, (6)

where αi is the access time (in cycles or seconds) at cache level i, κ is the lowest
level of cache, and αmem is the memory access time. The L1 hits h1 are given
by h1 = Loads(r, c) −m1. Assuming a perfect nesting of the caches, so that a
miss at level i is an access at level i+ 1, then hi+1 = mi −mi+1 for i ≥ 1. The
performance in Mflop/s is 2k

T · 10−6.
To get an estimate of the upper bound on performance, let mi = M

(i)
lower in

Equation (6), and convert to Mflop/s. Similarly, we can get a lower bound on
performance by letting mi = M

(i)
upper.

Interaction with the TLB complicates our estimate of αmem. We incorporate
the TLB into our performance upper bound by letting αmem be the minimum
memory access latency shown in Table 1. This latency assumes a memory access
but also a TLB hit. For the lower bound, we assume αmem is the maximum
memory access latency shown in Table 1, which corresponds to a memory access
and a TLB miss.

When appropriate, we apply slight refinements to this model to incorporate
features of our evaluation platforms. For instance, both the Power3 and the
Itanium can commit two loads per cycle if they both hit in the L1 cache. Thus,
we reduce the L1 latency α1 by two to obtain a performance upper bound. Also,
we take into account the fact that on Itanium, the cache hit times depend on
whether the data is tied to integer or double-precision registers [18].

Finally, note that our model of execution time, Equation (6), charges the
full latency for each memory access. We address this assumption with respect
to main memory bandwidth in Section 5.

8Equation (5) is a loose upper-bound because it essentially ignores any spatial locality in
accesses to the source vector. In principle, we can refine this bound by using the matrix non-
zero pattern to identify when spatial locality is present, but do not do so here for simplicity.
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4.3 Validating the cache miss bounds

We collected data over all register block sizes up to 12×12 for all matrices and
platforms, measuring execution time and cache misses using PAPI. We validate
our cache miss bounds in Figures 3–6. For each matrix, we compared the cache
misses as measured by PAPI to the cache miss lower and upper bounds given
by Equation (4) and Equation (5), respectively. Figures 3–6 show data for the
best block size, chosen by exhaustive search. We see that the miss bounds are a
good match to the true misses. In particular, the vector lengths in our matrix
suite are small enough that the lower miss bounds, which assume no capacity
and conflict misses, count the true misses accurately in the off-chip caches (i.e.,
the L2 cache on the Ultra 2i, Pentium III, and Power3 platforms, and the L3
cache on the Itanium platform).

4.4 Evaluating register blocking performance

We now evaluate the register blocking optimization with respect to the upper
and lower bounds on performance derived above. Figures 7–10 summarize our
evaluation on the four hardware platforms in Table 1 and the matrix benchmark
suite in Table 2, with respect to the upper and lower performance bounds. We
compare the following implementations:

• Reference: The unblocked (1×1) implementation is represented by as-
terisks.
• Sparsity (heuristic): The implementation in which r and c are chosen

by the Sparsity v2.0 heuristic, as described in Section 3.2, is represented
by circles.
• Sparsity (exhaustive): The implementation in which r and c are chosen

by exhaustive search is represented by squares. We refer to this block size
as ropt×copt.
• Analytic upper and lower bounds: The analytic upper and lower

bounds on performance (Mflop/s) for the ropt×copt implementation, as
computed in Section 4.2, are shown as dash-dot and solid lines, respec-
tively.
• PAPI upper bound: An upper bound on performance for the ropt×copt

implementation, obtained by substituting measured cache miss data from
PAPI into Equation (6) and using the minimum memory latency for αmem,
is represented by triangles.

We are particularly interested in making observations on the following topics:

