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“Big Data” Changes Everything…What about Science?




Combine simulation and observation for next Cosmology breakthrough


Nyx	simula+on	of	Lyman	alpha	forest	using	AMR	

Reduce	systema,c	bias	in	observa,on	through	simula,on	of	~1	Gigaparsec	Baryon	
Acous,c	Oscilla,ons	in	the	Lyman	Alpha	Forest	and	~100	Gigaparsec	simula,on	of	
galaxy	clusters,	both	requiring	adap,ve	mesh	refinement	(AMR).	

Ki:	Peak	Na+onal	Observatory’s	Mayall	4-meter	telescope,	
planned	site	of	the	DESI	experiment	
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Climate models and microbial analysis together to predict the 
future of the environment
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Understand	interac,ons	between	environmental	microbiomes	and	climate	change	with	
kilometer	resolu+on	models	that	track	dynamic	3D	features	(with	AMR)	and																			
genome-enabled	analysis	of	environmental	sensors.		

Genomes	to	watersheds	Scien,fic	Focus	Area	
New	climate	modeling	methods,	including	AMR	
“Dycore”	produce	new	understanding	of	ice	



Understand and control energy with advanced light sources and 
materials modeling
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Diffraction Limit and Spatial 
Coherence Enabled by ALS-U 

Understand	and	control	the	direc,on	and	flow	of	energy	with	minimal	losses	using	
advanced	instruments,	high	fidelity	models,	and	high	throughput	simula,on	and	
analysis	for	applica,ons	in	energy,	environment	and	compu,ng,		

Materials	Project	 ALS-U	Upgrade	

new 
accumulator 
ring 

new ALS ring 

13,030	users	hosted	at	
NERSC	with	soLware	co-
developed	by	CRD	

Discovering 
multivalent cathodes 



Old School Scientific Workflow




Computing, experiments, networking and expertise 
in a “Superfacility” for Science
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CETull@lbl.gov - 31 Aug 2015 
 

Slot die printer 

CETull@lbl.gov - 31 Aug 2015 
 

HipGISAXS & RMC	

GISAXS	
	
	
	
	
Slot-die	prin,ng	of		
Organic	photovoltaics		

Liu	et	al,	“Fast	prin,ng	
and	in	situ	morphology	
…”.	Adv	Mater.	2015		



Old School HPC: only for Simulation


Experimenta,on	 Theory	

Simula,on	
Data	Analysis	

Compu,ng	
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HPC is equally important in experimentation


Experimenta,on	 Theory	

Simula,on	Data	Analysis	

Compu,ng	

Growth	in	Sequencers,	
CCDs,	sensors,	etc.		
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Questions?


1.   	Are	there	MSU	examples	of	“science	at	the	
boundary”	of	simula9on	and	observa9on?	

–  How	should	you	take	advantage	of	these	opportuni,es?	
2.   What	are	the	largest	and	most	complex	sources	of	

research	data	at	MSU?		
– What	types	of	data/CS/math/stat	challenges	are	there?	

3.   How	should	undergrad/grad	programs	be	adapted	
to	address	data	challenges	in	future	careers?	
–  New	courses,	(joint)	majors,	research	ins,tutes?		

4.   Are	there	open	problems	or	exper9se	gaps	in	
compu9ng/math/stat/data	be	addressed?	



The Data Tsunami


Part 2




Science Data Growth is Outpacing Computing
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Old School Scientific Data Search




Automated Search, Meta-Data Analysis, and On-
Demand Simulation 
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using		

Figure 1: Conceptual System Overview. The figure shows the interaction of various system components
of ScienceSearch.

Challenge 2: Search needs to account for scale and lineage of data and the I/O challenges of future sys-
tems. Data search capabilities need to address scalability at various levels: a) machine learning algorithms
must generate metadata at the rate and scale of the data volumes being generated; b) the metadata generation
process must address the I/O challenges of the future exascale systems and, c) the metadata storage layer
needs to address scalability.
Challenge 3: The complexities and intricacies of scientific data, as well as, machine and deep learning
algorithms require a careful consideration of the human factors. Machine learning techniques can help
with learning about the data and generating metadata. However, this is not sufficient for scientific data, since
the complexity of the data often requires specialized domain knowledge and understanding. Automated
metadata generated from machine learning algorithms will likely need to be curated by humans to ensure
accuracy. Additionally, the machine learning model needs to understand the terms or signals that might
arise from a user’s query. Thus, it is important to understand how people interact and want to interact with
scientific data search and machine-generated metadata labels.
Project Objectives: Designing a data integration ecosystem. Our proposed techniques bring together
a unique blend of skills that includes machine learning, human-computer interaction, and experience with
scientific domains and users at facilities. Our goal is to make data a first-class discoverable resource at
supercomputing centers through the powerful concept of search.

Figure 1 shows the conceptual system architecture that will be enabled by the research proposed in this
proposal. The ScienceSearch framework has three key components: a) metadata generation, b) the Ground
[38] metadata storage framework, and c) an interface layer. The metadata generation framework uses a
variety of machine learning techniques to generate the context of the data from both application data, as
well as system level information. Ground is a data context service that provides the metadata storage layer.
The interface layer allows the users to interact with the system to verify and validate automated metadata
generated.

