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DOE leadership in HPC
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 DOE leads High Performance Computing in the US
« Capabilities for science, engineering, and defense

* Expertise in mathematics, computer science, modeling
and simulation and data analytics




NERSC: Dedicated to DOE Science N&RSC

Biology
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Math CS
Accel. Physics  pep

Combustion
Life Science
Astrophysi

Geosciences

Earth
( Systems
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> 7000 users, 700 application codes 2000 annual publications; 6 Nobels |

History of data-intensive science

Systems architected for science



Myths of Genomics and HPC

(And a bit of computer science along
the way)



Myth #1: Genomic assembly requires
large shared memory machines

HPC systems can look like shared
memory if you use the right
algorithms and programming models



De Novo genome assembly problem

Input reads

(input, typically
100-250 chars)

GCTACGGAATAAAACCAGGAACAACAGAGCCAGCAC

ATAAAACCAGGTACAACAGACCCAGCACGGATCCA

GC_ACGGAATACAACCAGGAACAACAGACCCAGCAC Multiple
\ / GAACAACAGACCCAGCATGGATCCA copies

(20x typical)
errors

GCTACGGAATAAAACCAGGAACAACAGACCCAGCACGGATCCA

Output

The fully assembled genome (or 10s of Ks of bp fragments so
we can find genes, which are typically longer than the reads)
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HipMer genome assembly based on Meraculous

reads — e e 1) K-mer Analysis

Histogram fixed-length fragments
with bloom filters

k-mers 2) Contig Generation
Build hash table of k-mers and
contigs walk as graph

3) Alignment
Build a hash table of k-mers in

read-contig —'—'— — | —_— p—

alignments || s i 7 ——— CONtigs and map to reads (seed-
T 1 T T andextend)
sontig-contig # 4) Scaffolding & Gap Closing
: Build a hash table of contig pairs
and merge them (local assembly)

Chapman, Jarrod A., et al. "Meraculous: de novo genome assembly with short paired-end reads." PloS ONE 6.8 (2011) /



Using HPC for Large Memory Problems

e

GenePool (JGI)

Large node Cori Haswell Cori KNL
Nodes 1 1630 9600
cores / node 80 cores 32 cores
Memory / node 96 GB
Total memor 1060 TB
Storage 300 GB (local) | 30PB (global) | 30PB (global)
Interconnect 1 Gb/sec 80 Gb/s 80 Gb/s

Bisection Bandwidth 6 TB/s 45 TB/s




Shared Memory Thinking on Distributed Memory

Message Passing Programming Global Address Space Programming
Divide up domain in pieces Each start computing

Compute one piece and exchange Grab whatever / whenever

MPI, and many libraries UPC, UPC++, CAF, X10, Global Arrays,

Chapel, and more



Graph algorithms (hash tables) in assembly

Graph construction, traversal, and all later stages are written in UPC to take advantage
of its global address space
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Using HipMer for first-ever science

Assembly of bread wheat genomes Twitchell Wetlands (preliminary)

* Wheat genome: 17 Gbp  MetaHipMer uses k-mer lengths
e Assembled without and new scaffolding approaches
chromosome sorting e 21 libraries, 7.4B reads, 2.8 TB

* Over half of contigs > 7 kb and e 34% reads assembled (vs < 10%)
scaffolds > 20 kb * First whole assembly of 21

. e . TRrEN
Chapman, Jarrod A., et al. “ Genome biology (2015) libraries largeSt of its kind:
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Myth #2: Genomic assembly needs large
memory, but not large parallelism

Orders of magnitude speedup are
possible through parallelism



Multi-Node Strong Scaling

HipMer scales to a thousand nodes (10Ks of cores) on a
fixed modest sized problem (human genome)

4096

©Cray XC40 - Aries

\ L, &Cray XC30 - Aries |

Cray XK7 - Gemini

= De Novo human
assembly in 4
minutes

= Uses 1K nodes
(24-32K cores)

N
o
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(0.0)

Total Runtime (Seconds)
[EN
o
)
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—_
N

Shared HPC systems 256 w ( w w

accelerate turnaround 32 64 128 256 512 1024
# Nodes

M. Ellis, E. Georganas, R. Egan, S. Hofmeyr, A. Buluc, B. Cook, L. Oliker, K. Yelick, “Performance Characterization of De Novo Genomﬁ:3
Assembly on Leading Parallel Systems” Euro Par 2017.