• Performance of Sparsity vs. the reference implementation: Figures 7–10
show that Sparsity implementations, whether chosen by our heuristic or
exhaustively, achieve speedups of up to 2.5 over the reference implemen-
tation. Register blocking is particularly effective on the matrices arising
in FEM applications. However, on the Power3 architecture, we observe
relatively small speedups even on FEM matrices.
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Figure 3: Cache miss model validation, Sun Ultra 2i. Our upper and
lower bounds on L1 and L2 cache misses compared to PAPI measurements for
the r×c implementation with the best performance. The bounds match the
data well. The true L2 misses match the lower bound well in the larger (L2)
cache, suggesting the vector sizes are small enough that conflict misses play a
relatively small role.
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Figure 4: Cache miss model validation, Intel Pentium III. Our upper
and lower bounds on L1 and L2 cache misses on the Intel Pentium III compared
to PAPI measurements. As with Figure 3, the lower bounds are a good match
in the largest (L2) cache.
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Figure 5: Cache miss model validation, IBM Power3. Our upper and
lower bounds on L1 and L2 cache misses on the IBM Power3 compared to PAPI
measurements. As with Figure 3, the lower bounds are a good match in the
largest (L2) cache.
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Figure 6: Cache miss model validation, Intel Itanium. Our upper and
lower bounds on L2 and L3 cache misses on the Intel Itanium compared to PAPI
measurements. As with Figure 3, the lower bounds are a good match in the
largest (L3) cache.
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Figure 7: Performance summary, Ultra 2i. Performance (Mflop/s) of the
implementation chosen by Sparsity compared to the best implementation cho-
sen by exhaustive search and our upper and lower bounds. Here, we show data
for the Ultra 2i. On the FEM matrices, Sparsity performance is 70–80% of
our estimated upper bound.
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Figure 8: Performance summary, Pentium III. Same as Figure 7 for the
Pentium III. Sparsity implementations achieve 80% or more of the upper-
bound on many of the FEM matrices.
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Figure 9: Performance summary, Power3. Same as Figure 7 for the IBM
Power3. Sparsity implementations achieve anywhere between 60–85% of our
upper-bound estimate.
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Figure 10: Performance summary, Itanium. Same as Figure 7 for the Intel
Itanium. Sparsity implementations achieve 80% or more of the upper-bound
on most of the FEM matrices.
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• Quality of the Sparsity v2.0 block size selection heuristic: The Spar-

sity v2.0 heuristic for selecting the block size generally chooses either the
optimal block size, or a block size whose performance is within 5–10% of
optimal. (A detailed comparison of block sizes and performance appears
in Tables 4–7 of Appendix B.)
• Proximity of Sparsity performance to the upper and lower bounds: It

is valid to compare Sparsity (exhaustive), shown as squares, and the
upper and lower bounds, since they are based on the same block size,
ropt×copt. The gap between Sparsity and the upper bound indicates
how much room is left for improvement, which in most cases is 20% or
less.

Below, we elaborate on these high-level conclusions for specific matrices and
platforms.

On the Ultra 2i, Pentium III, and Itanium platforms, Sparsity implemen-
tations achieve 70–80% or more of the upper-bound on most of the matrices in
the FEM set (matrices 2–17). Such matrices have natural dense structure which
register blocking is able to exploit; the proximity to the bound suggests that
additional low-level tuning of the register block implementations is unlikely to
lead to significant additional gains.

Performance on the non-FEM matrices is more varied on the Ultra 2i, Pen-
tium III, and Itanium platforms, though it tends to be closer to the lower
performance bound than the upper, typically ranging from 40%–60% of the up-
per bound performance. Recall that the lower bound assumes that accesses to
the source vector cache lines will always miss, due either to capacity or conflict
misses. This suggests that the non-FEM matrices, possibly due to their partic-
ular sparsity patterns, exhibit more conflicts or reduced spatial locality. Some
form of matrix reordering [30, 19, 24, 15], or the use of multiple r×c block sizes
are likely to be the most effective way to address this performance issue.

On the Power3, the performance of all implementations falls between 60%–
70% of the estimated upper bound, a smaller fraction than on the other ma-
chines. One factor differentiating the Power3 architecture from the others in
this study is its high-performance memory system, resulting in comparable per-
formance for all implementations.

Though these results are encouraging, they are also limited. The upper
bounds are based on expected upper-bounds with respect to our particular reg-
ister blocking data structure. It is possible that other data structures (for in-
stance, those that might remove the uniform block size assumption and therefore
change the dependence of frc on r, c) could do better.

