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Science is poised for transformation



Old School Scientists: The Lone Scientist
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The Legacy of Team Science
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Radiation Lab staff on
the magnet yoke for the

| 60-in cyclotron, 1939,

including:

| E. 0. Lawrence
| Edwin McMillan

Luis Alvarez
J. Robert Oppenheimer
Robert R. Wilson




New Scientists
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17-year-old Brittany Wegner creates breast cancer detection tool that is 99%
accurate on a minimally invasive, previously inaccurate test.
Machine Learning + Online Data + Cloud Computing



Experimental Science is Changing
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Computing Sciences at Berkeley Lab

NERSC: State-of-the art supercomputing for the broad
science community — over 7000 users, 700 applications
mostly in simulation

-7 - Exascale Science



High Performance Computing in Science

Computers are used to understand things that are

Too Small Too slow

for experiments alone, so simulations are used



“Big Data” Changes Everything...What about Science?
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Berkeley Lab’s Advanced Facilities Enable
World-Leading Science
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About 10,000 visiting scientists (~2/3 from universities) use Berkeley Lab research ]

facilities each year, which provide some of the world’s most advanced capabilities
in materials science, biological research, computation and networking




Data Growth is Outpacing Computing Growth

Projected Data Rates Relative to 2010
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Old School Scientific Workflow
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Computing, experiments, networking and expertise
in a “Superfacility” for Science
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Science at the boundary of theory
and experiment ... simulation and
data analytics



Integration of Simulation and Observational Science
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Re-Use and Re-Analyze Previously Collected Data

| | Materials Genome Initiative
— Materials Project: Over 10,000 users!
— “World-Changing Idea of 2013”

Computers programs

run by “bots”

Materials
Data




Real-Time Analytics in Health

Compressed Sensing Approach by Mike Lustig et al
Michael Driscoll HPC optimization MRI results Wenwen Jiang



Data and Simulation in the environment

New climate modeling methods, including AMR
“Dycore” produce new understanding of ice Genomes to watersheds Scientific Focus Area

Understand interactions between environmental microbiomes and climate change with
kilometer resolution models that track dynamic 3D features (with AMR) and
genome-enabled analysis of environmental sensors.
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Science in embedded sensors

Transportation Modeling Power Grid Modeling
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Computing and network facilities
need to adapt



Superfacility: Integrated network of experimental and
computational facilities and expertise

Computing and
Data Facilities

Asingle interconnected
, “facility” where data is —
Experimental .
FF)aciIities acquired, stored, analyzed Expertise AM
and served

Applied Math

Methods, models, analytics, and software
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User Community

Execution plan: one
science area at atime



ESnet: Data driven science drives network capacity
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100 Exabytes/year by 2024!




Systems configured for data-intensive science

NERSC Cori has data partition (Haswell) and pre-exascale (KNL)
NVRAM file system with close to 2 PB at 2 TB/sec
WAN-to-Cori optimized for streaming data: 100x faster from LCLS to Cori and Globus to CERN



Real-time queue prototyped at NERSC

* In 1998 dedicated hardware; now prototype queue on Cori
 <1% of NERSC allocation
* Cryo-Em, Mass spec, Telescopes, Accelerator, Light sources

e —

PTF: Image subtraction pipeline ALS: 3D Reconstruction,
rendered on SPOT web portal

Cryo-EM: Image classification
Nogales Lab
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Interactive Analytics using Jupyter
° @

jupyter

Science notebooks through
Jupyter (iPython)

«  Widely used in science
 Interactive HPC LDRD

Deployed at NERSC:
« >100 users pre-production

Fernando Perez et al



Containers for HPC Systems

* Data analysis pipelines are often large, complex software stacks

* NERSC Shifter (with Cray), supports containers for HPC systems

e Used in HEP and NP projects
(ATLAS, ALICE, STAR, LSST, DESI)

Startup Time

Cray hoists Docker containers into
supercomputers

Productivity gains without performance hits
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Old School Scientific Data Search
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Automated Search, Meta-Data Analysis, and On-
Demand Simulation