Don’t try this at home ... you need an HPC network

e Requires fast underlying network (e.g. NOT ethernet)
Ethernet slowdown 18x (on 1Gb switch) and 10x (on 10Gb fiber optic patch)
16000
14000
12000

10000
18x

3000 glowdown

10x

6000
slowdown

4000

Total Runtime (seconds)

2000

0
1 Node 2 Node (1GB Ethernet) 1 Node 2 Node (10G Ethernet)

Reference: M. Ellis, E. Georganas, R. Egan, S. Hofmeyr, A. Buluc, B. Cook, L. Oliker, K. Yelick, “Performance Characterization of De
Novo Genome Assembly on Leading Parallel Systems” Euro Par 2017.



HipMer algorithms scale on and off nodes

16384 Lo overall time 7

'] -
uuu"'n,,““ kmer analySIS snnnfEuam
8192 - et {'u.,,,,,',,',i,‘;' rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr contig generation =ssssessa -
", scaffolding
; . .
4096 R "',',q,.,.,,,,,““ ,,,,,,,,,, ideal overall time mmimnn |

960 1920 3840 7680 15360
Number of Cores

Speedup for wheat genomes on up to 15K cores

Chapman, Jarrod A., et al. "Meraculous: de novo genome assembly with short paired-end reads." PloS ONE 6.8 (2011)



MetaHipMer at Scale: Amdahl’s Law Strikes

Scaling of Wetlands (one lane) on Edison

10000 \

1000

—Qverall

Time (s)

—without oNo

linear

100
64 128 256 512 1024 1536 2048

Nodes  X24 cores per node

« Demonstrated MetaHipMer scalability on 1-lane Wetlands
(above) and multiple synthetic metagenome data sets

* New connected components oNo removes above bottleneck
- New HMM-based scaffolder aids ribosomal assembly



Myth #3: HPC is just about solving the
same problems faster

The memory size and speed enables
improved quality, new approaches,
and new science



Pan-genome studies reveal intra-species diversity

150 de novo assemblies of 54 de novo assemblies of the
individuals in Denmark grass Brachypodium distachyon
. Manz/ genes not in reference . Nearly 2x the number of genes
* 91.6% of insertions 250 bp found in any individual genome
were novel ..+ Many shell genes species-wide are
* Reveals previous deletion bias core within a subpopulation.
SNV 1.507 3;7 1:?651 core T+ __ core $+
10 Indel 101 52 1‘559 : 80 678 ’OO"@
§ &7 267 1102 NG
S /o
2 13648 178 239
5 20 e Y
2 10,
G 80
01

20 25 30 35 4
Age of parent (years)

L Maretty et al. Nature 1-5 (2017) Gordon et al. Nature Communications, 2017



HipMer enables parameter exploration in large

Brachy_podium distachyon: Different Assembled Genome Size 271 Mb
populations grown under the same
conditions differ in phenotype

ﬂf i ﬁ’ ¥ @ ifif ¥

50M
\\\s / \v‘/{ \ Y/ l“,;\\;‘l' W/ &; wyr,
s ¥ tE . bV
¥ ¥ ¢ ¥ ¥ V¥ anferent parametersover 105amp|es
Summary from Sean Gordon (JGI, now Zymergen) Assembled Genome Size

1. HipMer is faster using fewer resources

2. Iterative kmer size and iterative scaffolding improves
assembly metrics

3. Combining several low depth, related samples, yields Contig
good assemblies N50 size distribution




Pan-genomics needs high performance assembly

Assembling many genomes from different populations
allows us to capture the majority of genes in the species

Problem: De novo assembly
of hundreds of large genomes ““F‘“ﬂ" Rice
would take years to compute! L %ﬂ

HipMer allows us to make
100s of assemblies

110 B.

distachyon

genomes

B. hybridum : .hybridum
D genome L L 18 S genome
(8 genomes) © 7 (8 genomes)

S. Gordon et al: Bits of the two subgenomes are lost over time in the hybrid -- can study this evolution



Gene-based pan-genome with clustering

CDS sequences from genes are clustered by an orthoMCL-like algorithm
61,155 pan-genome clusters