Finally, note that on the Ultra 2i and Pentium III, it appears that the
Sparsity implementation is running faster than DGEMV on the dense matrix
stored in sparse format (matrix 1). It is likely that the vendor-supplied routine
in this case was not optimally tuned. We report DGEMV as a useful scale
reference, not to advocate conversion from dense to sparse formats.
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5 Model Justification: Latency vs. Bandwidth

The primary assumption of our execution time model, Equation (6), is that we
must charge the full latency (αmem or αi) for each memory or cache access.
However, the combination of high peak memory bus bandwidth and the ability
in most modern processors to tolerate multiple outstanding misses could in
principle allow much higher data stream rates. Indeed, if we compute an upper
bound based only on the total memory transfer requirements of the algorithm
at memory bus speeds, we obtain a much higher upper bound. In this section,
we explore whether these bandwidth numbers can be obtained by examining
several simpler benchmarks, known as the STREAM benchmarks [21, 20], and
show that they are not. Our conclusion is that our model, which charges the full
memory latency to fill the first element of each cache line, is a better match to
actual performance than anything based on the peak memory bus bandwidth.

As an example, consider the time to load an uncached double-precision word
from memory to the processor on the Ultra 2i, both from the perspective of peak
memory bandwidth and our latency model. Assuming the word moves at the
peak memory bus bandwidth of 664 MB/s, the time to load a double-precision
word from main memory is (8 B) / (664 MB/s) ≈ 12 ns, or approximately 4
cycles. By contrast, if we apply our full-latency model, we find that streaming
through a double-precision array costs 8.125 cycles per word;9 the effective
bandwidth in the full-latency model is (8 B) / (8.125 cy) * (333 MHz) = 327.9
MB/s, or just under half the theoretical peak. Thus, it is natural to ask whether
the full-latency model is justified for streaming applications in practice, given
the gap between the effective bandwidth in the full-latency model and peak
memory bus bandwidth.

The standard benchmark for assessing sustainable memory bandwidth is the
STREAM benchmark [21, 20]. STREAM consists of four vector kernels operat-
ing on long (out-of-cache) vector operands. We ran the STREAM benchmark
on our four evaluation platforms, and wrote several additional kernels intended
to mimic the access patterns characteristic of sparse matrix-vector multiply. All
of the kernels are summarized in Table 3, where the standard STREAM bench-
mark comprises the first four kernels. For each kernel, STREAM calculates
the memory bandwidth by dividing the volume of data moved by the time to
execute the kernel.10 A few of our kernels deserve additional explanation:

• Sum and Dot: For each of these kernels, we manually unrolled the loops
by hand, summing to separate scalars in order to reduce the dependence in
successive additions to the same scalar. We explored all unrolling depths
up to 8, and report bandwidth results for the best case in this section.

9The cost in the full-latency model for the Ultra 2i is determined as follows. For every 8
words (or 64 B, the L2 line size), the first word requires an access to main memory, incurring
αmem = 36 cy; the second word hits in the L1 cache, incurring α1 = 2 cycles; the final 3 pairs
of words cost α2 +α1 = 2 + 7 = 9 cy. Thus, the total time to execute 8 double precision loads
is 36 + 2 + 3×9 = 65 cy, or 8.125 cy per word.

10Note that STREAM does not give credit for the additional cache-line load required for
store operations in write-back caches. For more details, see the STREAM home page [21].
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Volume of Data
Vector Transferred

Kernel Operation (in doubles)
Copy a[i] = b[i] 2N
Scale a[i] = α*b[i] 2N
Add a[i] = b[i] + c[i] 3N
Triad a[i] = b[i] + α*c[i] 3N
Sum s += a[i] N
Dot s += a[i]*b[i] 2N
Load Sparse Matrix s += a[i], k += ind[i] (1 + 1

γ )N
SpM×V (on-chip cache) s += a[i]*x[ind[i]] (1 + 1

γ )N + n1

SpM×V (external cache) s += a[i]*x[ind[i]] (1 + 1
γ )N + n2

Table 3: Memory bandwidth microkernels. The standard STREAM bench-
mark [21] comprises the first four kernels; for this paper, we consider 5 additional
kernels that mimic selected aspects of SpM×V. The letters a, b, c, and x to de-
note double-precision arrays, ind to denote an array of integer indices. We use
α and s to denote a double precision scalars, and i and k to denote integer
scalars. All scalars are assumed to be in CPU registers during execution of the
kernel. We use i as a vector index which ranges over all elements of the vector.
All vectors, except x, have N elements, where N is chosen on each platform so
that the double-precision vectors are at least 10 times larger than the largest
cache. For SpM×V (on-chip), the length of x is chosen to be 1

3 the size of
the largest on-chip cache; for SpM×V (external), x is 1

3 the size of the largest
off-chip cache.