We envision the ScienceSearch framework will be available at supercomputing centers and users can
make their data available to the system. The ScienceSearch framework will use the data sets and, ecosystem
artifacts associated with the data (e.g., proposals, workflow and system logs, publications) to learn and
generate metadata labels. The ScienceSearch framework will use active learning to surface the metadata
labels to users for feedback. The users can validate, add, delete or edit labels. Similarly, we anticipate that
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Jobs	submifed	by	“bots”	based	
on	queries;	algorithms	extract	
informa,cs	for	design	

Automated	metadata	extrac,on		
using	machine	learning		



Questions?


1.   	Are	there	MSU	examples	of	“science	at	the	
boundary”	of	simula9on	and	observa9on?	

–  How	should	you	take	advantage	of	these	opportuni,es?	
2.   What	are	the	largest	and	most	complex	sources	of	

research	data	at	MSU?		
– What	types	of	data/CS/math/stat	challenges	are	there?	

3.   How	should	undergrad/grad	programs	be	adapted	
to	address	data	challenges	in	future	careers?	
–  New	courses,	(joint)	majors,	research	ins,tutes?		

4.   Are	there	open	problems	or	exper9se	gaps	in	
compu9ng/math/stat/data	be	addressed?	



Networking and Computing 
Facilities  Need to Adapt 


Part 3




ESnet: Exponential growth in networking
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IP	Routed	
LHC	Overlay	
Point	to	Point	big	data	

100 Exabytes/year by 2024! 

Traditional IP 
Transatlantic 
Big science data 

Science	DMZ	to	deliver	bandwidth	to	the	end	users	
																																																					OSCARS	for	bandwidth	reserva,on		

Science	DMZ	



ESnet: Discovery Unconstrained by Geography


LCLS/NERSC/Esnet	Superfacility	
demo	for	Photosystem	II		

à	3x	network	traffic	

Network performance enables efficiency of centralized computing 

SLAC	at	Stanford	 SLAC	at	Stanford	



Systems configured for data-intensive science


NERSC	Cori	has	data	par,,on	(Phase	1,	Haswell)		pre-exascale	(Phase	2,	KNL	preproduc,on)	
WAN-to-Cori	op,mized	for	streaming	data:	100x	faster	from	LCLS	to	Cori	and	Globus	to	CERN	



Real-time queue prototyped at NERSC
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•  In	1998	dedicated	hardware;	now	prototype	queue	on	Cori	
•  <1%	of	NERSC	alloca9on	
•  Cryo-Em,	Mass	spec,	Telescopes,	Accelerator,	Light	sources	

Cryo-EM:	Image	classifica,on	
Nogales	Lab	

ALS:	3D	Reconstruc,on,	
rendered	on	SPOT	web	portal	

PTF:	Image	subtrac,on	pipeline	



Containers for HPC Systems

•  Data	analysis	pipelines	are	omen	large,	complex	somware	stacks	
•  NERSC	Shimer	(with	Cray),		supports	containers	for	HPC	systems	
•  Used	in	HEP	and	NP	projects	 	 	 	 	 	 	 	 	

	(ATLAS,	ALICE,	STAR,	LSST,	DESI)	
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NSHIFTERStartup	Time	



Questions?


1.   	Are	there	MSU	examples	of	“science	at	the	
boundary”	of	simula9on	and	observa9on?	

–  How	should	you	take	advantage	of	these	opportuni,es?	
2.   What	are	the	largest	and	most	complex	sources	of	

research	data	at	MSU?		
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Computing, Mathematics and 
Statistics Research Challenges


Part 3




Designing	
mathema,cal	

algorithms	to	allow		
real-,me	analysis	next	
to	the	equipment	

New	algorithms	to	
transform		manual		into	
automa,c		analysis	

Inven,ng	new	math	
and	models	to	match	

new	acquisi,on	
technologies					

Robust	and	reliable	
codes	and	data	flow:		

workflow	environments	

	Cultural	and	
Sociological	Challenges	

Compare	and	integrate	
mul,ple	analysis	tools		

Mul,-modal:	Building	
the	math	that	fuses	
informa,on	from	

mul,ple	experiments		

CAMERA:	Math	for	the	Facili9es	

Fluctua,on	
scafering	and	
single	par,cle	
imaging		for		the	
LCLS	

Automa,c	image	
processing	for	the	
ALS/GE	

Real-,me	streaming	
ptychography—ALS,	delivered	
to	NSLS2,	LANL,	BESSY,		

Workflow	and	
access	to	remote	
supercomputers:	
XiCAM	for	ALS,	
SSRL,	APS,	NSLS2	

SFM/TEM	+	GISAXS	

CAMERA	
workshop	on	
Tomography:	
Joint	with	APS,	
ESRF,	
DIAMOND,	
LNLS,	LLNL,	
SSRL,….,		