Pan-genes = representative
sequence per cluster

— 26,125 pan-genes that are not in the
reference genome

Gene clusters




Problem: Identify gene/protein families at scale

* A protein family: group of proteins with common evolutionary
origin, reflected by similar functions, sequence or structure

Input: pairwise similarities Output: clusters of
between proteins (sparse) similar proteins
3 K
P o 3 Rl
Jon o°° © ’o: OOI " ()
e I > B X
P o080 ‘:}:.c HV / {
a GQ-:DO:AO C \ N, i
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* Desired scale: 10s of billions of genes/proteins, trillions of
nonzero pairwise similarities (“all metagenomes”)

 Today: 47M genes took 10 days before aborting (est. 45 days)

HipMCL work by Aydin Bulu¢ (ECRP) and Ariful Azad
22



Scalable Distributed Memory, SpGEMM with

Thresholding
\/; X \/; Processor Grid

25K
D > 100K

Split B into k pieces

A4
_ i 20K

x 100K -_—

A 3 C
e Parts of the result is produced and pruned
* Memory requirement can be significantly reduced by increasing k

* However, A is needed to be broadcasted k times
 With k=20: MCL ran on 64 nodes of Cori in about 20 minutes



HipMCL is highly scalable

=—Graph/32 -#-Graph/16 —*—Graph/8 =><Graph/4 =*=Graph/2

1 T T T T T T T
1 2 4 8 16 32 64 128 256 912 1024

Number of Nodes (24 cores/node)

* Full graph 47M genes (nodes), 10B nonzeros (edges), 1.8 PB

* Projected to take 47 days on previous shared memory code
* 1 hour with HipMCL — 1000x speedup!

Reference: A. Azad, G. Pavlopoulos, C. Ouzounis, N. Kyrpides, and A Bulug. HipMCL: A high-performance parallel
implementation of the Markov clustering algorithm for large-scale networks. Nucleic Acids Research, 2018



Using HipMCL for first-ever science

Data Proteins | Edges | Clusters | time | Cori KNL
(x10) | (x10°) | (x10%) | (hr) | nodes

Isolates 70 68 2.9 2.4 2K

Meta-Clust50| 282 37 41.5 | 3.2 2K

® Science impact: HipMCL can easily cluster protein similarity
networks with 100 billion edges that were impossible to
cluster with prior approaches, enabling unprecedented
discovery in Biology.

® HPC impact: The computational need in biological clustering
is reaching exascale.

Reference: A. Azad, G. Pavlopoulos, C. Ouzounis, N. Kyrpides, and A Bulug. HipMCL: A high-performance parallel
implementation of the Markov clustering algorithm for large-scale networks. Nucleic Acids Research, 2018



Myth #4: Genome alighment should be
done in a cloud or a cheap cluster

Depends on the size of the data,
especially the reference



Speeding up sequence comparison across nodes

e BLAST is ~41% of the JGI computing workload

 BLAST is pleasingly parallel - can be broken
into ind e pe N d e nt Ch un kS O SparkBLAST: Permafrost x RefSeq Overall Time

SEETKE

Widely-used tool for distributing
compute tasks

24:00:00

16:00:00

Time

8:00:00

0:00:00
4 8 12 16

Partitions / Compute Nodes Used

SparkBLAST implementation by Chris

Beecroft, Data Management Group,

Genomic Technologies Figure: SparkBLAST is ~15X faster on 16
nodes than on a single core enabling

significantly higher throughput

2/26/18 27



Target and Off-Target CRISPR guide analyses
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Finds both desired targets and (unintentional) off-targets

Used seed-and-extend algorithm (also in HipMer)

* Build an index of them using fixed-length seeds

 Locate matches (tandem in CRISPR work)

 Extend (e.g. Smith-Waterman), which could run on GPUs

3. They use 3 week on 15K cores for 1 human genome and single guide!

J. Listgarten et al, Nature Biomedical Engineering (2018)
28
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merAligner for large / dynamic references

F-------------‘

Contig |

Design philosophy: merAligner used in HipMer parallelizes the end-to-end

1. Each processor is assigned a portion of the contigs (reference)

2. Processors build a global distributed seed index of the contigs in parallel
 Optimization: Aggregating stores optimization.

