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DOE leadership in HPC 

•  DOE leads High Performance Computing in the US 
•  Capabilities for science, engineering, and defense 
•  Expertise in mathematics, computer science, modeling 

and simulation and data analytics 

Sequoia at LLNL 

Mira at ANL  

Cielo at LANL/SNL  

Cori at LBNL 
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Titan at ORNL 



 NERSC: Dedicated to DOE Science 
Biology 

Earth 
Systems 

> 7000 users, 700 application codes > 2000 annual publications; 6 Nobels 

Systems architected for science History of data-intensive science 
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Myths of Genomics and HPC 

(And	a	bit	of	computer	science	along	
the	way)	
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Myth #1: Genomic assembly requires 
large shared memory machines 

HPC	systems	can	look	like	shared	
memory	if	you	use	the	right	

algorithms	and	programming	models	
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De Novo genome assembly problem 
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GCTACGGAATAAAACCAGGAACAACAGAGCCAGCAC	

reads 
(input, typically 
100-250 chars) 

Input 

Output 
 The fully assembled genome (or 10s of Ks of bp fragments so 
we can find genes, which are typically longer than the reads) 

ATAAAACCAGGTACAACAGACCCAGCACGGATCCA	
GC		ACGGAATACAACCAGGAACAACAGACCCAGCAC	

GAACAACAGACCCAGCATGGATCCA	
Multiple 
copies  

(20x typical) 

GCTACGGAATAAAACCAGGAACAACAGACCCAGCACGGATCCA 

errors 
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HipMer genome assembly based on Meraculous 
1)  K-mer Analysis 
Histogram fixed-length fragments 
with bloom filters 
 

3) Alignment 
Build a hash table of k-mers in 
contigs and map to reads (seed-
and extend) 
 
4) Scaffolding & Gap Closing 
Build a hash table of contig pairs 
and merge them (local assembly) 
 
 

2) Contig Generation 
Build hash table of k-mers and 
walk as graph 

xxx xx xxxx 

reads 

k-mers 

read-contig 
alignments 

contig-contig 
scaffolds 

contigs 

1	

2	

3	

4	

Chapman, Jarrod A., et al. "Meraculous: de novo genome assembly with short paired-end reads." PloS ONE 6.8 (2011) 



Using HPC for Large Memory Problems 

GenePool	(JGI)	
Large	node	 Cori	Haswell	 Cori	KNL	

Nodes	 1	 1630	 9600	
cores	/	node	 80	cores	 32	cores		 68	cores	

Memory	/	node	 2	TB	 128	GB	 96	GB	
Total	memory	 2	TB	 299	TB	 1060	TB	

Storage	 300	GB	(local)	 30PB	(global)	 30PB	(global)	
Interconnect	 1	Gb/sec	 80	Gb/s	 80	Gb/s	

BisecJon	Bandwidth	 6	TB/s	 45	TB/s	



Shared Memory Thinking on Distributed Memory 

Message	Passing	Programming		
Divide	up	domain	in	pieces	
Compute	one	piece	and	exchange	
	
MPI,	and	many	libraries	

Global	Address	Space	Programming	
Each	start	compuJng	
Grab	whatever	/	whenever	
	
UPC,	UPC++,	CAF,	X10,	Global	Arrays,	
Chapel,	and	more	
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AAC  CF 
ATC  TG 
ACC  GA 
 
TGA  FC 
GAT  CF 
AAT  GF 
 
ATG  CA 
TCT  GA 
 
CCG  FA 
CTG  AT 
TGC  FA 
 

P0	

P1	

Pn	

Input: k-mers and their 
high quality extensions 

Read k-mers & 
extensions 

Distributed 
Hash table 

Store k-mers & 
extensions 

…
 

buckets entries 
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…
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Graph algorithms (hash tables) in assembly 
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Graph construction, traversal, and all later stages are written in UPC to take advantage 
of its global address space 



Using HipMer for first-ever science 

Twitchell	Wetlands	(preliminary)	
•  MetaHipMer	uses	k-mer	lengths	
and	new	scaffolding	approaches	

•  21	libraries,	7.4B	reads,	2.8	TB	
•  34%	reads	assembled	(vs	<	10%)	
•  First	whole	assembly	of	21	
libraries	--	largest	of	its	kind?	

