

Kathy Yelick
Associate Laboratory Director of Computing Sciences
Lawrence Berkeley National Laboratory

EECS Professor, UC Berkeley

Extra Work Can Improve Efficiency!

Optimizing Sparse Matrix Vectory Multiply (fill)

- Example: 3x3 blocking
 - Logical grid of 3x3 cells
 - Fill-in explicit zeros
 - Unroll 3x3 block multiplies
 - "Fill ratio" = 1.5
 - Takes advantage of registers
- On Pentium III: 1.5x speedup!
 - Actual mflop rate $1.5^2 = 2.25$ higher

See Eun-Jin Im PhD Thesis (Sparsity Library) and Rich Vuduc PhD thesis (OSKI Library)

SpMV Performance

(simple parallelization)

See Sam Williams PhD thesis + papers

Auto-tuned SpMV Performance

(architecture specific optimizations)

The Roofline Performance Model

See Sam Williams PhD Thesis

- Roof structure determined by machine
- Locations of posts in the building are determined by algorithmic intensity
- Will vary across algorithms and with bandwidth-reducing optimizations, such as better cache re-use (tiling), compression techniques
- Can use DRAM, network, disk,...

actual flop:byte ratio

Roofline model for SpMV

(matrix compression)

Roofline model for SpMV

(matrix compression)

Autotuning: Write Code Generators

- Autotuners are code generators plus search
- Avoids two unsolved compiler problems: dependence analysis and accurate performance models
- Popular in libraries: Atlas, FFTW, OSKI,...

Finding Good Performance is like finding the Needle in a Haystack

OSKI sparse matrix library: offline search + online evaluation: adding zeros can reduce storage in blocked **format**

OSKI and pOSKI: Auto-tuning Sparse Matrix Kernels

Our approach uses Empirical modeling and search

To user: Matrix handle for kernel calls

SEJITS: Selective Embedded Just-in-Time Specialization

<u>(beyond Perl code generators)</u>

Armando Fox's group, including Shoaib Kamil and Michael Driscoll

Lessons Learned

Optimizations (not all in OSKI)

- Register blocking, loop unrolling, cache blocking, thread blocking, reordering, index compression, SIMDization, manual prefetch, NUMA ("PGAS" on node), matrix splitting, switch-todense, sparse/bit-masked register blocks
- See http://bebop.berkeley.edu for papers
- Straight line code failed to work on Spice ~10 years ago
 - 64-bit instructions: 1 load (x), 1 store (y), 1 op
 - Vs 1 op and fraction of load/store depending on reuse

Good news

Autotuning helps save programmer time

But the operation is bandwidth limited

- With hardware optimizations (NUMA, prefetch, SIMDization, threading)
- The rest is about matrix compression

A problem for local memory and network

Avoiding Communication in Iterative Solvers

Consider Sparse Iterative Methods for Ax=b

- Krylov Subspace Methods: GMRES, CG,...
- Solve time dominated by:
 - Sparse matrix-vector multiple (SPMV)
 - Which even on one processor is dominated by "communication" time to read the matrix
 - Global collectives (reductions)
 - Global latency-limited
- Can we lower the communication costs?
 - Latency: reduce # messages by computing multiple reductions at once
 - Bandwidth to memory, i.e., compute Ax, A²x, ... A^kx with one read of A

Joint work with Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin; See 2 PhD thesis for details

Communication Avoiding Kernels

The Matrix Powers Kernel: [Ax, A²x, ..., A^kx]

• Replace k iterations of $y = A \cdot x$ with $[Ax, A^2x, ..., A^kx]$

- Idea: pick up part of A and x that fit in fast memory, compute each of k products
- Example: A tridiagonal matrix (a 1D "grid"), n=32, k=3
- General idea works for any "well-partitioned" A

Communication Avoiding Kernels (Sequential

case)

The Matrix Powers Kernel: [Ax, A²x, ..., A^kx]

- Replace k iterations of $y = A \cdot x$ with $[Ax, A^2x, ..., A^kx]$
- Sequential Algorithm

- Example: A tridiagonal, n=32, k=3
- Saves bandwidth (one read of A&x for k steps)
- Saves latency (number of independent read events)

Communication Avoiding Kernels:

(Parallel case)

The Matrix Powers Kernel: $[Ax, A^2x, ..., A^kx]$

- Replace k iterations of $y = A \cdot x$ with $[Ax, A^2x, ..., A^kx]$
- Parallel Algorithm

