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Science is poised for transformation




Old School Scientists: The Lone Scientist




  The Legacy of Team Science


Radiation Lab staff on 
the magnet yoke for the 
60-in cyclotron, 1939, 
including: 
E. O. Lawrence 
Edwin McMillan 
Luis Alvarez 
J. Robert Oppenheimer 
Robert R. Wilson 



New Scientists


17-year-old	Bri.any	Wegner	creates	breast	cancer	detec6on	tool	that	is	99%	
accurate	on	a	minimally	invasive,	previously	inaccurate	test.	
									Machine	Learning	+		Online	Data	+	Cloud	Compu9ng	



Experimental Science is Changing


•  sdf	



Computing Sciences at Berkeley Lab
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NERSC:	State-of-the	art	supercompu9ng	for	the	broad	
science	community	–	over	7000	users,	700	applica9ons	
mostly	in	simula9on	

Exascale	Science	



High Performance Computing in Science

Computers	are	used	to	understand	things	that	are	
	
	
	
	
	
	
	
for	experiments	alone,	so	simula9ons	are	used	

Too	fast	

Too	slow	Too	Small	

Too	Big	



“Big Data” Changes Everything…What about Science?




About 10,000 visiting scientists (~2/3 from universities) use Berkeley Lab research 
facilities each year, which provide some of the world’s most advanced capabilities 

in materials science, biological research, computation and networking 
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Berkeley Lab’s Advanced Facilities Enable               
World-Leading Science




Data Growth is Outpacing Computing Growth
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Old School Scientific Workflow




Computing, experiments, networking and expertise 
in a “Superfacility” for Science
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CETull@lbl.gov - 31 Aug 2015 
 

Slot die printer 

CETull@lbl.gov - 31 Aug 2015 
 

HipGISAXS & RMC	

GISAXS	
	
	
	
	
Slot-die	prinKng	of		
Organic	photovoltaics		

Liu	et	al,	“Fast	prinKng	
and	in	situ	morphology	
…”.	Adv	Mater.	2015		



Science at the boundary of theory 
and experiment … simulation and 
data analytics




Integration of Simulation and Observational Science
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Intermediate	Palomar	
Transient	Factory	with	DESI,	
CMB-S4	and	LSST	coming	

A.	Goobar,	P.	Nugent,	et	al	
(2017)	Science	

Image	subtracKon,	machine	
learning	in	minutes	



Re-Use and Re-Analyze Previously Collected Data

•  Materials	Genome	Ini9a9ve	

– Materials	Project:	Over	10,000	users!	
–  “World-Changing	Idea	of	2013”	

!

Today’s	ba_eries	

Voltage	limit	

InteresKng	
materials	

Materials	
Data	

Computers	programs	
run	by	“bots”	



Real-Time Analytics in Health


Compressed	Sensing	Approach	by	Mike	LusKg	et	al	
MRI	results	Wenwen	Jiang	

3	min	goal	(1	sec/iteraKon)	

Michael	Driscoll	HPC	opKmizaKon	



Data and Simulation in the environment
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Understand	interacKons	between	environmental	microbiomes	and	climate	change	with	
kilometer	resolu6on	models	that	track	dynamic	3D	features	(with	AMR)	and																			
genome-enabled	analysis	of	environmental	sensors.		

Genomes	to	watersheds	ScienKfic	Focus	Area	
New	climate	modeling	methods,	including	AMR	
“Dycore”	produce	new	understanding	of	ice	



Science in embedded sensors


19	

Decision	Science	

TransportaKon	Modeling	 Power	Grid	Modeling	

Scenario	PredicKon,	Planning	

Figure 7: Hourly averaged actual usage is shown on the left. And hourly averaged predicted usage is
shown on the right. Triangles markers show the averaged temperature. As presented in Tables 4 and 5,
the predicted usage shows higher values than the actual usage, demonstrating that differing pricing policies
affect household usage patterns.

accurate short-term forecasts, our baseline model aims to capture intraday characteristics that persists for
years. Our tests show that one of the boosting technique, GTB, could incorporate important features such
as outdoor temperature and capture the core user behavior. For example, the baseline model from GTB
accurately reproduces the lag between the daily peak temperature and peak electricity usage.