Assembly	of	bread	wheat	genomes	
•  Wheat	genome:	17	Gbp		
•  Assembled	without	

chromosome	sorJng	
•  Over	half	of	conJgs	>	7	kb	and	

scaffolds	>	20	kb	
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Chapman, Jarrod A., et al. “ Genome biology (2015) 



Myth #2: Genomic assembly needs large 
memory, but not large parallelism 

Orders	of	magnitude	speedup	are	
possible	through	parallelism	

12 



Multi-Node Strong Scaling 
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HipMer scales to a thousand nodes (10Ks of cores) on a 
fixed modest sized problem (human genome) 

§  De Novo human 
assembly in 4 
minutes  

§  Uses 1K nodes 
(24-32K cores) 

M.	Ellis,	E.	Georganas,	R.	Egan,	S.	Hofmeyr,	A.	Buluc,	B.	Cook,	L.	Oliker,	K.	Yelick,	“Performance	CharacterizaJon	of	De	Novo	Genome	
Assembly	on	Leading	Parallel	Systems”	Euro	Par	2017.	

Shared HPC systems 
accelerate turnaround 



Don’t try this at home … you need an HPC network 
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●  Requires fast underlying network (e.g. NOT ethernet) 
Ethernet slowdown 18x (on 1Gb switch) and 10x (on 10Gb fiber optic patch) 

18x 
slowdown 10x 

slowdown 

2 Node (10G Ethernet) 

Reference:	M.	Ellis,	E.	Georganas,	R.	Egan,	S.	Hofmeyr,	A.	Buluc,	B.	Cook,	L.	Oliker,	K.	Yelick,	“Performance	CharacterizaJon	of	De	
Novo	Genome	Assembly	on	Leading	Parallel	Systems”	Euro	Par	2017.	



HipMer algorithms scale on and off nodes 

 32
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Chapman, Jarrod A., et al. "Meraculous: de novo genome assembly with short paired-end reads." PloS ONE 6.8 (2011) 



•  Demonstrated MetaHipMer scalability on 1-lane Wetlands 
(above) and multiple synthetic metagenome data sets 

•  New connected components oNo removes above bottleneck 
•  New HMM-based scaffolder aids ribosomal assembly 

100	
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Scaling	of	Wetlands	(one	lane)	on	Edison	
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without	oNo	

linear	

X24 cores per node 

MetaHipMer at Scale: Amdahl’s Law Strikes 



Myth #3: HPC is just about solving the 
same problems faster 

The	memory	size	and	speed	enables	
improved	quality,	new	approaches,	

and	new	science	
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Pan-genome studies reveal intra-species diversity 

150 de novo assemblies of 
individuals in Denmark 
•  Many genes not in reference 
•  91.6% of insertions ≥50 bp 

were novel 
•  Reveals previous deletion bias 

L	Marehy	et	al.	Nature	1–5	(2017)	

54 de novo assemblies of the 
grass Brachypodium distachyon 
•  Nearly 2x the number of genes 

found in any individual genome 
•  Many shell genes species-wide are 

core within a subpopulation.  