- Example: A tridiagonal, n=32, k=3
- Each processor works on (overlapping) trapezoid
- Saves latency (# of messages); Not bandwidth

But adds redundant computation

Matrix Powers Kernel on a General Matrix

- Saves communication for "well partitioned" matrices
 - Serial: O(1) moves of data moves vs. O(k)
 - Parallel: O(log p) messages vs. O(k log p)

Akx has higher performance than Ax

Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick

Minimizing Communication of GMRES to solve Ax=b

• GMRES: find x in span{b,Ab,...,Akb} minimizing || Ax-b ||₂

```
Standard GMRES
for i=1 to k
w = A \cdot v(i-1) \dots SpMV
MGS(w, v(0),...,v(i-1))
update v(i), H
endfor
solve LSQ problem with H
```

```
Communication-avoiding GMRES

W = [v, Av, A²v, ..., A<sup>k</sup>v]

[Q,R] = TSQR(W)

... "Tall Skinny QR"

build H from R

solve LSQ problem with H
```

Sequential case: #words moved decreases by a factor of k Parallel case: #messages decreases by a factor of k

Oops – W from power method, precision lost!

TSQR: An Architecture-Dependent Algorithm

Parallel:
$$W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \xrightarrow{R_{00}} R_{00} \xrightarrow{R_{01}} R_{01} \xrightarrow{R_{02}} R_{02}$$

Sequential:
$$W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \xrightarrow{R_{00}} R_{01} \xrightarrow{R_{02}} R_{03}$$

Dual Core:
$$W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \xrightarrow{R_{00}} \begin{array}{c} R_{00} \\ R_{01} \end{array} \xrightarrow{R_{01}} \begin{array}{c} R_{02} \\ R_{11} \end{array} \xrightarrow{R_{03}} \begin{array}{c} R_{03} \\ R_{11} \end{array}$$

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?

Can choose reduction tree dynamically

Matrix Powers Kernel (and TSQR) in GMRES

Communication-Avoiding Krylov Method (GMRES)

Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices, using 8 threads and restart length 60

22

Towards Communication-Avoiding Compilers: Deconstructing 2.5D Matrix Multiply

Matrix Multiplication code has a 3D iteration space Each point in the space is a constant computation (*/+)

for i, for j, for k C[i,j] ... A[i,k] ... B[k,j] ...

These are not just "avoiding," they are "communication-optimal"

Generalizing Communication Optimal Transformations to Arbitrary Loop Nests

1.5D N-Body: Replicate and Reduce

The same idea (replicate and reduce) can be used on (direct) N-Body code:

1D decomposition \rightarrow "1.5D"

Does this work in general?

- Yes, for certain loops and array expressions
- Relies on basic result in group theory
- Compiler work TBD

Speedup of 1.5D N-Body over 1D

A Communication-Optimal N-Body Algorithm for Direct Interactions, Driscoll et al, IPDPS'13

Generalizing Communication Lower Bounds and Optimal Algorithms

- For serial matmul, we know #words_moved = Ω (n³/M^{1/2}), attained by tile sizes M^{1/2} x M^{1/2}
 - Where do all the ½'s come from?
- Thm (Christ, Demmel, Knight, Scanlon, Yelick): For any program that "smells like" nested loops, accessing arrays with subscripts that are linear functions of the loop indices, #words_moved = Ω (#iterations/M^e), for some e we can determine
- Thm (C/D/K/S/Y): Under some assumptions, we can determine the optimal tiles sizes
- Long term goal: All compilers should generate communication optimal code from nested loops

Communication Overlap Complements Avoidance

- Even with communication-optimal algorithms (minimized bandwidth) there are still benefits to overlap and other things that speed up networks
- Communication Avoiding and Overlapping for Numerical Linear Algebra, Georganas et al, SC12

Optimality of Communication

Lower bounds, (matching) upper bounds (algorithms) and a question:

Can we train compilers to do this?

See: http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-61.pdf

Beyond Domain Decomposition

2.5D Matrix Multiply on BG/P, 16K nodes / 64K cores

c = 16 copies

Matrix multiplication on 16,384 nodes of BG/P

Surprises:

- Even Matrix Multiply had room for improvement
- Idea: make copies of C matrix (as in prior 3D algorithm, but not as many)
- Result is provably optimal in communication

Lesson: Never waste fast memory

Can we generalize for compiler writers?

