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“Big Data” Changes Everything...What about Science?
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Combine simulation and observation for next Cosmology breakthrough
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Nyx simulation of Lyman alpha forest using AMR Kitt Peak National Observatory’s Mayall 4-meter telescope,
planned site of the DESI experiment

Reduce systematic bias in observation through simulation of ~1 Gigaparsec Baryon
Acoustic Oscillations in the Lyman Alpha Forest and ~100 Gigaparsec simulation of
galaxy clusters, both requiring adaptive mesh refinement (AMR).



Climate models and microbial analysis together to predict the
future of the environment

Mag(velocity) (m/a)
~ a0,

New climate modeling methods, including AMR
“Dycore” produce new understanding of ice Genomes to watersheds Scientific Focus Area

Understand interactions between environmental microbiomes and climate change with
kilometer resolution models that track dynamic 3D features (with AMR) and
genome-enabled analysis of environmental sensors.



Understand and control energy with advanced light sources and
materials modeling

13,030 users hosted at
NERSC with software cq
developed by CRD
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Understand and control the direction and flow of energy with minimal losses using
advanced instruments, high fidelity models, and high throughput simulation and
analysis for applications in energy, environment and computing,
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Old School Scientific Workflow
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Computing, experiments, networking and expertise

Liu et al, “Fast printing
MA M‘ R and in situ morphology
\_ ;7App||ed Math ... Adv Mater. 2015



Old School HPC: only for Simulation
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HPC is equally important in experimentation

Growth in Sequencers,
CCDs, sensors, etc.




Questions?

1. Are there MSU examples of “science at the
boundary” of simulation and observation?

— How should you take advantage of these opportunities?



Part 2

The Data Tsunami



Science Data Growth is Outpacing Computing
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Old School Scientific Data Search
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Automated Search, Meta-Data Analysis, and On-
Demand Simulatiopw

Automated metadata extraction
using machine learning

Application data App
including possible Data

training data User Interfaces

[ e.g., Metadata
Validation, Search
Queries |

Metadata Generation

Metadata
Service
[Ground]

Data Stores \

System data
using

Jobs submitted by “bots” based
on queries; algorithms extract
informatics for design




Questions?

2. What are the largest and most complex sources of
research data at MSU?

— What types of data/CS/math/stat challenges are there?



Part 3

Networking and Computing
Facilities Need to Adapt



ESnet: Exponential growth in networking
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® Mraditional IP
® Mransatlantic
™ Big science data
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Petabytes/month

100 Exabytes/year by 2024!

. et DMZ\ Science DMZ to deliver bandwidth to the end users
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ESnet: Discovery Unconstrained by Geography

SLAC at Stanford SLAC at Stanford

From : Wed Feb 27 1 )

Total traffic  Tip: Double Click to z;\:tl'r‘rtj.ivl oom-Ou | LCLS/NERSC/Esnet SuperfGCI/Ity
N b e b al demo for Photosystem Il

- 3x network traffic

Traffic split by : 'Autonomous System (origin)'

Network performance enables efficiency of centralized computing



Systems configured for data-intensive science

NERSC Cori has data partition (Phase 1, Haswell) pre-exascale (Phase 2, KNL preproduction)
WAN-to-Cori optimized for streaming data: 100x faster from LCLS to Cori and Globus to CERN



Real-time queue prototyped at NERSC

* In 1998 dedicated hardware; now prototype queue on Cori
e <1% of NERSC allocation
* Cryo-Em, Mass spec, Telescopes, Accelerator, Light sources

PTF: Image subtraction pipeline ALS: 3D Reconstruction,
rendered on SPOT web portal

Cryo-EM: Image classification
Nogales Lab
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Containers for HPC Systems

* Data analysis pipelines are often large, complex software stacks

* NERSC Shifter (with Cray), supports containers for HPC systems

e Used in HEP and NP projects
(ATLAS, ALICE, STAR, LSST, DESI)

Startup Time

A DATACENTER SOFTWARE NETWORKS SECURITY INFRASTRUCTURE DEVOPS BUSINESS HARDWA

Data Center » HPC

Cray hoists Docker containers into
supercomputers

Productivity gains without performance hits
150 250

=@ scratch === shifter === bb10gb bb2tb
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Questions?