3. Each processor is assigned one portion of the reads:
Extracts seeds and performs lookups in the distributed seed index.

 Fetches candidate contigs and locally performs alignments
29



GOTTCHA Metagenome Comparison Tool

gottcha-speDB-b
gottcha-strDB-b
metaphlan
gottcha-speDB-v

kraken mini
I gottcha-strDB-v

bwa

Human endogenous retrovirus K
Escherichia coli
Streptococcus parasanguinis :
Porphyromonas endodontalis 3
Streptococcus salivarius 2
Prevotella melaninogenica
Prevotella denticola
[ | Prevotella oris
Prevotella intermedia
I Veillonella atypica
Prevotella tannerae
Veillonella parvula
Prevotella sp. oral taxon 299

Filifactor alocis . .., DU

<

N\
O

Streptococcus anginosus
Propionibacterium acnes
Streptococcus oralis
Tannerella forsvthia

* Represents metagenome by taxonomy
— Expensive all-to-all against database
— Uses MerAligner (HPC aligner in HipMer)

Patrick Chain’s group at LANL; MerAlinger integration by Migun Shakya (LANL) with Steve Hofmeyr (LBNL)
30



Myth #5: Machine Learning doesn’t need
HPC

Large-scale statistical models,
including both deep and traditional
learning can benefit



Learn the relationship between
features with Graphical Model
Estimator

Source: https://mediad.s-nbcnews.com/i/newscms/2017_25/958456/150401-dna-strand-
mn-1645_9d74198e59853eb79be3124a876ad4fd.jpg



Communication Avoiding “HP-CONCORD”

Random graph on Edison (n = 100, 60 nnz/row)

262144 T I T T !
| —— ?'ﬁg’d%'c Best previous
65536 F =% 5 odes i € algorithm (1 node)
I 4 nodes |
oo [ —— el T
o 4096 S ***************** *************
O I 5 3 5 s ]
S 1024
8 I . Our algorithm (HP-
@£ = | CONCORD
S 256 )
£ '
— 64
16 L . ------------------------ ----------------------
N | | | i I
10k 20k 40k 80k 160k 320k

p (#features)
Solve previously intractable problems using clever algorithms and HPC



Discovering regions and co-region

Resting-state fMRI
91K x 91K Sample
Covariance matrix

HP-CONCORD +
Persistent Homology

+ 91K data points (2mm
X 2mm x 2mm cubes)

A1 =0.48, A2 =0.39, e =3, A1 =048, A2 =0.39, e =3,

° 5K tlme pOIntS (every % of best score = 100 % of best score = 100
0.7 sections for 2 hour) I — Y i
« Averaged over 1,200 N
subjects 3 _
Q =
> 2
Q
8.4
T A1 =0.64, A2 =0.13, k=1, A1 =0.64, A2 =0.13, k=1,
% of best score = 75.03 % of best score = 75.03

Koanantakool, et al, AISTAT 2018, to appear.



Deep Learning in Bioinformatic

Protein structure prediction
Gene expression regulation
Segmentation
Brain decoding
Anomaly classification

) Hidden Layer @ Output Layer

Derived from S. Min et al, Briefings in Bioinformatics



Deep Learning using HPC for Extreme Weather Events

* First application of supervised

and semi-supervised
architectures for finding
patterns in CAMS5 data

DL methods are capable of

extracting weather patterns
with 85-99% accuracy (NIPS’17

paper)

Implementation scaled to

Ground Truth vs Prediction

15PF on Cori Phase Il (SC'17

paper)

Prabhat et al

12812518 AN
A LA LA N A D) i
E ST e
256(RB 614 : g 2562
R 1592
1926288 0 K

" Ui Probablies
Bos Lication/Size o Objectness
o " Probabiliies
del2ul8 ds12ul8 2218



Breaking the curse of dimensionality

10M Genetic
Variants in >40k
genes

Genes do not work in
isolation: 10170 potential
interactions among

variants

Linking genetic variants

to phenotypes requires

the exploration of an
enormous space

To obtain accuracy and
Insight, we are
developing procedures
to detect interactions of
any form or order at the
same computational cost
as main effects