The ultimate objective of our work is to evaluate the effectiveness of the different pricing schemes.
The new baseline is an important component. This preliminary work demonstrate that new approach is
promising, but additional work is needed to evaluate the effectiveness of this approach. For example, we
should to re-evaluate the features used in the regression models and systematically measure their impact.
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Computing and network facilities 
need to adapt




Computing and 
Data Facilities 

Expertise 

User Community 

Experimental 
Facilities 

Superfacility: Integrated network of experimental and 
computational facilities and expertise


A single interconnected 
“facility” where data is 
acquired, stored, analyzed 
and served 

Methods, models, analytics, and software 

Sequencers 

Light Sources 

Telescopes 

Particle 
Detectors 

Microscopes 

Execution plan: one 
science area at a time 



ESnet: Data driven science drives network capacity
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IP	Routed	
LHC	Overlay	
Point	to	Point	big	data	

100 Exabytes/year by 2024! 

Traditional IP 
Transatlantic 
Big science data 

Science	DMZ	to	deliver	bandwidth	to	the	end	users	
																																																					OSCARS	for	bandwidth	reservaKon		

Science	DMZ	



Systems configured for data-intensive science


NERSC	Cori	has	data	parKKon	(Haswell)		and	pre-exascale	(KNL)	
NVRAM	file	system	with	close	to	2	PB	at	2	TB/sec		
WAN-to-Cori	opKmized	for	streaming	data:	100x	faster	from	LCLS	to	Cori	and	Globus	to	CERN	



Real-time queue prototyped at NERSC
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•  In	1998	dedicated	hardware;	now	prototype	queue	on	Cori	
•  <1%	of	NERSC	alloca9on	
•  Cryo-Em,	Mass	spec,	Telescopes,	Accelerator,	Light	sources	

Cryo-EM:	Image	classificaKon	
Nogales	Lab	

ALS:	3D	ReconstrucKon,	
rendered	on	SPOT	web	portal	

PTF:	Image	subtracKon	pipeline	



Interactive Analytics using Jupyter


Science notebooks through 
Jupyter (iPython)


•  Widely used in science

•  Interactive HPC LDRD


Deployed at NERSC:

•  >100 users pre-production





Fernando	Perez	et	al	



Containers for HPC Systems

•  Data	analysis	pipelines	are	olen	large,	complex	solware	stacks	
•  NERSC	Shiler	(with	Cray),		supports	containers	for	HPC	systems	
•  Used	in	HEP	and	NP	projects	 	 	 	 	 	 	 	 	

	(ATLAS,	ALICE,	STAR,	LSST,	DESI)	
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NSHIFTERStartup	Time	



Old School Scientific Data Search




Automated Search, Meta-Data Analysis, and On-
Demand Simulation 
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Figure 1: Conceptual System Overview. The figure shows the interaction of various system components
of ScienceSearch.

Challenge 2: Search needs to account for scale and lineage of data and the I/O challenges of future sys-
tems. Data search capabilities need to address scalability at various levels: a) machine learning algorithms
must generate metadata at the rate and scale of the data volumes being generated; b) the metadata generation
process must address the I/O challenges of the future exascale systems and, c) the metadata storage layer
needs to address scalability.
Challenge 3: The complexities and intricacies of scientific data, as well as, machine and deep learning
algorithms require a careful consideration of the human factors. Machine learning techniques can help
with learning about the data and generating metadata. However, this is not sufficient for scientific data, since
the complexity of the data often requires specialized domain knowledge and understanding. Automated
metadata generated from machine learning algorithms will likely need to be curated by humans to ensure
accuracy. Additionally, the machine learning model needs to understand the terms or signals that might
arise from a user’s query. Thus, it is important to understand how people interact and want to interact with
scientific data search and machine-generated metadata labels.
Project Objectives: Designing a data integration ecosystem. Our proposed techniques bring together
a unique blend of skills that includes machine learning, human-computer interaction, and experience with
scientific domains and users at facilities. Our goal is to make data a first-class discoverable resource at
supercomputing centers through the powerful concept of search.

Figure 1 shows the conceptual system architecture that will be enabled by the research proposed in this
proposal. The ScienceSearch framework has three key components: a) metadata generation, b) the Ground
[38] metadata storage framework, and c) an interface layer. The metadata generation framework uses a
variety of machine learning techniques to generate the context of the data from both application data, as
well as system level information. Ground is a data context service that provides the metadata storage layer.
The interface layer allows the users to interact with the system to verify and validate automated metadata
generated.