EuroPar'11 (Solomonik, Demmel)

Towards Communication-Avoiding Compilers: Deconstructing 2.5D Matrix Multiply

Tiling the iteration space

- Compute a subcube
- Will need data on faces (projection of cube, subarrays)
- For s loops in the nest → s dimensional space
- For x dimensional arrays, project to x dim space

Matrix Multiplication code has a 3D iteration space Each unit cube in the space is a constant computation (*/+)

```
for i
for j
for k
<u>C[i,j] ... A[i,k] ... B[k,j]</u>
```

Deconstructing 2.5D Matrix Multiply

Solomonik & Demmel

Tiling in the k dimension

 k loop has dependencies because C (on the top) is a Left-Hand-Side variable C += ..

- Advantages to tiling in k:
 - More parallelism →
 Less synchronization
 - Less communication

What happens to these dependencies?

- All dependencies are vertical k dim (updating C matrix)
- Serial case: compute vertical block column in order
- Parallel case:
 - 2D algorithm (and compilers): never chop k dim
 - 2.5 or 3D: Assume + is associative; chop k, which implies replication of C matrix

Beyond Domain Decomposition

Much of the work on compilers is based on owner-computes

- For MM: Divide C into chunks, schedule movement of A/B
- In this case domain decomposition becomes replication

Ways to compute C "pencil"

- 1. Serially
- 2. Parallel reduction Standard vectorization trick
- 3. Parallel asynchronous (atomic) updates
- 4. Or any hybrid of these

For what types / operators does this work?

- "+" is associative for 1,2 rest of RHS is "simple"
- and commutative for 3

Using x for C[i,j] here

Lower Bound Idea on C = A*B

Iromy, Toledo, Tiskin

"Unit cubes" in black box with side lengths x, y and z

- = Volume of black box
- = x*y*z
- $= (\#A \square s * \#B \square s * \#C \square s)^{1/2}$
- $= (xz * zy * yx)^{1/2}$

(i,k) is in "A shadow" if (i,j,k) in 3D set (j,k) is in "B shadow" if (i,j,k) in 3D set (i,j) is in "C shadow" if (i,j,k) in 3D set

Thm (Loomis & Whitney, 1949)
cubes in 3D set = Volume of 3D set
≤ (area(A shadow) * area(B shadow) *
area(C shadow)) 1/2

Lower Bound: What is the minimum amount of communication required?

Recall optimal sequential Matmul

- Naïve code
 for i=1:n, for j=1:n, for k=1:n, C(i,j)+=A(i,k)*B(k,j)
- "Blocked" code

```
for i1 = 1:b:n, for j1 = 1:b:n, for k1 = 1:b:n
for i2 = 0:b-1, for j2 = 0:b-1, for k2 = 0:b-1
i=i1+i2, j = j1+j2, k = k1+k2
C(i,j)+=A(i,k)*B(k,j)
```

b x b matmul

- Thm: Picking b = $M^{1/2}$ attains lower bound: #words_moved = $\Omega(n^3/M^{1/2})$
- Where does 1/2 come from? Can we compute these for arbitrary programs?

Generalizing Communication Lower Bounds and Optimal Algorithms

- For serial matmul, we know #words_moved = Ω (n³/M^{1/2}), attained by tile sizes M^{1/2} x M^{1/2}
- Thm (Christ, Demmel, Knight, Scanlon, Yelick): For any program that "smells like" nested loops, accessing arrays with subscripts that are linear functions of the loop indices

```
\#words\_moved = \Omega (\#iterations/M^e)
```

for some e we can determine

- Thm (C/D/K/S/Y): Under some assumptions, we can determine the optimal tiles sizes
 - E.g., index expressions are just subsets of indices
- Long term goal: All compilers should generate communication optimal code from nested loops

New Theorem applied to Matmul

- for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k,j)
- Record array indices in matrix Δ

$$\Delta = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix}$$

- Solve LP for $x = [xi,xj,xk]^T$: max 1^Tx s.t. $\Delta x \le 1$
 - Result: $x = [1/2, 1/2, 1/2]^T$, $\mathbf{1}^T x = 3/2 = s_{HBL}$
- Thm: #words_moved = $\Omega(n^3/M^{S_{HBL}-1}) = \Omega(n^3/M^{1/2})$ Attained by block sizes M^{xi} , M^{xj} , $M^{xk} = M^{1/2}$, $M^{1/2}$, $M^{1/2}$