Explainable-Al

Dan Jacobson/Ben Brown
ORNL/LBNL



Myth #6: Exascale computing is only
about building big machines

The Exascale Computing Project is
developing novel applications and
features, software, and hardware R&D



“Moore’s Law” is Running Out

20m
’”“I I 20nm
#e 16nm
. 2012 2014 2015*

*Forecast Source: Linley Group

1,000,000

Shrinking chips
Number and length of transistors bought per $

100,000 -

10,000

1,000 -

100 -
] 2004

Nanometres (nm)

10

1985 1990 1995 2000 2005 2010 2015 2020 2002
Year of Introduction

Clock speed increases have Transistor density is reaching its limit
ended

Power and cost of computing are no longer dropping
at historic rates



Computing is energy-constrained

At ~S1M per MW, energy costs are substantial

1 petaflop in 2008 used 3 MW

J@:
)Vi

* 1exaflopin 2018 at 200 MW ”uﬂl chip scaling”

Missing TaihueLight at 175MW
and Tihanhe-2 at 18MW

12

10

|
kllegawatts

per machine

(Kogge/Shalf)

Goal: 1 Exaflop in 20 MW
= 20 pJ / operation

Note: The 20 pJ / operation is

* Independent of machine size

* Independent of # cores used
per application

 But “operations” need to be
useful ones



Energy Limits Computer Performance?

41



Use of manycore processors and accelerators

3-way similarity analysis
Weak scaling (fixed size problem
per node) on Titan w/ GPUs

KNL manycore architecture for
hmmsearch at JGI
pL

80

70

— 60

€ 50

Speedup
~

Q 40 -

v 30

5 10 15 2 25 30 4 16 64 256 1024 4096 16384

Cores nodes

=== HMMER-3.102 === OpenMP prototype Joubert. N Weidhill
_ oubert, Nance, Weighill,
Bill Arndt, NERSC JaCObson, ORNL

 Mapping alignment, similarity calculations, etc., to energy
efficient manycore and accelerator architectures

-42 -



Data Movement is Expensive

Hierarchical energy costs.

Cost to move data 1 mm on-chip

6 pJ
\ / Typical cost of a single floating point operation

100 p) —4

Cost to move data 20 mm on-chip

y 120 pI }

Cost to move data off-chip,
but stay within the package (SMP)

Cost to move data off-chip
into DRAM

Cost to move data off-chip
to a neighboring node

Source: http://slideplayer.com/slide/7541288/ 43



Breakthrough Science Challenges for Exascale

Simulation
and Data

. Carbon Capture
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ExaBiome: Exascale Solutions to Microbiome Analysis

* Use HPC algorithms and systems for orders of magnitude
speedup and to solve previously intractable problems

H=' T 205 % ,,n
aII i: 5’! il ;{d}j
AT § e ne gy Agvi *“#i\ **‘
R - =='; ;_'f ’%ﬁ* 7K
Boxom o :",; ‘—*7 ;: \,\ v X \
' *7« i* .k 0 %
Problem Metagenome Protein Clustering Comparative Analysis
Domain Assembly
Exascale Assemble millions  Cluster billions of Use fast alignment and
goal of metagenomes proteins annotation for time-sensitive
from whole data analyses
Computing Graph algorithms,  Machine learning  Alignment, Machine
techniques Hash Tables, (clustering), learning (dimensionality
alignment (Smith-  sparse linear reduction), linear algebra

Waterman) algebra / graphs

45



Superfacility: A vision for DOE Science
Facilities and leveraging Expertise



Superfacility for Major Experimental Facilities

Computing and
Data Facilities

A single interconnected

Experimental faC|I.|ty where data is
Facilities acquired, stored, analyzed

and served

User Community
Execution plan: one science
area atatime



NERSC / Joint Genome Institute partnership

DOE
Mission
ZEN?:;a_

JGl e

OINT GENOME INSTITUTE

Advant :
Genomic Computational

Technologies Analysis

DNA Synthesis




JGI-NERSC Microbiome Data Science FICUS

JGI’'s metagenomic data and
NERSC’s Cori supercomputing

6 projects underway rom SN
— Patricia Babbitt UCSF \
— David Baker UW, Seattle
— Phillip Brooks UC Davis ;
— Ed DelLong UH Manoa