• Load Sparse Matrix: s += a[i], k += ind[i]. This kernel measures the
peak rate at which the matrix—non-zero values and integer indices—can
be brought through memory. Note that we model access in CSR storage,
i.e., one integer index per non-zero, but ignore the row pointers.
• SpM×V (on-chip cache): Performs the following SpM×V-like opera-

tion: s += a[i]*x[ind[i]]. This kernel simulates the indirect access in true
SpM×V. However, it contains no stores to memory, and the source vector
x is sized to be 1

3 the size of the largest on-chip cache (L2 on the Ita-
nium, L1 on all other platforms) to reduce the effect of conflicts. As with
the load sparse matrix kernel (above), this kernel models access in CSR
storage.
• SpM×V (external cache): Similar to SpM×V (on-chip), except that

the size of the source vector x is 1
3 the size of the largest external (“off-

chip”) cache (L3 on Itanium, L2 otherwise).

We summarize the results of executing all of the kernels on the four evalua-
tion platforms in Figure 11. Specifically, we compare three bandwidths:

• Peak bandwidth: The y-axis measures bandwidth relative to the peak
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memory bus bandwidth (hereafter, peak bandwidth) given in Table 1, so
peak bandwidth is shown implicitly.
• Measured bandwidth: For each kernel, the measured bandwidth is com-

puted as the volume of data shown in Table 3 (column 3) divided by the
measured execution time.
• Model bandwidth: We refer to the bandwidth predicted by our full-

latency model, Equation (6), as the model bandwidth. We compute the
model bandwidth by applying our latency model to each kernel, comput-
ing Equation (6), and dividing the volume of data shown in Table 3 by
Equation (6).

Figure 11 shows a set of bars for each platform, where each bar indicates the
measured bandwidth (normalized by the peak bandwidth) of one of the kernels.

In addition to the kernels, three bars are shown for reference on each plat-
form: the measured bandwidths of DGEMV, the 1×1 SpM×V routine for a
dense matrix in CSR format, and the best r×c register blocked routine for a
dense matrix in BCSR format. For these reference bars, we measured the execu-
tion time on an n×n matrix (n = 2000), and computed the measured bandwidth
by dividing the volume of data by the measured time. The volume of data is the
volume of vector data plus the volume of matrix data. For the volume of vector
data, we count one load each of the source and destination vector elements plus
a store of the destination vector, for a total of 3n doubles. The matrix data vol-
ume is n2 double-precision words for DGEMV, and (1 + 1

γrc )n
2 +

(⌈
m
r

⌉
+ 1
)
/γ

doubles for the dense matrix in sparse format.
Finally, the model bandwidth is shown for several kernels by asterisks (*)

vertically aligned with the corresponding bar. For the synthetic kernels, we
use formulas for hi and mκ in Equation (6). For DGEMV, and the blocked
and unblocked SpM×V, we use PAPI data for hi and mκ. Thus, the model
bandwidth for the best r×c SpM×V corresponds to the PAPI upper-bounds on
matrix 1 in Figures 7–10.

We make the following observations about the results of Figure 11. Note that
we report bandwidth, and since the volume of data is generally different for each
kernel, care should be taken when attempting to compare or infer execution time
among the kernels.

• The measured bandwidth is never more than 80% of peak bandwidth, and
typically under 65%, across all platforms. On the Ultra 2i, the bandwidth
is always below 45% of peak.

• The model bandwidth is either an upper-bound on the measured band-
width (all kernels on the Ultra 2i and Power3), or within 5–15% of the
measured bandwidth (on the Pentium III and Itanium platforms). When
the model bandwidth is below the measured bandwidth, this indicates
that it may be possible to achieve some additional performance on top
of that predicted by the model (Figures 7–10). However, the proximity
of the model bandwidth to the measured bandwidth suggests that such
gains will be small. The gap between the model and measured bandwidth

25



Ultra 2i   Pentium III Power3     Itanium    
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

Platform

Fr
ac

tio
n 

of
 P

ea
k 

M
ai

n 
M

em
or

y 
B

an
dw

id
th

Sustainable Memory Bandwidth (STREAM)

*−⋅  Full−latency model

a[i] = b[i]
a[i] = α*b[i]
a[i] = b[i] + c[i]
a[i] = b[i] + α*c[i]
s += a[i]
s += a[i]*b[i]
s += a[i]; k += ind[i]
s += a[i]*x[ind[i]]; x∈L_chip
s += a[i]*x[ind[i]]; x∈L_ext
DGEMV
SpM×V (dense, 1×1)
SpM×V (dense, best)

