Antisocial Parallelism:
Avoiding, Hiding and Managing
Communication

Kathy Yelick
Associate Laboratory Director of Computing Sciences
Lawrence Berkeley National Laboratory

EECS Professor, UC Berkeley

Extra Work Can Improve Efficiency!

3 x 3 Register Blocking Example
0 : : : . '

RIS E 3 T Eray - - = -
- Optimizing Sparse Matrix
IRNReS seeleseleee
XXX XIIEES X IR
SHeoele oofo oo o olesofovefoes . - -
Vectory Multiply (fill
XTI O X O
soelesefees soelessfesefoee
soelesslees sosleseleseloee
10R XX Ceejeseleesee e 3
PRV PO ppepe IR NPO IOD{ PR
soolesoleee soeleoelessless
X X
PR PR PPERe soe|essfessfees =
15h 1+ Example: 3x3 blockin
* 4 R 2R 2R 2 2R 2L 2 O 2 LR R 2R R R 2L L u
PR ORI PRI PO R PR R MR MDD
* + 4 AR LERILER] AR LR R LR R ILER] - -
XXICEES XXX X TR IR T — L | d f3 3 ”
ZOHe ¢ ¢fe oo seelessfene ool s ole o ofe oo Oglca grl O Xo Cells
soeleee soeleselese I IS
CEEIX IR XXX T T T
s oelesefeee o eleselese s o ofeeefesd — F ”_ | t
soeleeelese s o olooeloee RIS I IN exp ICIC ZEroS
25H XXX (XXX XXX
soele e PERRY PEpEp PReRe o+ ole o . g
IRNEe s o olesefeee NI
— Unroll 3x3 block multiplies
soelesefees soelesefeee et
30H s oeleeefeee seeleeefo e * o4 Py - 9
X IR —_ FI” ratlo - 1 5
I I I .
soelesefeee seelesefeee
a5 XL X XXX .
H seeleee 1PNV PR .
— Takes advantage of registers
T eesees e XX
seefeeeleee YRR PO PO
soelevslose soeleseleee
40R XX s ejes e s e e
LR Z R 2 2L 2 LR R R R 2L L
LA RILERILER AR AR R LR ILER] -
LR R L R R R L R L R C R 2 Y [
On Pentium III: 1.5x
45H soojoseloee s o ole s olo o ole o
XX R X TR TR
R R = S; ‘a‘ac‘l‘ l
soeleselossloee soslesolosoloed =
LR R R L L LR R LR AR 2L 3
S0H vroferejersiore L e e el et

| SN S SN FU WP PUDGIY PRI PUIPUD S SN S E— N N PPN PR P —_ 2 —
; - o = a = Actual mflop rate 1.5 = 2.25
(688 true non-zeros) + (383 explicit zeros) = 1071 nz h|g her

See Eun-Jin Im PhD Thesis (Sparsity Library) and Rich Vuduc PhD thesis (OSKI Library)

ion)

(si

SpMV Performance

(4.0 (l

4 GF

D o]
(T (&)
(- c
M £ v c =
S Y (7)) E
L 00 — (@)
ot o > E 0
T 0= pn = o 3
o5 o0 = (o} O
£
2 ot &= 23 a
=% T3 S0 2 2
5 O c O o " @) L8
Onotwolos
[J [J []
1 uepaw uelpaly
KL d1
© | eseqgam “ aseqqam
1NJ2J1 1N2J1
n \m i Rilgerlle] © 3N241D
) [| 1992y - 1900y
N5 | wepid3 @ wapid3
c= I T | uod3 1] uod3
oY —— dus m W diys
95 [add o~ asd
= n Jogiey ~ JogieH
m.l\ " |suuny (7)) |auung
| jued (o4 jued
saJsayds saJsayds
T " u1?y04d ui0.4d
| ; | asuag asuaqg
© 1 o un o o 1w o 1w o 1w o 1 o
o i i o o < ™M m o o ~— ~ o o
s/d0149 s/d0149
|
_ [ueipap _ [L ETY
I = I
] d1 3 [
(T aseqgam n aseqqam
n _ I 3noud -2 " unouD
< m [1900y + © [1900y
M 3 wapid3 ' B wapid3
n e _ [uoo3 = m " uoo3
u _ [diys (S [diys
n e - | " o I I I I o
° 2 — | add 0 = — <o
02 [[Joguey .w..m E— LT
» Ir.u\ T ﬂ” |]auung © IV\ [i i : 1] rduuny
® o I | ued Ft ——] wed
8 2 1 sesuds - | sadoyds
+ Z T ure304d = """ umoud
(] I - I I I I -
) I asuag _ i : :]| @suag
wn o n o n o wn o o n o n o n o n o
m o N N o o o o § ®m m N N A - o©o o
s/d0149 s/d0149