Gordon	et	al.	Nature	CommunicaJons,	2017	



HipMer enables parameter exploration in large 
genomes 

271 Mb 

271 Mb Assembled	Genome	Size	

Different	parameters	over	10	samples	

Summary	from	Sean	Gordon	(JGI,	now	Zymergen)	
1.  	HipMer	is	faster	using	fewer	resources 

2.  	IteraFve	kmer	size	and	iteraFve	scaffolding	improves	
assembly	metrics 

3.  	Combining	several	low	depth,	related	samples,	yields	
good	assemblies 

Assembled	Genome	Size	

N50	
ConJg	

size	distribuJon	

Brachypodium distachyon: Different 
populations grown under the same 
conditions differ in phenotype 



Pan-genomics needs high performance assembly 
Assembling	many	genomes	from	different	populaJons	
allows	us	to	capture	the	majority	of	genes	in	the	species	

Rice 

B.	stacei	
110	B.	
distachyon	
genomes	

B.	hybridum	
D	genome		
(8	genomes) 

B.	hybridum	
S	genome		
(8	genomes) 

Problem:  De novo assembly 
of hundreds of large genomes 
would take years to compute! 
HipMer allows us to make 
100s of assemblies 

S. Gordon et al:  Bits of the two subgenomes are lost over time in the hybrid -- can study this evolution    
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Gene-based pan-genome with clustering 

26,125	pan-genes	that	are	not	in	the	
reference	genome	

CDS	sequences	from	genes	are	clustered	by	an	orthoMCL-like	algorithm	
61,155	pan-genome	clusters	

Pan-genes = representative 
sequence per cluster 



Problem: Identify gene/protein families at scale  
•  A	protein	family:	group	of	proteins	with	common	evoluJonary	

origin,	reflected	by	similar	funcJons,	sequence	or	structure	

	
•  Desired	scale:	10s	of	billions	of	genes/proteins,	trillions	of	

nonzero	pairwise	similariJes	(“all	metagenomes”)	
•  Today:	47M	genes	took	10	days	before	aborJng	(est.	45	days)	

22 

Input: pairwise similarities  
between proteins (sparse) 

Output: clusters of  
similar proteins 

HipMCL work by Aydın Buluç (ECRP) and Ariful Azad 



Scalable Distributed Memory, SpGEMM with 
Thresholding 	

23	
SIAM	ALA	2015	

x	 	=	

100K	
25K	

20K	

100K	

A	 B	 C	

Processor	Grid	p × p

•  Parts	of	the	result	is	produced	and	pruned		
•  Memory	requirement	can	be	significantly	reduced	by	increasing	k	
•  However,	A	is	needed	to	be	broadcasted	k	Jmes	
•  With	k=20:	MCL	ran	on	64	nodes	of	Cori	in	about	20	minutes	

Split	B	into	k	pieces	



HipMCL is highly scalable 

•  Full	graph	47M	genes	(nodes),	10B	nonzeros	(edges),	1.8	PB		
•  Projected	to	take	47	days	on	previous	shared	memory	code	
•  1	hour	with	HipMCL	–	1000x	speedup!	

24 
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Reference: A. Azad, G. Pavlopoulos, C. Ouzounis, N. Kyrpides, and A Buluç. HipMCL: A high-performance parallel 
implementation of the Markov clustering algorithm for large-scale networks. Nucleic Acids Research, 2018	



Using HipMCL for first-ever science 

•  Science	impact:	HipMCL	can	easily	cluster	protein	similarity	
networks	with	100	billion	edges	that	were	impossible	to	
cluster	with	prior	approaches,	enabling	unprecedented	
discovery	in	Biology.		

•  HPC	impact:	The	computaJonal	need	in	biological	clustering	
is	reaching	exascale.		

Data	 Proteins	
(x106)	

Edges	
(x109)	

Clusters	
(x106)	

Fme	
(hr)	

Cori	KNL	
nodes	

Isolates	 70	 68	 2.9	 2.4	 2K	

Meta-Clust50	 282	 37	 41.5	 3.2	 2K	

Reference: A. Azad, G. Pavlopoulos, C. Ouzounis, N. Kyrpides, and A Buluç. HipMCL: A high-performance parallel 
implementation of the Markov clustering algorithm for large-scale networks. Nucleic Acids Research, 2018	