Figure 11: Memory bandwidth benchmark results. We show the measured
main memory bandwidth (MB/s), as a fraction of the theoretical peak shown in
Table 1, for each of the kernels shown in Table 3, on all four evaluation platforms.
In each set of bars, the first 9 bars shows the bandwidth for one of the kernels.
For reference, the last 3 bars show the measured bandwidth of DGEMV, the 1×1
SpM×V routine for a dense matrix stored in sparse format, and the exhaustive
best r×c register blocked SpM×V routine for the dense matrix. Finally, we also
show, using asterisks (*), the model bandwidth computed for each of the last 8
bars (non-standard STREAM kernels).
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is largest for the dot product kernel on Itanium, though it is still a very
good approximation for the SpM×V (on-chip), SpM×V (external), and
true SpM×V kernels.
• On all platforms, the dot product kernel achieves the highest bandwidth

among the synthetic kernels. Furthermore, the bandwidth of loading two
double-precision streams (dot product) has a higher bandwidth than load-
ing a single stream (sum). Nevertheless, they are comparable on the Ultra
2i, Pentium III, and Itanium, and are treated as the same in the latency
model. On the Power3, the sum kernel runs at a much lower bandwidth
than the dot product, though we do not yet know why.11

• We would expect the bandwidth of the true 1×1 (unblocked) SpM×V to
fall between the two synthetic variants, SpM×V (on-chip) and SpM×V
(external). Indeed, this is the case. In fact, the unblocked bandwidth
tends to be close (within 10%) to the SpM×V (on-chip) bandwidth on
all platforms except the Pentium III; on the Pentium III, the unblocked
bandwidth is close to SpM×V (external). This phenomenon can be ex-
plained by the size of the on-chip cache on the Pentium III, which is the
smallest of all the on-chip caches.
• Consider the unblocked and blocked SpM×V bandwidths shown in Fig-

ure 11. On all platforms except the Power3, the improvement in model
bandwidth is similar to the observed improvement in measured bandwidth,
showing that tuning has realized the positive effect expected by the model.
• Section 4 shows that on the Power3, there still exists a significant gap

between the performance of our register blocked implementation and our
upper-bound. Figure 11 suggests that additional low-level tuning could
prove beneficial on this platform. In particular, the gap between mea-
sured bandwidth and our model bandwidth for the dot product kernel
and DGEMV is much smaller than the gap for SpM×V.

These results confirm that the latency model offers a reasonable upper-bound
for SpM×V. In certain settings, namely, the dot product, it may be possible
to do better than the limit suggested by the model through additional low-
level tuning. However, based on the observed bandwidth results, it is not clear
whether such improvements could be realized for SpM×V, and even if they
could, whether they would yield performance benefits beyond an additional 5–
10%. The exception is the Power3, on which additional effort at scheduling
could lead to substantial performance gains.

6 Conclusions and Future Directions

Our results show that for sparse matrices with natural block structures, and on
several computer architectures, we are close to the best possible performance
for SpM×V. This leads us to ask where further performance improvements lie.

11Changing the sum kernel to include a scalar multiply with each add, i.e., s += α*a[i],
did not change the measured bandwidth.
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First, matrices without natural block structures remain difficult. Techniques
such as reordering the rows and columns to create more blocks, using multiple
block sizes, or cache blocking (storing large rectangular submatrices as separate
sparse matrices) show promise and we are pursuing them [16, 30, 19, 24].

Second, our register blocking techniques have not been very effective on the
Power3 architecture. We need to determine whether we can do better.

Third, we need to exploit more structure in the sparse matrices that will
let us improve data reuse. For example, if the matrix is symmetric, then each
matrix entry can be reused twice. Our preliminary results indicate that we can
go significantly faster, up to a factor of 2.