See Sam Williams PhD thesis + papers

Auto-tuned SpMV Performance

(architecture specific optimizations)

6.0
a0 Xeon E5345
‘ (Clovertown)
12.0 O +Cache/TLB Block
10.0 A O +Register Block
" ’ O +Prefetch
S g 1 O+NUMA
8 : O +Parallel
' ONaive
w 6.0
(U]
4.0 —
=Rl
0.0 4= ﬁ B L EQDBE a
VEEET RO BEEL EQ2D0 c
) cc 9o O o S 3w ©
£25855585885238° §
CfssFE = & 03P s
W w w E =
w

GFLOP/s

16.0

14.0

12.0

10.0

8.0

6.0 A
4.0

2.0 1

0.0

| UltraSparc T2+ T5140

(Victoria Falls)

||||||||||||||||

Dense |
[1]
i]
I
[T

cL2gLsnaoc L E oo o
'aﬁ%cgu:sggam—' ke
spO0s5Iovumzol B8 S
|-

D.ZE'_LU E S Ow%g =
g e =

GFLOP/s

GFLOP/s

16.0

14.0 -

Opteron 2356
(Barcelona)

12.0

10.0

8.0

6.0

4.0 -

2.0 1

0.0

]
i
LI
11
1]
11D
IniN
[0
]

vELLEGgS50Q0CEL E oA c
P8 EReETQc 80538 8
sswosTOovmol 23 °
o - L2 = L [=% oL Q
as=FL = W o =
e =

16.0

140 —

QS20 Cell Blade
(SPEs)

12.0
10.0 A1
8.0 T
6.0 A
4.0 -

2.0 1

0.0

||||||||||||||||

u)c*—u—*—QQ.CEI*_J(D& c

—-—c Cc Y © —

coascerQc8aoF a3 =8

2eVOSIODUSEES 3
-

DD.ZEl_uJ uz_' g Cuo =
e e =

Fully auto-tuned SpMV
performance across the
suite of matrices

Included SPE/local store
optimized version

Why do some
optimizations work
better on some
architectures?

+Cache/LS/TLB Blocking

+Matrix Compression

+SW Prefetching

+NUMA/Affinity

Naive Pthreads

Naive

The Roofline Performance Model
See Sam Williams PhD Thesis

attainable Gflop/s

256.0 Generic Machine

128.0 < Roof structure
veak DP determined by machine

04.0 /m{a/ < Locations of posts in the
32 0 mul / add iprbalance building are determined

It SIMD by algorithmic intensity
16.0 < Will vary across
w/out ILP algorithms and with

8.0 . :

bandwidth-reducing
4.0 optimizations, such as

better cache re-use
2.0 (tiling), compression
10 techniques

>

% Can use DRAM, network,

0.5 disk,...
Ve Y, Y, 1 2 4 8 16

actual flop:byte ratio

Roofline model for SpMV

(matrix compression)

attainable Gflop/s

attainable Gflop/s

Intel Xeon E5345 Opteron 2356
128 128 .
o (Clovertown) peak DP o (Barcelona) peakDP < Inherent FMA
MD 2 w/ D < Register blocking
32 .
o improves ILP, DLP,
16 _)
A % wlout ILP flop:byte ratio, and FP%
8 . .
------------------- T 4
37
1 —1
Vg Yo M, Yy 1 2 4 8 Vg Yo M, Yy 1 2 4 8
flop:DRAM byte ratio flop:DRAM byte ratio
Sun T2+ T5140 IBM QS20
128 : ; 128
(Victoria Falls) Cell Blade
64 64
32 %32 peak DP
16 peak DP 5 16 w/out SIMD
. e
25% FP S w/out ILP
° 3 12%FP 5
L | o - \
4 o4 | L w/out FMA
I
2 o4 2
1 = 1
Vo Yo My Yy 1 2 4 8 Y g YWy 1, 1 2 4 8

flop:DRAM byte ratio flop:DRAM byte ratio 6

Roofline model for SpMV

(matrix compression)