Myth #4: Genome alignment should be 
done in a cloud or a cheap cluster 

Depends	on	the	size	of	the	data,	
especially	the	reference	

26 



Speeding up sequence comparison across nodes 

•  BLAST	is	~41%	of	the	JGI	compuJng	workload	
•  BLAST	is	pleasingly	parallel	–	can	be	broken	
into	independent	chunks	

27 2/26/18 

Widely-used tool for distributing 
compute tasks  

SparkBLAST implementation by Chris 
Beecroft, Data Management Group, 
Genomic Technologies Figure: SparkBLAST is ~15X faster on 16 

nodes than on a single core enabling 
significantly higher throughput 



1.  Finds both desired targets and (unintentional) off-targets 
2.  Used seed-and-extend algorithm (also in HipMer) 

•  Build an index of them using fixed-length seeds 
•  Locate matches (tandem in CRISPR work) 
•  Extend (e.g. Smith-Waterman), which could run on GPUs 

3.  They use 3 week on 15K cores for 1 human genome and single guide! 

Target and Off-Target CRISPR guide analyses 

28 
J. Listgarten et al, Nature Biomedical Engineering (2018) 
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score model are given in the Online Methods. Note that indels contribute to the off-target 
problem to a much lesser extent3, hence we have focused our modeling efforts on mismatches. 

We evaluated Elevation-score using two independent data sets generated from 
genome-wide unbiased assays—one based on GUIDE-Seq3, and the other an aggregated data 
set from Haeussler et al.9 Elevation-score outperformed all other models (CFD1, the current 
state-of-the-art, Hsu-Zhang2, and CCTop7) in predicting off-target activity (Figure 1). Note 
that for off-target prediction it is generally more damaging to mistake a truly active off-target 
site for an inactive one, rather than the other way around, because only the first error can 
disrupt the cell or confound experimental interpretation, while the second may only require 
designing another guide. Consequently, we chose an evaluation measure which accounts for 
this asymmetry—the weighted Spearman correlation, where each guide-target pair is 
weighted by an amount which is a (monotonic) function of its measured activity. Because the 
precise asymmetry is not a priori known and may vary for different applications, we varied 
the weight continuously between two extremes: from being directly proportional to the 
measured activity (such that false negatives effectively do not count relative to false 
positives), to a uniform weighting (i.e., yielding standard Spearman correlation). 

 
a       b 

 
Figure 1. Guide-target pair scoring. Comparison of Elevation-score to other methods, evaluated 
using a weighted Spearman correlation between predictions and assay measurements. The horizontal 
axis shows different weights in the weighted Spearman—at the far left the weight is effectively 
proportional to the rank-normalized GUIDE-Seq counts/cutting frequency, while at the far right the 
weight is effectively uniform, yielding a traditional Spearman correlation. For ease of visualization, the 
vertical axis denotes the percent improvement of each model over CCTOP, which by design thus lies 
constant at zero. (a) CD33 and GUIDE-Seq data were used to train, while Hauessler et al data (after 
removing the GUIDE-Seq) were used to test. (b) the roles of the GUIDE-Seq and Haeussler data are 
reversed from a. The final Elevation-score model deployed in our cloud service uses the model trained 
on GUIDE-Seq data. Note that respectively only 0.12% and 0.51% of count values in GUIDE-Seq and 
Hauessler are non-zero, making the actual Spearman correlation difficult to interpret. For 
completeness, however, the right-most points correspond to a correlation of respectively 0.125, 
0.111, 0.010 and 0.070 for Elevation, CFD, Hsu-Zhang and CCTOP (left plot) and 0.059, 0.057, 0.053 
and 0.043 (right plot). The p-values for each correlation surpassed the floating point error and were 
reported as p=0.0 in all cases, demonstrating that despite the somewhat low correlations, a 
tremendous amount of signal is present. 
 