We envision the ScienceSearch framework will be available at supercomputing centers and users can
make their data available to the system. The ScienceSearch framework will use the data sets and, ecosystem
artifacts associated with the data (e.g., proposals, workflow and system logs, publications) to learn and
generate metadata labels. The ScienceSearch framework will use active learning to surface the metadata
labels to users for feedback. The users can validate, add, delete or edit labels. Similarly, we anticipate that

2

Automated	metadata	
extracKon		using	machine	
learning		



Computational research 
challenges are substantial




Software implementations at scale in pipeline
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	Discrete	mathema9cs/	
Computa9onal	geometry	
								
		

ALS	
Molecular	Foundry	

NCEM	

APS	
SSRL	

DIAMOND	(UK)	

CLS	(Canada)	

ESRF	(Grenoble)	

JCAP	
PHaSE	

JCESR	

EFRC	Gas	Separa9on	

NSLS-2	

BES	Nanoporous	Materials	
BES	Func9onal	Electronic	Materials	

LBNL	
LLNL/LANL	

BNL	

NERSC	
OLCF	

SIESTA,	CP2K,	ImageJ,	Fiji	

Universi9es:	e.g.:	Berkeley,	Northwestern,	Georgia	Tech,	Rice,	UCSD,	
U.I.C,	McMaster,	Aus9n,	Stanford,…	

(Bosch,	Samsung,	Intel,GE,…)		

ALCF	

PETRA	III	(Germany)	

ANL	

LCLS	

ORNL	

Probabilis9c	Graphical	Models	

Itera9ve	Phasing	

	Spectral	analysis	

Model-based	reconstruc9on	

	Constrained	op9miza9on	

	New	mathema9cal	modeling	
		

Machine	learning,	feature	
detec9on,	persistent	homology		

Fast	PDE	solvers:	(Level	Set,	DG,…)	

			

Linear	Algebra	(Selected	inversion,		
fast	pseudoinverse	approxima9on,...)	

Materials	Design	(Zeo++)	

Electronic	Structure	(PEXSI)	

Image	Analysis/Tomography		(QuantCT,F3D)	

Ptychography	(SHARP)	

Fluctua9on/Single	Par9cle	

GISAXS			

=LABS	 =Universi9es	
=ASCR	Facili9es	

	=BES	(and		other)	Facili9es	
=BES	Centers/Internat.	

=3Rd	Party	Codes	 =Industry	

CAMERA:	Mathema9cs	for	Facili9es	



Machine Learning for Science

Automated detection and analysis of particle beams in laser-plasma accelerator simulations 375

(a) (b)

Fig. 5. Comparison of particle selection with/without MVEE: extracting the orientation and
the axes of an enclosing ellipse from (a) produces (b), increasing the number of particles from
173 to 263. Colors indicate the density of particles, using only (x,y)-coordinates, and black
dots show potential particles to belong to the beam, according to the different methods.

maximum (beam candidate region) per time step. In addition, this is a way of accruing more
samples and detecting secondary beams when these are almost as prominent as the primary
beam, associated to the maximum of f .

During the searching for values that are approximately equal to max( f ), we keep not only
the maximum, but all bins where f ≥ u ∗ max( f ), where u is an uncertainty or tolerance pa-
rameter, here empirically set to 0.85. While this value enables the detection of the main and
the secondary beams (when present), lower values of u could be used to control the amount
of particles to be selected at a lower accuracy of beam position. From this point, we refer to
the subset of particles conditioned to u ∗ max( f ) and its adjacency, calculated for each time
step, as “beam candidates”.

Figure 4 (top) presents projections of Figure 3.b with their calculated beam candidates em-
phasized in red. These are the result of our first attempt to improve particle selection by using
an algorithm known as minimum volume enclosing ellipsoid as in Khachiyan & Todd (1993),
which is able to enclose previously selected particles and to include others based on a geo-
metrically defined polytope. Figure 5 illustrates the algorithm when applied to LWFA data,
showing the selected particles as black dots; these particles are not in the most dense region
(red) once the colors refers to (x,y)-density calculation. When including compactness in px,
the most dense region happens further ahead. As distinct from calculating center of mass
and forcing an ad hoc diameter or semi-major/minor axes, the minimum volume enclosing
ellipsoid (MVEE) algorithm [Khachiyan & Todd (1993); Kumar & Yildirim (2005); Moshtagh
(2009)] takes the subset of points and prescribes a polytope model to extrapolate a preliminary
sub-selection to other particles likely to be in the bunch. The MVEE algorithm is a semidefinite
programming problem and consists of a better approximation to the convexity of subsets of

www.intechopen.com

Accelerators	

Climate	
Biology		

Chemistry	

Images	in	cosmology,	
light	sources,	etc.	