128

(o)}
IS

32
16

attainable Gflop/s

N B~ 0

%

1

128
64
32
16

attainable Gflop/s

N B~ 00

(Clovertown)

Intel Xeon E5345

128

N

attainable Gflop/s

1/16 1/8 4 1/2 1

flop:DRAM byte ratio

Sun T2+ T514

(Victoria 10

/
/ /
/
' 174
7 >
/ A
7
/
/
7
/

@
\?

attainable Gfl

= W o
A~ 00 OO N P

32
16

N B~ 00

Opteron 2356
(Barcelona)

/A Z i
’ %

p DRAM byte ratio

IBI\/I QS20
Cell Blade

SpMV should run
close to memory
bandwidth

— Time to read
matrix is major
cost

Can we do better?
Can we compute
Ak*x with one read
of A?

If so, this would

— Reduce #
messages

— Reduce memory
bandwidth

—

RAT:

g Uy Y, 12

flop:DRAM byte ratio

4 8

—

Vg g M, Y, 1 2 4 8

flop:DRAM byte ratio

Autotuning: Write Code Generators

Autotuners are code generators plus search

Avoids two unsolved compiler problems: dependence
analysis and accurate performance models

Popular in libraries: Atlas, FFTW, OSKiI,...

Xeon X5550 (Nehalem) NVIDIA C2050 (Fermi)
10241 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1024 STgle-precision peak
5121 512 g
Peak compute
p 256 %ﬂm
{1 28 RTM/waveieqn:
8- 64
% OZ7ptSten |
32 [7pt Stencil
16 GTC/pushi
8 spmv?” fi
4 l\&"—HGTCIbha.gc;
. — 2 —
Upp Vg g W, 1y, 1 2 4 8 16 32 Uy g Vg Yy Y, 1 2 4 8 16 32
Algorithmic intensity: Flops/Word Algorithmic intensity: Flops/Word

Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier,... 8

Finding Good Performance is like finding the Needle in a Haystack

r (num. of rows)

Dense: MFlops(r,c) /

1267 1445 1428 1452 1529 1549 1547 1537

2100 7-1.1 11 11 12 12 1.2
1800 6‘1*.1 11 1.1 1.2 1.2-

1500 § i 1-1 1.1

1200 4
0 g
600

2

il fala

[151m 1.2

el |

300

s 1.1

¢ (num. of cols)

2 3 4 5 6 7 8 1 2345 6

¢ (num. of cols)

Work by Im, Vuduc, Williams, Kamil, Ho,
Demmel, Yelick...

OSKI sparse matrix library: offline search + online evaluation: adding zeros can reduce
storage in blocked format

Tsopf: Fill(r,c) = Effective_MFlops(r,c)

1/2 3 4 56 /7 8
¢ (num. of cols)

2400
2100
1800
1500
1200
900

GO0

300

OSKI and pOSKI: Auto-tuning Sparse Matrix Kernels

(Our approach uses Empirical modeling and search

Sample Dense Matrix-

”

User’s User’s Workload
Matrix hints from program
monitoring

1IIIIIIIIIIIIIIIIII

—— Heuristic
models

isEensEEEEEEEER

To user: Matrix handle for kernel calls

SEJITS: Selective Embedded Just-in-Time Specialization

Productivity app

7 .C :

cc/ld .

N——)
cache

Interpreter

(beyond Perl code generators)

ASP is SEJITS for Python:
Python provides

Front-end parsing

Tools for building strongly-typed IR
Visitor pattern for IR transformation
to backend AST

Code “templates” (like webapps)
Code generation

External compiler support (C++,
CUDA, OpenMP, pthreads, MPI,
Scala)

Caching

Armando Fox’s group, including Shoaib Kamil and Michael Driscoll

Lessons Learned

e Optimizations (not all in OSKI)

— Register blocking, loop unrolling, cache blocking, thread
blocking, reordering, index compression, SIMDization, manual
prefetch, NUMA (“PGAS” on node), matrix splitting, switch-to-
dense, sparse/bit-masked register blocks

— See http://bebop.berkeley.edu for papers
— Straight line code failed to work on Spice ~10 years ago
* 64-bit instructions: 1 load (x), 1 store (y), 1 op
* Vs 1 op and fraction of load/store depending on reuse
* Good news
— Autotuning helps save programmer time

* But the operation is bandwidth limited

— With hardware optimizations (NUMA, prefetch, SIMDization,
threading)

— The rest is about matrix compression
* A problem for local memory and network

12

Avoiding Communication in lterative Solvers

 Consider Sparse Iterative Methods for Ax=b
— Krylov Subspace Methods: GMRES, CG,...