For first-layer (single-mismatch) model features we used the position of the mismatch, 
the nucleotide identities of the mismatch, the joint position and identities of the mismatch in a 
single feature, and whether the mutation was a transition or transversion. The importance of 
these features is shown in Supplementary Figure 1. It is interesting to note that using both the 
joint “position and mismatch nucleotide identity” features—those effectively used by CFD—

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/078253doi: bioRxiv preprint first posted online Oct. 5, 2016; 



merAligner for large / dynamic references 

Design	philosophy:	merAligner	used	in	HipMer	parallelizes	the	end-to-end		
1.  Each	processor	is	assigned	a	porJon	of	the	conJgs	(reference)	
2.  Processors	build	a	global	distributed	seed	index	of	the	conJgs	in	parallel	

•  OpFmizaFon:	AggregaJng	stores	opJmizaJon.	
3.  Each	processor	is	assigned	one	porJon	of	the	reads:	

•  Extracts	seeds	and	performs	lookups	in	the	distributed	seed	index.	
•  Fetches	candidate	conJgs	and	locally	performs	alignments	

29 

Reads 
(queries) 

Contig 



GOTTCHA Metagenome Comparison Tool  

•  Represents	metagenome	by	taxonomy	
–  Expensive	all-to-all	against	database	
– Uses	MerAligner	(HPC	aligner	in	HipMer)	

30 

Patrick Chain’s group at LANL; MerAlinger integration by Migun Shakya (LANL) with Steve Hofmeyr (LBNL)  



Myth #5: Machine Learning doesn’t need 
HPC 

Large-scale	staRsRcal	models,	
including	both	deep	and	tradiRonal	

learning	can	benefit	

31 



Learn the relationship between 
features with Graphical Model 
Estimator 

32 Source: https://media4.s-nbcnews.com/i/newscms/2017_25/958456/150401-dna-strand-
mn-1645_9d74198e59853eb79be3124a876ad4fd.jpg	



Communication Avoiding “HP-CONCORD” 

33 

Best previous 
algorithm (1 node) 

Solve previously intractable problems using clever algorithms and HPC 

BigQUIC 
1 node 
2 nodes 
4 nodes 
16 nodes 
64 nodes 

Our algorithm (HP-
CONCORD) 



Discovering regions and co-region 

34 

Koanantakool, et al, AISTAT 2018, to appear. 

Resting-state fMRI 
91K x 91K Sample 
Covariance matrix 
 

•  91K data points (2mm 
x 2mm x 2mm cubes) 

•  5K time points (every 
0.7 sections for 2 hour) 

•  Averaged over 1,200 
subjects 



Derived from  S. Min et al, Briefings in Bioinformatics 

Deep Learning in Bioinformati Deep Learning in Bioinformatic 

Protein	structure	predicJon	
Gene	expression	regulaJon	

SegmentaJon	
Brain	decoding	

Anomaly	classificaJon	

Omics	

Bioimaging	

		Signal	processing	



Deep Learning using HPC for Extreme Weather Events 

Ground Truth vs Prediction 

•  First	applicaJon	of	supervised	
and	semi-supervised	
architectures	for	finding	
paherns	in	CAM5	data		

•  DL	methods	are	capable	of	
extracJng	weather	paherns	
with	85-99%	accuracy	(NIPS’17	
paper)	

•  ImplementaJon	scaled	to	
15PF	on	Cori	Phase	II	(SC’17	
paper)	

Prabhat et al  



Breaking the curse of dimensionality 

10M	GeneJc	
Variants	in	>40k	

genes	

Genes	do	not	work	in	
isolaJon:	10170	potenJal	
interacJons	among	

variants	

Linking	geneJc	variants	
to	phenotypes	requires	
the	exploraJon	of	an	
enormous	space	

To obtain accuracy and 
insight, we are 
developing procedures 
to detect interactions of 
any form or order at the 
same computational cost 
as main effects 
 