James	Sethian,	PI	



Analytics vs. Simulation Kernels: 


7	Giants	of	Data	 7	Dwarfs	of	Simula9on	
Basic	sta,s,cs Monte	Carlo	methods	
Generalized	N-Body	 Par,cle	methods	
Graph-theory	 Unstructured	meshes	
Linear	algebra	 Dense	Linear	Algebra	
Op,miza,ons	 Sparse	Linear	Algebra	
Integra,ons	 Spectral	methods	
Alignment	 Structured	Meshes	



Dense	
Matrix	
Vector	
(BLAS2)	

Sparse	-	
Sparse	
Matrix	
Product	

(SpGEMM)	

Sparse	Matrix	
Times	

Mul,ple	
Dense	Vectors	

(SpMM)	

Sparse	
Matrix-
Dense	
Vector	
(SpMV)	

Sparse	
Matrix-
Sparse	
Vector	

(SpMSpV)	

Increasing	arithme,c	intensity	

Graphical	
Model	

Structure	
Learning	(e.g.,	
CONCORD)	

Clustering	
(e.g.,	MCL,	
Spectral	

Clustering)	

Logis,c	
Regression,	
Support	
Vector	

Machines	

Dimensionality	
Reduc,on	(e.g.,	
NMF,	CX/CUR,	

PCA)	

Machine Learning Mapping to Linear Algebra


Deep	Learning	
(Convolu,onal	
Neural	Nets)	

Sparse	-	
Dense	
Matrix	
Product	
(SpDM3)	

Dense	
Matrix	
Matrix	
(BLAS3)	

Aydin	Buluc,	Sang	Oh,	John	Gilbert,	Kathy	Yelick	



   

Challenge: Communication is expensive

Communication is expensive in time and energy 

Hard to change: Latency is physics; bandwidth is money! 
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Matrix Multiplication code has 
a 3D iteration space; each 
point is a */+ 
 

for i 
   for j 
      for k B[k,j]  … A[i,k] …  C[i,j] … 
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Communication-Avoiding Algorithms

k 

“A shadow” 

“C shadow” 

j 

i 

Model	for	choosing	
communica9on-op9mal	
algorithms	for	sparse	matrices	

Koanantakool	&	Yelick	Demmel	et	al	on	LA;	Christ	et	al	generaliza,on	



Interactive Analytics using Jupyter


Science notebooks through 
Jupyter (iPython)


•  Widely used in science

•  Interactive HPC LDRD


Deployed at NERSC:

•  >100 users pre-production





Fernando	Perez	et	al	



Random Access Analytics
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•  Genome	assembly	“needs	shared	memory”	

Global	Address	Space	

Scales	to	15K+	cores	
4	minutes	for	human	
First	ever	solu9on	

E.	Georganas,	A.	Buluc,	J.	Chapman,	S.	Hofmeyr,	C.	Aluru,	R.	Egan,	L.	Oliker,	D.	Rokhsar,	K.	Yelick		

Distributed	hash	table	
•  Low	overhead	communica9on	
•  Remote	atomics,	caching	
•  Locality-aware	hashing		



Data Fusion for Observation with Simulation


•  Unaligned	data	from	observa9on	
•  One-sided	strided	updates		

Scof	French,	Y.	Zheng,	B.	Romanowicz,	K.	Yelick	
Hawaii	hotspot	geology	



Productive Programming


•  High	failure	rate	
•  Slow	network	
•  Fast	(local)	disk	

Speed	
Run	programs	up	to	100x	faster	than	Hadoop	
MapReduce	in	memory,	or	10x	faster	on	disk.	

And	Spark	is	s9ll	10x+	
slower	than	MPI	



Architectures for Data vs. Simulation


Massive	
Indepen-
dent	Jobs	
for	Analysis	

and	
Simula9on	

Compute-
Intensive	
Dense	LA	
for	Deep	
Learning	
and	

Simula9on	

Nearest	
Neighbor	
Simula9on	

All-to-All	
Simula9on	
(3D	FFTs)	

and	
analysis	

Random	
access,	

large	data	
Analysis	

Different	architectures	for	simula9on?		Can	
simula9on	use	data	architectures?			



Data processing with special purpose hardware


34!

•  General trend towards specialization for continued 
performance growth!

•  Data processing (on raw data) will be first in DOE!

Par,cle	Tracking	with	Neuromorphic	chips	

Compu,ng	in	Detectors	
FPGAS	for	genome	analysis	

Deep	learning	processors	for	image	analysis	



Questions?


1.   	Are	there	MSU	examples	of	“science	at	the	
boundary”	of	simula9on	and	observa9on?	
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2.   What	are	the	largest	and	most	complex	sources	of	

research	data	at	MSU?		
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to	address	data	challenges	in	future	careers?	
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Extreme Data Science


The	scien9fic	process	is	poised	to	undergo	a	
radical	transforma9on	based	on	the	ability	
to	access,	analyze,	simulate	and	combine	

large	and	complex	data	sets.					

Slides:	hfp://www.cs.berkeley.edu/~yelick/talks	