Fourth, we can identify and tune “higher level” sparse kernels that also
permit more matrix reuse. An example is applying register blocking to sparse
matrix-multiple-vector multiplication (SpM×M) [23, 10, 17]. This kernel can
be exploited in iterative solvers with multiple right-hand sides and also in block
eigensolvers. On the Itanium and Ultra 2i we have observed speedups of up to
6.5 and 9 times that of SpM×M with a single right-hand side. Another example
is computing ATAx, which is used in information retrieval and computing the
singular value decomposition; each entry of A can be used twice.
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A Register Blocking 2×2 Example

The following is a C implementation of a 2x2 register blocked code. Here, bm is the
number of block rows, i.e., the number of rows in the matrix is 2*bm. The dense
sub-blocks are stored in row-major order.

void smvm_regblk_2x2( int bm, const int *b_row_start,
const int *b_col_idx, const double *b_value,
const double *x, double *y )

{
int i, jj;

/* loop over block rows */
1 for( i = 0; i < bm; i++, y += 2 )

{
2 register double d0 = y[0];
3 register double d1 = y[1];
4 for( jj = b_row_start[i]; jj < b_row_start[i+1];

jj++, b_col_idx++, b_value += 2*2 )
{

5 d0 += b_value[0] * x[*b_col_idx+0];
6 d1 += b_value[2] * x[*b_col_idx+0];
7 d0 += b_value[1] * x[*b_col_idx+1];
8 d1 += b_value[3] * x[*b_col_idx+1];

}
9 y[0] = d0;

10 y[1] = d1;
}

}

B Register Block Sizes

In Tables 4–7, we show for each platform and matrix, the performance (Mflop/s) of
the following register block sizes:

• Sparsity exhaustive best: The value of r×c yielding the best performance, and
its performance.

• Sparsity v2.0 heuristic: The value of r×c chosen by the new heuristic, and its
performance.

• Sparsity v1.0 heuristic: The value of r×c chosen by the heuristic in Sparsity

v1.0, and its performance.

In addition, the performance data has been annotated to faciliate pairwise compar-
isons. In particular, an asterisk (∗) next to the best performance indicates that the
performance of the block size chosen by the v2.0 heuristic was less than 90% of the
best performance. A circle (◦) indicates that the performance of the block size chosen
by the v1.0 heuristic was less than 90% of the best performance. Finally, a dagger (†)
shows when the performance of the implementation selected by the v1.0 heuristic was
less that chosen by the v2.0 heuristic.
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Sparsity Sparsity Sparsity

exhaustive best v2.0 heuristic v1.0 heuristic
Block Perf. Fill Block Perf. Fill Block Perf. Fill

Matrix size (Mflop/s) ratio size (Mflop/s) ratio size (Mflop/s) ratio
1 8×5 72.9 1.00 8×5 72.9 1.00 8×8 71.0 1.00
2 8×8 63.2 1.00 8×8 63.2 1.00 8×8 63.2 1.00
3 6×6 54.5 1.12 6×6 54.5 1.12 6×6 54.5 1.12
4 6×2 54.1 1.13 3×3 51.9 1.06 6×6 50.1 1.19
5 4×4 48.4 1.00 4×4 48.4 1.00 4×4 48.4 1.00
6 3×3 49.9 1.00 3×3 49.9 1.00 3×3 49.9 1.00
7 3×3 52.5 1.00 3×3 52.5 1.00 3×3 52.5 1.00
8 6×6 50.1 1.15 6×6 50.1 1.15 6×6 50.1 1.15
9 3×3 54.3 1.02 3×3 54.3 1.02 3×3 54.3 1.02
10 2×1 39.1 1.10 2×2 38.8 1.21 2×2 38.8 1.21
11 2×2 32.3 1.23 2×2 32.3 1.23 2×2 32.3 1.23
12 2×2 37.9 1.24 2×3 36.4 1.36 3×3 36.4 1.46
13 2×1 36.7 1.14 2×2 36.0 1.28 3×3 34.5 1.52
15 2×1 41.1 ◦ 1.00 2×1 41.1 † 1.00 2×2 33.8 1.35
17 1×1 32.4 1.00 1×1 32.4 1.00 1×1 32.4 1.00
21 1×1 28.7 1.00 1×1 28.7 1.00 1×1 28.7 1.00
25 1×1 21.3 1.00 1×1 21.3 1.00 1×1 21.3 1.00
27 2×1 21.5 1.53 1×1 20.1 1.00 1×1 20.1 1.00
28 1×1 26.9 1.00 1×1 26.9 1.00 1×1 26.9 1.00
36 1×1 18.1 1.00 1×1 18.1 1.00 1×1 18.1 1.00
40 1×1 31.9 1.00 1×1 31.9 1.00 1×1 31.9 1.00
44 1×1 23.5 1.00 1×1 23.5 1.00 1×1 23.5 1.00