Seismology	

Cosmology	simulaKon	 Brain	

Data	Complexity	 Interpretability	 Performance	and	Scale	



Analytics vs. Simulation Kernels: 


7	Giants	of	Data	 7	Dwarfs	of	Simula9on	
Basic	staKsKcs Monte	Carlo	methods	
Generalized	N-Body	 ParKcle	methods	
Graph-theory	 Unstructured	meshes	
Linear	algebra	 Dense	Linear	Algebra	
OpKmizaKons	 Sparse	Linear	Algebra	
IntegraKons	 Spectral	methods	
Alignment	 Structured	Meshes	
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Deep	Learning	
(ConvoluKonal	
Neural	Nets)	
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Aydin	Buluc	



Random Access Analytics
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…
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•  Genome	assembly	“needs	shared	memory”	

•  Low	overhead	communica9on	
•  Remote	atomics	
•  Par99ons	for	any	structure	

Global	Address	Space	

Scales	to	15K+	cores	
Under	10	minutes	for	human	
First	ever	solu9on	

E.	Georganas,	A.	Buluc,	J.	Chapman,	S.	Hofmeyr,	C.	Aluru,	R.	Egan,	L.	Oliker,	D.	Rokhsar,	K.	Yelick		



Productive Programming


•  High	failure	rate	
•  Slow	network	
•  Fast	(local)	disk	

Speed	
Run	programs	up	to	100x	faster	than	Hadoop	
MapReduce	in	memory,	or	10x	faster	on	disk.	

And	Spark	is	s9ll	10x+	
slower	than	MPI	



SPARK Analytics on HPC
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SPARK	on	HPC	vs.	clusters	
•  Network,	I/O,	and	virtualizaKon	all	key	to	performance	
•  Increased	scale	from	O(100)	to	O(10,000)	cores	

Chaimov,	Malony,	Iancu,	Ibrahim,	Canon,	Srinivasan	

Weak	scaling	(fixed	problem	size	per	node):	Power	Itera9on	Benchmark	

Perfect	scaling	



Filtering, De-Noise and Compressing Data


Arno	Penzias	and	Robert	Wilson	discover	
Cosmic	Microwave	Background	in	1965	

AmeriFlux	&	FLUXNET:	750	
users	access	carbon	sensor	data	
from	960	carbon	flux	data	years	



How will we get enough 
computing for these problems?




Architectures for Data vs. Simulation


Separate	
Jobs	

Compute	
Intensive	

Nearest	
Neighbor	

All-to-All		 Random	
Access	

Different	architectures	for	simula9on?		Can	
simula9on	use	data	architectures?			
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Vector	
parallelism	

Manycore	
Parallelism	

“Killer	
cellphones”	

Rest	of	the	
world	gets	
parallelism	

“Killer	
micros”	

More Parallelism at Lower Levels

SpecializaKon		



ITRS	now	sets	the	end	of	transistor	shrinking	to	the	year	2021	
	
	

End of Transistor Density Scaling
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Device alternatives require lower clock à more parallelism


Today’s	CMOS	
Technology		

Tunneling FET 
advantage only at 
low clock rates



Specialization: End Game for Moore’s Law


Google	designs	its	own	
Tensor	Processing	Unit	(TPU)	

Intel	buys	deep	learning	
startup,	Nervana	

NVIDIA	builds	deep	
learning	appliance	with	
P100	Tesla’s	

FPGAs	



Data processing with special purpose hardware


45!

•  General	trend	towards	specializaKon	for	performance	
•  Data	processing	(on	raw	data)	will	be	first	in	DOE	

ParKcle	Tracking	with	Neuromorphic	chips	

CompuKng	in	Detectors	
FPGAS	for	genome	analysis	

Deep	learning	processors	for	image	analysis	



KATHY YELICK’S


2031:	
a	science	odyssey	



Life of a Scientist in 2031


•  No	personal/departmental	computers	
•  Users	don’t	login	to	HPC	Facili9es		
•  Travel	replaced	by	telepresence	
•  Lecturers	teach	millions	of	students	
•  Theorems	proven	by	online	communi9es		
•  Laboratory	work	is	outsourced	
•  Experimental	facili9es	are	used	remotely	
•  All	scien9fic	data	is	(eventually)	open	
•  Big	science	and	team	science	democra9zed	



Extreme Data Science


The	scien9fic	process	is	poised	to	undergo	a	
radical	transforma9on	based	on	the	ability	
to	access,	analyze,	simulate	and	combine	

large	and	complex	data	sets.					