« Solve time dominated by:

— Sparse matrix-vector multiple (SPMV)
* Which even on one processor is dominated by
“‘communication” time to read the matrix
— Global collectives (reductions)

» Global latency-limited

« Can we lower the communication costs?

— Latency: reduce # messages by computing multiple
reductions at once

— Bandwidth to memory, i.e., compute Ax, A%x, ... Akx with one
read of A

Joint work with Jim Demmel, Mark
Hoemmen, Marghoob Mohiyuddin; See 2
PhD thesis for details

13

Communication Avoiding Kernels

The Matrix Powers Kernel : [Ax, A%, ..., A]

 Replace kiterations of y = A-x with [Ax, A%, ..., AX]

A3x o o o o o 06 06 06 0 0 0 06 0 0 0 0 0 0 0o 0 0o 0 o o

A2x o o o O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o

Ax © O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o

* |dea: pick up part of A and x that fit in fast memory, compute each
of k products

 Example: A tridiagonal matrix (a 1D “grid”), n=32, k=3
* General idea works for any “well-partitioned” A

Communication Avoiding Kernels (Sequential

case)
The Matrix Powers Kernel : [Ax, A%, ..., AX]

 Replace k iterations of y = A-x with [Ax, A%, ..., AXX]
* Sequential Algorithm

Step 1 Step 2

A3-x
A2-x

A-X

X

1 2 3 4.
 Example: A tridiagonal, n=32, k=3
e Saves bandwidth (one read of A&x for k steps)
e Saves latency (number of independent read events)

Communication Avoiding Kernels:

(Parallel case)
The Matrix Powers Kernel : [Ax, A%, ..., AX]

 Replace k iterations of y = A-x with [Ax, A%x, ..., A¥x]
* Parallel Algorithm

Proc1 Proc 2

A3-x
A2-x

A-X

X

1 2 3 4.. .. 32
 Example: A tridiagonal, n=32, k=3
* Each processor works on (overlapping) trapezoid
e Saves latency (# of messages); Not bandwidth

But adds redundant computation

Matrix Powers Kernel on a General Matrix

For implicit memory
management (caches)
uses a TSP algorithm for
layout

Joint work with Jim Demmel, Mark Hoemman,
Marghoob Mohiyuddin

* Saves communication for “well partitioned” matrices
e Serial: 0(117) moves of data moves vs. O(k)
» Parallel: O(log p) messages vs. O(k log p)

A*x has higher performance than Ax

__ | Speedups on Intel Clovertown (8 core) B Akx
g 6k'=4§)(0 Bl SpMV |
Q.
Q5 1
Ll
g 4 k=14 —
= 1 _ k=7 k=15
@ 3.5X i 25X 26X k=19
c 3 k=4 k=4 k=3 —4 '
© 1.8X 1.3X 1.5X 17X k=
= 1.3
| -
RS,
—
o1
o
0 ?) (—-3]) ©) © 4 © © ©
e 8 e o 9 © o ¢ 3 32 2
0] () - = Ql X - : - ‘3 i
> = 3 5§ £ : 3 5 E & B
| ' ; g- 1) O r'S) ()
To) (o)) £ ‘= [0 = <
© © 7 (o) o &=
Al o 8
©
=

Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick

s
rer

Minimizing Communication of GMRES to solve Ax=b

« GMRES: find x in span{b,Ab,...,Akb} minimizing || Ax-b ||,

Standard GMRES Communication-avoiding GMRES
for i=1 to k W =[v, Ay, A, ..., AKv)
w=A-v(i-1) .. SpMV [Q,R] = TSQR(W)
MGS(w, v(0),...,v(i-1)) ... “Tall Skinny QR”
update v(i), H build H from R
endfor solve LSQ problem with H

solve LSQ problem with H

Sequential case: #words moved decreases by a factor of k
Parallel case: #messages decreases by a factor of k

eOops — W from power method, precision lost!