Table 4: Register block sizes, Sun Ultra 2i. To aid pairwise comparisons,
the data has been annotated as follows. An asterisk (∗) indicates that the v2.0
performance (Mflop/s) is less than 90% of the best performance (Mflop/s); a
circle (◦) indicates that the v1.0 performance is less than 90% of the best; a
dagger (†) indicates that the v1.0 performance is less than 90% of the v2.0
performance. On the Ultra 2i, the v2.0 heuristic never selected a block size
below 90% of the best.
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Sparsity Sparsity Sparsity

exhaustive best v2.0 heuristic v1.0 heuristic
Block Perf. Fill Block Perf. Fill Block Perf. Fill

Matrix size (Mflop/s) ratio size (Mflop/s) ratio size (Mflop/s) ratio
1 2×10 107.1 1.00 2×10 107.1 1.00 6×6 98.0 1.00
2 4×8 94.2 1.00 4×8 94.2 1.00 4×4 85.0 1.00
3 6×2 85.7 1.12 6×2 85.7 1.12 3×3 83.0 1.12
4 3×3 85.5 1.06 3×3 85.5 1.06 3×3 85.5 1.06
5 4×2 82.3 1.00 4×2 82.3 1.00 4×4 74.3 1.00
6 3×3 87.9 1.00 3×3 87.9 1.00 3×3 87.9 1.00
7 3×3 89.6 1.00 3×3 89.6 1.00 3×3 89.6 1.00
8 6×2 83.1 1.13 3×3 80.8 1.11 3×3 80.8 1.11
9 3×3 87.9 1.02 3×3 87.9 1.02 3×3 87.9 1.02
10 4×2 63.4 1.45 2×2 60.2 1.21 3×3 58.5 1.57
11 2×2 52.6 1.23 2×2 52.6 1.23 2×2 52.6 1.23
12 3×3 62.8 1.46 3×3 62.8 1.46 3×3 62.8 1.46
13 3×3 60.1 1.52 3×3 60.1 1.52 3×3 60.1 1.52
14 3×2 42.4 1.47 2×2 41.9 1.33 3×3 42.2 1.60
15 2×1 55.9 ◦ 1.00 2×1 55.9 † 1.00 1×1 38.6 1.00
16 4×1 42.4 1.43 3×3 40.6 1.69 3×3 40.6 1.69
17 4×1 46.9 ◦ 1.75 4×1 46.9 † 1.75 3×3 39.5 2.36
18 2×1 30.6 1.36 1×2 27.6 1.36 2×2 28.9 1.79
20 1×2 41.9 ◦ 1.17 1×2 41.9 † 1.17 3×3 35.5 2.35
21 4×1 43.9 ◦ 1.77 4×1 43.9 † 1.77 1×1 38.3 1.00
23 2×1 29.0 1.46 1×2 26.6 1.47 1×1 28.4 1.00
24 2×1 36.1 1.52 1×1 35.9 1.00 1×1 35.9 1.00
25 1×1 30.4 1.00 1×1 30.4 1.00 1×1 30.4 1.00
26 1×1 27.9 1.00 1×1 27.9 1.00 1×1 27.9 1.00
27 2×1 32.1 1.53 1×1 31.4 1.00 1×1 31.4 1.00
28 1×1 36.7 1.00 1×1 36.7 1.00 1×1 36.7 1.00
29 2×2 28.1 1.98 1×1 28.0 1.00 2×2 28.1 1.98
36 1×1 26.4 1.00 1×1 26.4 1.00 2×2 24.2 2.31
37 2×2 28.2 1.98 1×1 28.1 1.00 2×2 28.2 1.98
40 1×1 39.2 1.00 1×1 39.2 1.00 1×1 39.2 1.00
41 1×1 31.3 1.00 1×1 31.3 1.00 1×1 31.3 1.00
42 1×1 31.2 1.00 1×1 31.2 1.00 1×1 31.2 1.00
44 1×1 29.0 1.00 1×1 29.0 1.00 1×1 29.0 1.00

Table 5: Register block sizes, Intel Pentium III. Data has been annotated
as in Table 4. On the Pentium III, the v2.0 heuristic never selected a block size
below 90% of the best.
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Sparsity Sparsity Sparsity

exhaustive best v2.0 heuristic v1.0 heuristic
Block Perf. Fill Block Perf. Fill Block Perf. Fill