Explainable-AI 

Dan	Jacobson/Ben	Brown	
ORNL/LBNL	



Myth #6: Exascale computing is only 
about building big machines 

The	Exascale	CompuRng	Project	is	
developing	novel	applicaRons	and	

features,	soWware,	and	hardware	R&D	

38 



  “Moore’s Law” is Running Out 

Transistor density is reaching its limit 

10

100

1,000

10,000

100,000

1,000,000

1985 1990 1995 2000 2005 2010 2015 2020
Year of Introduction

 Expectation 
Gap 

Clock speed increases have 
ended 

Power	and	cost	of	compuFng	are	no	longer	dropping	
at	historic	rates	



Computing is energy-constrained 
At	~$1M	per	MW,	energy	costs	are	substanJal	
•  1	petaflop	in	2008	used	3	MW	
•  1	exaflop	in	2018	at	200	MW	“usual	chip	scaling”	

40 

The “New Normal” for Computer Architecture
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Goal: 1 Exaflop in 20 MW  
      = 20 pJ / operation 
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•  Independent of machine size  
•  Independent of # cores used 

per application 
•  But “operations” need to be 

useful ones 
 

Missing TaihueLight at 15MW 
and Tihanhe-2 at 18MW 



Energy Limits Computer Performance? 

41 



Use of manycore processors and accelerators 

•  Mapping	alignment,	similarity	calculaJons,	etc.,	to	energy	
efficient	manycore	and	accelerator	architectures	

- 42 - 

Bill Arndt, NERSC 

KNL manycore architecture for 
hmmsearch at JGI 

Joubert, Nance, Weighill, 
Jacobson, ORNL 

Table 2: Maximum performance, 2-way Proportional Similarity metric

method operations comparisons
per second per second

double precision 3.40⇥ 1015 1.70⇥ 1015

single precision 8.59⇥ 1015 4.29⇥ 1015

In practice, the use of a random permutation might be expected to result in some performance variability
based on the specific permutation used; in production, if needed one could in principle save a “good”
permutation for a given node count and problem setup for subsequent reuse. However, we believe code
modifications are possible which would make it unnecessary to use a random permutation of nodes: by an
adjustment of the code it should be possible to recast the communication pattern as a nearest neighbor
communication and then use known methods to map the communication pattern optimally to the network,
see, e.g. [33]; this will be a topic of future study. In any case, as with other parallel applications, optimizing
communications in a multiuser environment is challenging insofar as the network bandwidth is shared by
other users and furthermore it is not always possible for a user to reserve a communication-optimal subset
of nodes for job execution.

Figure 6: Proportional Similarity metric 2-way double precision weak scaling

The single precision test cases use n
f

= 10, 000 elements per vector, n
vp

= 12, 288 vectors per node and
load ` = 13. Figure 7 shows the weak scaling results. Results are qualitatively similar to the double precision
case, with rate over twice as fast, owing to the use of single precision. The performance loss is only 41% as
the node count is increased by nearly three orders of magnitude. The implied operation rate for large cases
derived from Table 1 is roughly 991 GOps/sec per node, to which these rates should be compared. The
maximum comparison rate for the largest case is 4.29 petacomparisons per second.

Figure 7: Proportional Similarity metric 2-way single precision weak scaling
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3-way similarity analysis 
Weak scaling (fixed size problem 

per node) on Titan w/ GPUs 



Data Movement is Expensive 

43 Source: http://slideplayer.com/slide/7541288/ 

120	pJ	

2000	pJ	

250	pJ	

~2500	pJ	

6	pJ	

Cost	to	move	data	off-chip		
			to	a	neighboring	node	

Cost	to	move	data	off-chip		
			into	DRAM	

Cost	to	move	data	off-chip,		
			but	stay	within	the	package	(SMP)	

Cost	to	move	data	20	mm	on-chip	

Typical	cost	of	a	single	floaJng	point	operaJon	

Cost	to	move	data	1	mm	on-chip	

Hierarchical	energy	costs.	