Mark Hoemmen, PhD thesis

TSQR: An Architecture-Dependent Algorithm

Wy | - Rp — R
Parallel: w- | Wi |~ Ro — % T Ry,
i W3 | —> R30 v Tl

Sequential: -

SIS
Qm
)

Wo | — Roo P
Dual Core: w= | Wi | =™ Ry —>"00 73 o
W, > Ry 3R,
W S %
L3 ~ Ry

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?
Can choose reduction tree dynamically

Work by Laura Grigori, Jim Demmel, Mark Hoemmen, Julien Langou 20

Matrix Powers Kernel (and TSQR) in GMRES

100 p

1071

Relative norm of residual Ax — b

A — Original GMRES]
a Aas CA-GMRES (Monomial basis) ||

- 009 CA-GMRES (Newton basis)

A A — =
A

A

260 460 660 860
lteration count

A |

A

1000

Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick

21

Communication-Avoiding Krylov Method (GMRES)

Relative runtime, for best (k,t)

with floor(restart length / k)

t

Performance on 8 core Clovertown

Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices,

using 8 threads and restart length 60

4.5 .
Matrix powers
R | I NIRRT SN I S ———— kernel
TSQR
1. | NS USRS SOSSRRUS SRCRRTRRURRI SOt —— Block Gram-
Schmidt
30k Small dense
operations
Sparse matrix-
2.5 vector product
Modified
2.0 L Gram'SChmidt
15 AA
1.0

o
wn

o
o

pwtk bmw xenon cant
Sparse matrix name

1d3pt

shipsec

22

Towards Communication-Avoiding Compilers:
)econp Tala N Matrix N Ta

2.5D MM on BG/P (n=65,536)
100 T I
X 2.5D Broadcast-MM —+—
“———> 'T‘ k - 2.5D Cannon-MM —¢— 1
» 2D MM (Cannon) —¥—
y 80 . ScalLAPACK PDGEMM —&—

<+
N
Percentage of machine peak

#nodes

| <—
Matrix Multiplication code has a 3D iteration space
Each point in the space is a constant computation (*/+)

fori, for j, for k CJi,jl1... A[i,k] ... Bk,j] ...

These are not just “avoiding,” they are “communication-optimal”

23

Generalizing Communication Optimal Transformations to
Arbitrary Loop Nests

1.5D N-Body: Replicate and Reduce The same idea (replicate and
00000 000000 reduce) can be used on (direct)
N-Body code:
0000
000 1D decomposition = “1.5D”
Q000

Speedup of 1.5D N-Body over 1D

Does this work in general?

e Yes, for certain loops and . 8
array expressions g 8K
e Relies on basic result in ;o: 24K
group theory » o

e Compiler work TBD

A Communication-Optimal N-Body Algorithm for Direct Interactions, Driscoll et al, IPDPS’13

24

Generalizing Communication Lower Bounds and Optimal
Algorithms

* For serial matmul, we know #words_moved = Q (n3/M1/2),
attained by tile sizes M¥/2x M*/2

— Where do all the %2’s come from?

 Thm (Christ,Demmel,Knight,Scanlon,Yelick): For any
program that “smells like” nested loops, accessing arrays
with subscripts that are linear functions of the loop indices,
#twords_moved = Q (#titerations/ Me), for some e we can
determine

 Thm (C/D/K/S/Y): Under some assumptions, we can
determine the optimal tiles sizes

* Long term goal: All compilers should generate
communication optimal code from nested loops

25

Communication QOverlap Complements Avoidance

60000 Performance results on Cray XE6
(24K cores, 32k x 32k matrices)
50000
M 2.5D + Overlap
M 2.5D (Avoiding)
40000 ® 2D + Overlap
" M 2D (Original)
o
= 30000
O
20000
10000
0

SUMMA Cannon TRSM Cholesky

* Even with communication-optimal algorithms (minimized bandwidth) there are
still benefits to overlap and other things that speed up networks

« Communication Avoiding and Overlapping for Numerical Linear Algebra,
Georganas et al, SC12

26

Optimality of Communication

Lower bounds, (matching) upper bounds
(algorithms) and a question:

Can we train compilers to do this?

See: http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-61.pdf

Beyond Domain Decomposition
S £D Mustrix Multinl : e/

c = 16 copies

Matrix multiplication on 16,384 nodes of BG/P
Surprises:
 Even Matrix Multiply had room for improvement
* |dea: make copies of C matrix (as in prior 3D

algorithm, but not as many)

e Result is provably optimal in communication
Lesson: Never waste fast memory

Can we generalize for compiler writers?