Matrix size (Mflop/s) ratio size (Mflop/s) ratio size (Mflop/s) ratio
2 4×4 167.7 1.00 4×4 167.7 1.00 4×4 167.7 1.00
4 3×3 144.8 1.06 3×3 144.8 1.06 3×3 144.8 1.06
5 4×2 147.8 1.00 4×4 140.6 1.00 4×4 140.6 1.00
7 3×3 154.8 1.00 3×3 154.8 1.00 3×3 154.8 1.00
8 3×3 140.7 1.11 3×3 140.7 1.11 3×3 140.7 1.11
9 3×3 154.9 1.02 3×3 154.9 1.02 3×3 154.9 1.02
10 1×1 132.7 ◦ 1.00 2×2 121.6 † 1.21 4×4 99.9 1.73
12 1×1 130.2 ◦ 1.00 2×2 117.3 1.24 3×3 107.3 1.46
13 1×1 130.0 ◦ 1.00 1×1 130.0 † 1.00 3×3 102.9 1.52
15 2×1 136.4 1.00 2×1 136.4 1.00 2×1 136.4 1.00
40 1×1 127.4 1.00 1×1 127.4 1.00 1×1 127.4 1.00

Table 6: Register block sizes, IBM Power3. Data has been annotated as
in Table 4. On the Power3, the v2.0 heuristic never selected a block size below
90% of the best.
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Sparsity Sparsity Sparsity

exhaustive best v2.0 heuristic v1.0 heuristic
Block Perf. Fill Block Perf. Fill Block Perf. Fill

Matrix size (Mflop/s) ratio size (Mflop/s) ratio size (Mflop/s) ratio
1 4×1 255.8 1.00 4×1 255.8 1.00 2×2 244.7 1.00
2 4×1 228.4 1.00 4×1 228.4 1.00 2×2 215.3 1.00
3 3×1 208.0 ◦ 1.06 3×1 208.0 † 1.06 2×2 183.5 1.12
4 3×1 203.4 ◦ 1.04 3×1 203.4 † 1.04 2×2 177.0 1.07
5 4×1 187.9 1.00 4×1 187.9 1.00 2×2 176.3 1.00
6 3×1 220.4 ◦ 1.00 3×1 220.4 † 1.00 2×2 164.8 1.23
7 3×1 221.4 ◦ 1.00 3×1 221.4 † 1.00 2×2 167.2 1.22
8 3×1 200.6 ◦ 1.06 3×1 200.6 † 1.06 2×2 166.8 1.10
9 3×1 216.9 ◦ 1.01 3×1 216.9 † 1.01 2×2 165.1 1.25
10 3×1 168.7 1.27 2×1 162.3 1.10 2×2 157.8 1.21
11 4×1 119.0 1.70 2×2 117.9 1.23 2×2 117.9 1.23
12 3×1 182.1 ◦ 1.24 2×1 175.8 1.13 2×2 163.9 1.24
13 3×1 178.5 ◦ 1.26 2×1 174.1 1.14 2×2 160.1 1.28
15 2×1 163.7 ◦ 1.00 2×1 163.7 † 1.00 2×2 137.8 1.35
17 3×1 141.0 1.59 2×1 138.7 1.36 1×1 136.3 1.00
21 3×1 141.2 1.59 2×1 137.0 1.38 1×1 138.2 1.00
25 1×1 64.1 1.00 1×1 64.1 1.00 1×1 64.1 1.00
27 3×1 77.6 ∗◦ 1.94 1×1 66.9 1.00 1×1 66.9 1.00
28 1×1 121.3 1.00 1×1 121.3 1.00 1×1 121.3 1.00
36 3×1 53.6 2.31 1×1 49.9 1.00 1×1 49.9 1.00
40 1×1 127.8 1.00 1×1 127.8 1.00 1×1 127.8 1.00
44 1×1 74.6 1.00 1×1 74.6 1.00 1×1 74.6 1.00

Table 7: Register block sizes, Intel Itanium. Data has been annotated
as in Table 4. For Matrix #27, both the v1.0 and v2.0 heuristics chose an
implementation which achieved 86% of the best. Note that the fill ratio at the
best block size is nearly 2.
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