— Steve Hallam UBC Vancouver
— Kostas Konstantinidis Georgia Tech

A sequence similarity network of a
family of enzymes from the
nitroreductase superfamily (some
nitroreductases can reduce TNT, a
F I c U s e significant soil contaminant). Source:
Facilities Integrating X\‘ Patsy Babbitt

Collaborations for User Science

2/26/18 49



From Systems Biology to 3D Structural Interactions

Existing Co-evolution

Structure ,
Sequences Network %f

Protein v

Structures:
28 million
compounds

K
‘ .} U.S. DEPARTMENT OF ENERGY

INCITE

LEADERSHIP COMPUTING

Complexes TR Y =

3D Protein
Structure

1000+ Genomes

Phenotypes
Small
Molecule
. o0 -
8% Q’ . O
v GWAS Networks
Dan Jacobson, ORNL

Experimentation




Kbase: interface to collaborative, reproducible science

In KBase, you can create shareable, reproducible workflows called “Narratives”
that include data, analysis steps, results, visualizations and commentary.

A ion of

What's the problem?

The following is based on an article called "Use of immunomagnetic separation for the detection of Desulfovibrio vulgaris
from environmental samples" that appeared in Journal of Microbial Methods in 2011.

Ifate

Dv) i
DOE contaminated sites through genomic tools. D. vulgaris and. closea/ related SRB have been routinely found at the
uranium-contaminated groundwater at the Field Research Center (FRC) and t
(Chakraborty R. ncbi genome). To better comprehend the presence and activity of Dv or Dv- like microorganisms under these
non-optimal conditions in-situit i imperative i th 1l i

known to reduce metals, and has commonly been detected in

he chromium- contaminated site at Hanford, WA

Commentary

In this study, using an antibody

g
with minimal disruption or interference caused by cell processing. As part of our ongoing investigations on the stress and
survival of SRB (namely Dv) in the environment (see more at Enigma), we developed and tested a non-destructive method
that uses immunomagnetic separation (IMS) of the model sulfate-reducing bacterium, D.vulgaris, Our ultimate goal is to
develop a field-deployable version of 9

environmental samples to be then further processed in various -omics (e.g., transcriptomics and metabolomics) studies to
better characterize the metabolic properties.

IMS that enables the detection of target microorganisms from often low biomass

o d against Desulfovibrio s/-///oem%h cells were pulled down from a Hanford
ample taken from the 100H region of the Hanford Feach National Monument.

Analysis
steps

micrograph from Wikipedia.

Here's what | am going to do:
Upload the genome

Compare it
Tr

The organism pulled down from the site

You can find more about Desulfovibrio vulgaris as a species by looking at Wikipedia. But it s a sulfate reducing bacteria,
motie, obligate anzerobe, with an extraordinary number of two-component systers. Here i the standard electron

Reannotate it for use in KBase.
Annotate its domains for completeness
Place t na phylogeneic ree
o the Closest relative
e metabolic diff

oo

Visualizations

Custom scripts

lam

Version control
and provenance

from the data pabe to this

Overview | Contigs Genes
KBaseID

Name

Domain

Genetic code

Source
Source ID
[

Taxonomy

Size
Number of Contigs
Number of Genes

Upload and examine the data.

1 used the data browser upload tab to upload the RCHI GenBank file to KBase. This creates two data types: The KBase
Genome and KBase Contigs Obiects, Uploading only took a few seconds and then | cragged the objects that ere reated
jarrative to examine them.

Tl Genome Desulfovibrio.RHC1.Genome

here. Just giving a quick tour functionality for ase.

11:24:20,2/14/2015

ae

287089

Desulfovibrio vulgaris RCH1
Bacteria

il

KBase user upload

noid

6327%

Sharing

3734357
2
3223



HPC Transformative for Genomics

* Genome analysis is an HPC problem

— De novo assembly for single genomes,
metagenomes, and pan genomes

— Protein clustering

— Alignment

— All-to-all comparisons

— Statistical machine learning (traditional)

— Deep learning

 Enables new approaches, new facility models,
and new science