100	pJ	



Photon	Science	

Microbiome	

Cancer	

Earthquakes	 Subsurface	

Breakthrough Science Challenges for Exascale 
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Simulation Data 

Materials	

Chemistry	

Carbon	Capture	

Accelerators	

Astrophysics	

Cosmology	

SimulaJon	
and	Data	

Urban	

Power	grid	

CombusFon	



ExaBiome: Exascale Solutions to Microbiome Analysis 
•  Use	HPC	algorithms	and	systems	for	orders	of	magnitude	
speedup	and	to	solve	previously	intractable	problems	

Problem	
Domain	

Metagenome	
Assembly	

Protein	Clustering	 ComparaFve		Analysis	

Exascale 
goal


Assemble millions 
of metagenomes 
from whole data


Cluster	billions	of	
proteins	

Use	fast	alignment	and	
annotaJon	for	Jme-sensiJve	
analyses	

Computing 
techniques


Graph algorithms, 
Hash Tables, 
alignment (Smith-
Waterman)


Machine learning 
(clustering), 
sparse linear 
algebra / graphs 


Alignment, Machine 
learning (dimensionality 
reduction), linear algebra
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Superfacility: A vision for DOE Science 
Facilities and leveraging Expertise 

46 



Computing and 
Data Facilities 

Expertise 

User Community 

Experimental 
Facilities 

Superfacility for Major Experimental Facilities 

A single interconnected 
“facility” where data is 
acquired, stored, analyzed 
and served 

Methods, models, analytics, and software 

Sequencers 

Light Sources 

Telescopes 

Particle 
Detectors 

Microscopes 
Execution plan: one science 
area at a time 



NERSC / Joint Genome Institute partnership 
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Bioenergy Carbon Cycling  Biogeochemistry 

DNA  
Sequencing 

Advanced 
Genomic 

Technologies 
Computational 

Analysis 
DNA Synthesis 

NERSC staff run 
JGI computing Annotation, Search Clustering   Phylogeny 

GAAG Plant MEP RnD Fungal IMG MGM

SDM

QAQC/RQC

Web Services (Mycocosm, 
Phytozome, IMG M/ER)

Genome 
Portal

External 
CollaboratorsPMO

Archave, Metadata Alignment, Assembly HPC
: 



JGI-NERSC Microbiome Data Science FICUS 
JGI’s	metagenomic	data	and	
NERSC’s	Cori	supercompuFng	
•  6	projects	underway	

–  Patricia	Babbih	UCSF	
–  David	Baker	UW,	Sea\le	
–  Phillip	Brooks	UC	Davis	
–  Ed	DeLong	UH	Manoa	
–  Steve	Hallam	UBC	Vancouver	
–  Kostas	KonstanJnidis	Georgia	Tech		

2/26/18 49 

A	sequence	similarity	network	of	a	
family	of	enzymes	from	the	
nitroreductase	superfamily	(some	
nitroreductases	can	reduce	TNT,	a	
significant	soil	contaminant).	Source:	
Patsy	Babbih	



Structures: 
28 million 

compounds 

Dan	Jacobson,	ORNL	

From Systems Biology to 3D Structural Interactions 



Kbase: interface to collaborative, reproducible science 
In KBase, you can create shareable, reproducible workflows called “Narratives” 
that include data, analysis steps, results, visualizations and commentary. 

Analysis	
steps	

Data	

Version	control	
and	provenance	

Commentary	

Sharing	

VisualizaFons	

Custom	scripts	



HPC Transformative for Genomics 

•  Genome	analysis	is	an	HPC	problem	
– De	novo	assembly	for	single	genomes,	
metagenomes,	and	pan	genomes		

– Protein	clustering	
– Alignment	
– All-to-all	comparisons	
– StaJsJcal	machine	learning	(tradiJonal)	
– Deep	learning	

•  Enables	new	approaches,	new	facility	models,	
and	new	science	
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