Application data8 App.
Data

including possible
training data

User Interfaces
[ e.g., Metadata

Metadata Generation Validation. Search

.’ Automated metadata
Extraction Learning Queries ] . . .
extraction using machine
Classification Clustering Metadata .
ER—— learning
[Ground]

System data ﬁ
using

Data Stores \




Computational research
challenges are substantial



Software implementations at scale in pipeline

MicroCT Segmentation
Imaging

Topological
Analysis
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CAMERA: Mathematics for Facilities AM): =~

Probabilistic Graphical Models
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Spectral analysis

Machine learning, feature
detection, persistent homolo

New mathematical modeling

Linear Algebra (Selected inversion,

fast pseudoinverse approximation,...) (Bosch, Samsung, Intel,GE,...)

Universities: e.g.: Berkeley, Northwestern, Georgia Tech, Rice, UCSD,
U.l.C, McMaster, Austin, Stanford,...

@ -=ASCR Facilities @ =BES Centers/Internat.
@-=BES (and other) Facilities @=LABS @=3Rd Party Codes @=Industry @ =Universities



Machine Learning for Science

Images in cosmology,
light sources, etc.

Accelerators

Cosmology simulation Chemistry

Data Complexity> Interpretabilit> Performance and Scale >




Analytics vs. Simulation Kernels:

Basic statistics
Generalized N-Body
Graph-theory
Linear algebra
Optimizations
Integrations
Alignment

Monte Carlo methods
Particle methods
Unstructured meshes
Dense Linear Algebra
Sparse Linear Algebra
Spectral methods
Structured Meshes




Machine Learning Mapping to Linear Algebra

Logistic Graphical

Dimensionality Clustering

oot [ recucton e, eg,me RS WS RO
PP NMF, CX/CUR, Spectral .
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Aydin Buluc




Random Access Analytics

* Genome assembly “needs shared memory”

Shared
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Productive Programming

Spark
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Speed
Run programs up to 100x faster than Hadoop
MapReduce in memory, or 10x faster on disk.
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* High failure rate

And Spark is still 10x+

* Slow network slower than MPI

* Fast (local) disk



SPARK Analytics on HPC

Weak scaling (fixed problem size per node): Power Iteration Benchmark
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Perfect scaling

4 8 1 2 q 8 16
Cluster Cluster with RDMA

SPARK on HPC vs. clusters
* Network, /0, and virtualization all key to performance
* Increased scale from O(100) to O(10,000) cores

Chaimov, Malony, lancu, Ibrahim, Canon, Srinivasan




Filtering, De-Noise and Compressing Data
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AmeriFlux & FLUXNET: 750
users access carbon sensor data
from 960 carbon flux data years

Arno Penzias and Robert Wilson discover
Cosmic Microwave Background in 1965



How will we get enough
computing for these problems?



Architectures for Data vs. Simulation

Separate Compute Nearest All-to-All Random
Jobs Intensive Neighbor Access

Different architectures for simulation? Can
simulation use data architectures?



More Parallelism at Lower Levels
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End of Transistor Density Scaling

ITRS now sets the end of transistor shrinking to the year 2021
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Device alternatives require lower clock - more parallelism
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Specialization: End Game for Moore’s Law

NVIDIA builds deep
learning appliance with
P100 Tesla’s

Intel buys deep learning
startup, Nervana

Google designs its own
Tensor Processing Unit (TPU)



Data processing with special purpose hardware

* General trend towards specialization for performance

Data processing (on raw data) will be first in DOE
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Particle Tracking with Neuromorphic chips

. Deep learning processors for image analysis
Computing in Detectors

FPGAS for genome analysis
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2031:

a science odyssey




Life of a Scientist in 2031

* No personal/departmental computers

e Users don’t login to HPC Facilities

* Travel replaced by telepresence

* Lecturers teach millions of students

* Theorems proven by online communities

* Laboratory work is outsourced

* Experimental facilities are used remotely
 All scientific data is (eventually) open

* Big science and team science democratized



Extreme Data Science