0 Sy S Ve
EuroPar’11 (Solomonik, Demmel)
SC’11 paper (Solomonik, Bhatele, Demmel) o8

Towards Communication-Avoiding Compilers: Deconstructing
2.5D Matrix Multiply

/ s Tiling the iteration space
« Compute a subcube
« Will need data on faces
(projection of cube, subarrays)
 For s loops inthe nest = s
dimensional space

j* For x dimensional arrays,
A project to x dim space

| <—
Matrix Multiplication code has a 3D iteration space
Each unit cube in the space is a constant computation (*/+)

fori
for j
for k
— CHj ALkl Bk}

29

Deconstructing 2.5D Matrix Multiply

Solomonik & Demmel

z}

sk Tiling in the k dimension
 kloop has dependencies
because C (on the top) is a

}z Left-Hand-Side variable

| <—

g C+=..
« Advantages to tiling in k:
- More parallelism >

j Less synchronization
- Less communication

A

What happens to these dependencies?
- All dependencies are vertical k dim (updating C matrix)
« Serial case: compute vertical block column in order
« Parallel case:
- 2D algorithm (and compilers): never chop k dim
- 2.5 or 3D: Assume + is associative; chop k, which

implies replication of C matrix

30

Beyond Domain Decomposition

 Much of the work on compilers is based on

A
X += ...
X +=
1.
X += ...
2.
3.
X+= ... 4.
| _

owner-computes
— For MM: Divide C into chunks, schedule movement of A/B
— In this case domain decomposition becomes replication

 Ways to compute C “pencil”

Serially

Parallel reduction Standard vectorization trick
Parallel asynchronous (atomic) updates

Or any hybrid of these

* For what types / operators does this work?
“+” is associative for 1,2 rest of RHS is “simple”

— and commutative for 3

Using x for CJi,j] here

31

Lower Bound Idea on C = A*B

[romy, Toledo, Tiskin

/T\
«X C shadow k
"y
e e z g
] 7 o
X !
“A shadow”
| <
“Unit cubes” in black box with gk; is in “A shadow” h; ﬁi,j,k; in 3D set
: j,k) is in “B shadow” if (i,j,k) in 3D set
side lengths x, y and z ‘ i)
= Volume %f blacl¥ box (i,j) is in “C shadow” if (i,j,k) in 3D set
= x*y*z . .
" . 112 Thm (Loomis & Whitney, 1949)
= (#A0s * #Bos * #Cos) # cubes in 3D set = Volume of 3D set
=(xz*zy * yx)"? < (area(A shadow) * area(B shadow) *
area(C shadow)) 12

32

Lower Bound: What is the minimum amount of
communication required?

* Proof from Irony/Toledo/Tiskin (2004)
« Assume fast memory of size M
* Outline (big-O reasoning):

— Segment instruction stream,
Segment 2 each with M loads/stores

— Somehow bound the maximum
—X— number of flops that can be done
in each segment, call it F

— So F - # segments = T = total flops
Segment 3 =2-n3, so #segments=T/F

— So #loads & stores=M -
v #segments =M -T/F

Segment 1

Time

« How much work (F) can we do with
O(M) data?

. 33

Recall optimal sequential Matmul

Naive code
for i=1:n, for j=1:n, for k=1:n, C(i,j)+=A(i,k)*B(k,j)

“Blocked” code
foril =1:b:n, forjl=1:b:n, forkl=1:b:n
fori2 = 0:b-1, forj2 =0:b-1, for k2 =0:b-1
i=il+i2, j=jl1+j2, k=k1l+k2 ~ b xb matmul
C(i,j)+=A(i,k)*B(k,j)

Thm: Picking b = M1/2 attains lower bound:
#twords_moved = Q(n3/M1/2)

Where does 1/2 come from? Can we compute these for arbitrary
programs?