New Theorem applied to Direct N-Body

- for i=1:n, for j=1:n, F(i) += force(P(i), P(j))
- Record array indices in matrix Δ

$$\Delta = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} P(i)$$

$$P(j)$$

- Solve LP for $x = [xi,xj]^T$: max 1^Tx s.t. $\Delta x \le 1$
 - Result: $x = [1,1], 1^{T}x = 2 = s_{HBL}$
- Thm: #words_moved = $\Omega(n^2/M^{SHBL-1}) = \Omega(n^2/M^1)$ Attained by block sizes M^{xi} , $M^{xj} = M^1$, M^1

New Theorem applied to Random Code

- for i1=1:n, for i2=1:n, ..., for i6=1:n A1(i1,i3,i6) += func1(A2(i1,i2,i4),A3(i2,i3,i5),A4(i3,i4,i6))A5(i2,i6) += func2(A6(i1,i4,i5),A3(i3,i4,i6))
- **Record array indices** in matrix Δ

$$\Delta = \begin{pmatrix} 1 & i2 & i3 & i4 & i5 & i6 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ A6 \end{pmatrix} A1$$

- Solve LP for $x = [x1,...,x7]^T$: max 1^Tx s.t. $\Delta x \le 1$
- Result: $x = [2/7,3/7,1/7,2/7,3/7,4/7], \mathbf{1}^T x = 15/7 = s_{HBL}$ Thm: #words_moved = $\Omega(n^6/M^{SHBL-1}) = \Omega(n^6/M^{8/7})$ Attained by block sizes M^{2/7}, M^{3/7}, M^{1/7}, M^{2/7}, M^{3/7}, M^{4/7}

General Communication Bound

- Given S subset of Z^k, group homomorphisms φ₁, φ₂, ..., bound |S| in terms of |φ₁(S)|, |φ₂(S)|, ..., |φ_m(S)|
- Def: Hölder-Brascamp-Lieb LP (HBL-LP) for s₁,...,s_m:
 for all subgroups H < Z^k, rank(H) ≤ Σ_i s_i*rank(φ_i(H))
- Thm (Christ/Tao/Carbery/Bennett): Given s₁,...,s_m
 |S| ≤ Π_j |φ_j(S)|^{Sj}

Comments

- Attainability depends on loop dependencies
 Best case: none, or associative operators (matmul, nbody)
- Thm: When all ϕ_j = {subset of indices}, dual of HBL-LP gives optimal tile sizes:

HBL-LP: minimize $1^{T*}s$ s.t. $s^{T*}\Delta \ge 1^{T}$

Dual-HBL-LP: maximize $1^{T*}x$ s.t. $\Delta^*x \leq 1$

Then for sequential algorithm, tile i, by Mxj

- Ex: Matmul: $s = [1/2, 1/2, 1/2]^T = x$
- Generality:
 - Extends to unimodular transforms of indices
 - Does not require arrays (as long as the data structures are injective containers)
 - Does not require loops as long as they can model computation

Conclusions

Communication is expensive and (relative) cost is growing

- Avoid bandwidth (data volume)
- Hide latency or reduce number of messages

Conceptual model

- Think of computation a set of points in a volume in d-space (d = # loops in nest)
- What is maximum amount you can do for a fixed surface area

Theory

- Lower bounds are useful to understand limits
- Many programs (index expressions) still open for upper bounds

Bonus Slide #1: Beyond UPC

- DAG Scheduling in a distributed (partitioned) memory context
- Assignment of work is static; schedule is dynamic
- Ordering needs to be imposed on the schedule
 - Critical path operation: Panel Factorization
- General issue: dynamic scheduling in partitioned memory
 - Can deadlock in memory allocation
 - "memory constrained" lookahead

Uses a Berkeley extension to UPC to remotely synchronize

Bonus slide #2: Emerging Fast Forward Exascale Node Architecture

System on Chip (SoC) design coming into focus Low Memory Slide from John Capacity Stacks High on package **Shalf** Bandwidth **Fat Core** Latency **Thin/Accelerator Cores Optimized** DRAM/DIMMS (tiny, simple, massively parallel) Throughput -Optimized High Capacity Low Bandwidth **NVRAM:** Burst Buffers / rack-local storage **VIC** on **B**oard