3. How should undergrad/grad programs be adapted
to address data challenges in future careers?

— New courses, (joint) majors, research institutes?



Part 3

Computing, Mathematics and
Statistics Research Challenges



CAMERA: Math for the Facilities Qo teatans

James Sethian, PI

Real-time streaming
ptychography—ALS, delivered
to NSLS2, LANL, BESSY,

SFM/TEM + GISAXS

Automatic image
processing for the

CAMERA
workshop on
Tomography:
Joint with APS,
ESRF,
DIAMOND,
LNLS, LLNL,
SSRL,....,

Fluctuation
scattering and
single particle
imaging for the
LCLS

\ e | yron

Workflow and
: access to remote
~ supercomputers:
XiCAM for ALS,
~_ SSRL, APS, NSLS2



Analytics vs. Simulation Kernels:

Basic statistics
Generalized N-Body
Graph-theory
Linear algebra
Optimizations
Integrations
Alignment

Monte Carlo methods
Particle methods
Unstructured meshes
Dense Linear Algebra
Sparse Linear Algebra
Spectral methods
Structured Meshes




Machine Learning Mapping to Linear Algebra

Logistic Graphical

Dimensionality Clustering

oot [ recucton e, eg,me RS WS RO
PP NMF, CX/CUR, Spectral .
Vector PCA) Clustering) Learning (e.g., Neural Nets)
Machines 8 CONCORD)

sexs

Aydin Buluc, Sang Oh, John Gilbert, Kathy Yelick




Challenge: Communication is expensive

Communication is expensive in time and energy

Hard to change: Latency is physics; bandwidth is money!
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Communication-Avoiding Algorithms
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Matrix Multiplication code has Model for choosing

a 3D iteration space; each communication-optimal
point is a */+ algorithms for sparse matrices
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Demmel et al on LA; Christ et al generalization 28 Koanantakool & Yelick



Interactive Analytics using Jupyter
° @

jupyter

Science notebooks through
Jupyter (iPython)

«  Widely used in science
 Interactive HPC LDRD

Deployed at NERSC:
« >100 users pre-production

Fernando Perez et al



Random Access Analytics

* Genome assembly “needs shared memory”

Global Address Space Shared

buckets entries
Thread 0 = = l X
Thread 1 = u
9 Thread 2 -
Thread 3 | o—tsf AT
EXEEIRE I
ELEH]

Distributed hash table

>al Address Spa

Scales to 15K+ cores

4 minutes for human * Low overhead communication
. .  Remote atomics, caching
First ever solution « rocality-aware hashing

E. Georganas, A. Buluc, J. Chapman, S. Hofmeyr, C. Aluru, R. Egan, L. Oliker, D. Rokhsar, K. Yelick



Data Fusion for Observation with Simulation
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* Unaligned data from observation
* One-sided strided updates
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Scott French, Y. Zheng, B. Romanowicz, K. Yelick -
Hawaii hotspot geology



Productive Programming

Spark
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Speed
Run programs up to 100x faster than Hadoop
MapReduce in memory, or 10x faster on disk.
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* High failure rate

And Spark is still 10x+

* Slow network slower than MPI

* Fast (local) disk



Architectures for Data vs. Simulation

Massive Random
Indepen-
dent Jobs

for Analysis

and

Simulation

access,
large data
Analysis

Different architectures for simulation? Can
simulation use data architectures?



Data processing with special purpose hardware

« General trend towards specialization for continued
performance growth
« Data processing (on raw data) will be first in DOE
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Particle Tracking with Neuromorphic chips

. Deep learning processors for image analysis
Computing in Detectors

FPGAS for genome analysis



Questions?

4. Are there open problems or expertise gaps in
computing/math/stat/data be addressed?



Questions?

1. Are there MSU examples of “science at the
boundary” of simulation and observation?

— How should you take advantage of these opportunities?
2. What are the largest and most complex sources of

research data at MSU?
— What types of data/CS/math/stat challenges are there?

3. How should undergrad/grad programs be adapted
to address data challenges in future careers?
— New courses, (joint) majors, research institutes?

4. Are there open problems or expertise gaps in
computing/math/stat/data be addressed?



Extreme Data Science

Slides: http://www.cs.berkeley.edu/~yelick/talks