34

Generalizing Communication Lower Bounds and

Optimal Algorithms

For serial matmul, we know #words_moved = Q (n3/M'/2),
attained by tile sizes M¥/2x M1/2

Thm (Christ,Demmel,Knight,Scanlon,Yelick): For any
program that “smells like” nested loops, accessing arrays with
subscripts that are linear functions of the loop indices

#words_moved = Q (#iterations/M°)
for some e we can determine

Thm (C/D/K/S/Y): Under some assumptions, we can determine
the optimal tiles sizes

— E.g., index expressions are just subsets of indices

Long term goal: All compilers should generate communication
optimal code from nested loops

New Theorem applied to Matmul

for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k,j)
Record array indices in matrix A

i j k
1 0 1) A
A=|0 1 1 | B
1 1 0O JC

Solve LP for x = [xi,xj,xk]™: max1™x s.t. Ax<1
— Result: x = [1/2, 1/2,1/2]", 1Tx = 3/2 = 5,15,

Thm: #words_moved = Q(n3/M5+1)= Q(n3/MY/?)
Attained by block sizes M, MY, Mk = M/2, M*/2, M1/2

New Theorem applied to Direct N-Body

e fori=1:n, for j=1:n, F(i) += force(P(i), P(j))
 Record array indices in matrix A

| J

1 0) F
A= |1 0 P(i)
0 1) P()

* Solve LP for x = [xi,xj]": max1™x s.t. Ax<1
— Result: x =[1,1], 17x=2= SHBL

+ Thm: #words_moved = Q(n2/M>"B"1)= (nZ/m1)
Attained by block sizes M*¥,M¥% = M1,M?

New Theorem applied to Random Code

for il=1:n, for i2=1:n, ..., for i6=1:n
Al(il1,i3,i6) += funcl(A2(il1,i2,i4),A3(i2,i3,i5),A4(i3,i4,i6))
A5(i2,i6) += func2(A6(i1,i4,i5),A3(i3,i4,i6))

il i2 i3 i4 i5
Record array indices s 0 1 0 0
in matrix A 1 1 0 1 0

Al
A2

A3,A4
A5
A6

Solve LP for x = [x1,...,x7]": max1™x s.t.Ax<1
— Result: x = [2/7,3/7,1/7,2/7,3/7,4/7], 1'x = 15/7 = 5,55,
Thm: #words_moved = Q(n®/Mm>H8L-1)= Q(nG/M8f7)
Attained by block sizes M?/7,M3/7, M¥/7, M?/7, M3/7, M*/7

General Communication Bound

Given S subset of Z¥, group homomorphisms ¢,, ¢,, ...,
bound |S| in terms of [&,(S)[, |&,(S)], -, [bn(S)]

Def: Holder-Brascamp-Lieb LP (HBL-LP) for s,,...,s,.;:
for all subgroups H<Z¥, rank(H) < X s;*rank(¢;(H))
Thm (Christ/Tao/Carbery/Bennett): Given s,,...,s,,
HEAEOIE

Thm: Given a program with array refs given by ¢,
choose s; to minimize s, = Z; s;subject to HBL-LP. Then

#twords_moved = Q (#iterations/Ms+e-1)

Comments

e Attainability depends on loop dependencies
Best case: none, or associative operators (matmul, nbody)

* Thm: When all ¢, = {subset of indices}, dual of HBL-LP gives optimal
tile sizes:
HBL-LP: minimize 1™s s.t. sT*A2> 17
Dual-HBL-LP: maximize 1™x s.t. A*x<1
Then for sequential algorithm, tile i; by M

e Ex:Matmul:s=[1/2,1/2,1/2]"=x
* Generality:
— Extends to unimodular transforms of indices

— Does not require arrays (as long as the data structures are injective
containers)

— Does not require loops as long as they can model computation

Conclusions

« Communication is expensive and (relative) cost is growing
— Avoid bandwidth (data volume)
— Hide latency or reduce number of messages

* Conceptual model

— Think of computation a set of points in a volume in d-space (d = #
loops in nest)

— What is maximum amount you can do for a fixed surface area
* Theory
— Lower bounds are useful to understand limits
— Many programs (index expressions) still open for upper bounds

41

Bonus Slide #1: Beyond UPC

DAG Scheduling in a distributed (partitioned) memory context
Assignment of work is static; schedule is dynamic
Ordering needs to be imposed on the schedule

— Critical path operation: Panel Factorization

General issue: dynamic scheduling in partitioned memory
— Can deadlock in memory allocation

— “memory constrained” lookahead :
Y Uses a Berkeley extension to UPC

to remotely synchronize

P

O

some edges omitted

-

42

ponus sliae #2: emerging rast rorward cxascale Node
Architecture

System on Chip (SoC) design coming into focus

Low

Memory Capacity Slide from John

Stacks High

on package Bandwidth Shalf

Fat Core
Latency

Thin/Accelerator Cores Optimized
(tiny, simple, massively parallel)
Throughput -Optimized

Bandwidth

storage

NIC on'Board

43

