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ExaBiome: Exascale Solutions for Microbiome Analysis 
●  Microbes:	single	cell	organisms,	such	as	bacteria	and	viruses			
●  Microbiomes:	communi5es	of	1000s	of	microbial	species,	less	

than	1%	individually	culturable	in	a	lab	(and	thus	sequenced)	
●  Metagenomics:	genome	sequencing	on	these	communi5es	

(growing	exponen5ally)	

Environment										(Health)														Bio-Energy						Bio-Manufacturing	



Office of 
Science 

Metagenome database growth 
• Metagenomic	data	double	every	11	months	
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Metagenomics data mining efforts at JGI 

Assembled 
metagenomes 
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ExaBiome: Exascale Solutions for Microbiome Analysis 

PI:	Katherine	Yelick	(LBNL)	

Metagenome 
Assembly 

Protein        
Clustering 

Comparative   
Analysis 

Graph algorithms, Hash 
Tables, alignment 
(Smith-Waterman)


Machine learning 
(clustering), sparse 
linear algebra / 
graphs 


Alignment, Machine 
learning (dimensionality 
reduction), linear 
algebra


Fine-grained comm., all-
to-all, remote atomics 
and fast I/O


Fast barriers, 
subset reductions

 
 

All-to-all 
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Metagenome assembly is hard 

• There is no genome reference. 
• Reads are significantly shorter than whole genome. 

– Reads consist of 20 to 30K bases 
– Genomes vary in length and complexity – up to 30G bases 

• Reads include errors. 
• Genomes have repetitive regions. 

– Repetitive regions increase genome complexity 

• Microbial genomes occur with thousands of others 
– The coverage (frequency) may vary be orders of magnitude	



Office of 
Science 

Strong scaling (human genome) on Cray XC30 
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Single Node Scaling on KNL 

 Strong Scaling (small dataset, chromosome14) 

 UPC (with MPI in K-mer analysis) 
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Speedup on Human Data (single genome) 
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•  Complete assembly of human genome in 4 minutes using 23K cores. 
•  700x speedup over original Meraculous code used in production (only ran on 

shared memory where it took 2,880 minutes) 
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Strong scaling (wheat genome) on Cray XC30 
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Early version of HipMer were used for the first whole genome assembly of wheat 
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Original HipMer Pipeline Summary (Single Genome) 

reads 

contigs 

k-mers 

1 

2 

Input:	Reads	that	may	contain	errors	

Chop	reads	into	k-mers,	process		
k-mers	to	exclude	errors		

Construct	&	traverse	de	Bruijn	graph	
of	k-mers,	generate	con5gs	
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scaffolds 

Leverage read information to link 
contigs and generate scaffolds. 

- 12 - 

(Assembly output is generally called “contigs” even when a scaffolding phase is included.) 

k-mer analysis 

contig generation 

scaffolding 

NERSC-9 
“Meraculous” 
benchmark 
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P0	

P1	

Pn	

…
	

Parse	to	k-mers	

Hyperloglog		

Hyperloglog		

Hyperloglog		

k-mer	cardinality	
es5ma5on	

G	=	Global	
cardinality	
es5ma5on	

Parallel	Reduc5on	

Bloom	Filter	of	
size	(G/n)	

Bloom	Filter	of	
size	(G/n)	

Bloom	Filter	of	
size	(G/n)	

Create	local	Bloom	
filters	

Also	idenGfy		
high-frequency	k-mers		

at	this	step	

K-Mer Analysis: Pass 1 (I/O + Independent + Reduce) 

Reads	
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P0	

P1	

Pn	

…
	

Parse	to	k-mers	

Hash		
k-mers	

Hash		
k-mers	

Hash		
k-mers	

Hash	k-mers	&	
find	owners	

Received	
k-mers	

Received	
k-mers	

Received	
k-mers	

All-to-all	
communica5on	

of	k-mers	

Bloom	
Filter	

Bloom	
Filter	

Bloom	
Filter	

Local	
set	

Local	
set	

Local	
set	

Store	a	k-mer	in	the	
local	set	only	if	it	was	

seen	before	

The	local	set	does	
the	actual	coun5ng	

of	the	k-mers	

K-Mer Analysis: Pass 2 (Iterative All-to-All) 

Reads	
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Bloom Filter 

Bloom	filter	is	a	probabilis)c	data	structure	used	for	
membership	queries	

• Given	a	bloom	filter,	we	can	ask:		
“Have	we	seen	this	k-mer	before?”	
• No	false	negaGves.	
• May	have	false	posiGves	
(in	pracGce	5%	false	posiGve	rate)	

	
	
k-mers	with	frequency	=1	are	useless	(either	error	or	can	
not	be	disGnguished	from	error),	and	can	safely	be	
eliminated.	
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P0	

P1	

Pn	

…
	

Parse	to	k-mers	

Hash		
k-mers	

Hash		
k-mers	

Hash		
k-mers	

Find	extensions	of	
k-mers,	hash	them	
&	find	their	owners	

Received	
k-mers	&	
extensions	

Received	
k-mers	&	
extensions	

Received	
k-mers	&	
extensions	

All-to-all	communica5on	
of	k-mers	and	extensions		

Keep	track	of	the	
number	of	occurrences	
of	each	extension	for	

each	k-mer	

Local	
set	

Local	
set	

Local	
set	

ACCCA			CT	
CTTAG			CF	
AACCT			TG	
CGCAT			XA						
	

AGGCA			AT	
GGTAG			FF	
AAAAT			TG	
CCCAT			XX						
	

TTCCA			GT	
TTTGC			CA	
AACTT			GG	
CTTTT			CA						
	

Use	a	threshold	&	
find	the	high	

quality	extensions	
of	k-mers	

Reads	

K-Mer Analysis: Step 3 (All-to-All) 
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Long-tailed	distribu5on	for	genomes	with	repe55ve	content:		
-  The	maximum	count	for	any	k-mer	in	the	wheat	dataset	is	451	million	
-  Our	original	scheme	(SC’14)	was	“owner	counts”,	a_er	an	all-to-all	
-  Coun5ng	an	item	w/	451	million	occurrences	alone	is	load	imbalanced	

SoluGon:	Quickly	iden5fy	
high-frequency	k-mers	using	
minimal	communica5on	
during	the	“cardinality	
es5ma5on”	step	and	treat	
them	specially	by	using	local	
counters.	

Heavy Hitters 
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Distributed De Bruijn Graph 

•  The	de	Bruijn	graph	of	k-mers	is	represented	as	a	hash	table.	

• A	k-mer	is	a	node	in	a	graph	ó	a	k-mer	is	an	entry	(key)	in	the	hash	table.	

• An	edge	in	the	graph	connects	two	nodes	that	overlap	in	k-1	bases.	

•  The	edges	in	the	hash	table	can	be	stored	efficiently	by	storing	the	

extensions	of	the	k-mers	as	their	corresponding	values.	

•  The	connected	components	represent	con)gs.	

18 
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AAC  CF 
ATC  TG 
ACC  GA 
 
TGA  FC 
GAT  CF 
AAT  GF 
 
ATG  CA 
TCT  GA 
 
CCG  FA 
CTG  AT 
TGC  FA 
 

P0 

P1 

Pn 

Input: k-mers and their 
high quality extensions 

Read k-mers & 
extensions 

Distributed 
Hash table 

Store k-mers & 
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…
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Parallel De Bruijn Graph Construction 
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Graph construction, traversal, and all later stages are written in UPC to take 
advantage of its global address space
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Pi 

…
 

Local buffer for P0 

Local buffer for P1 

Local buffer for Pn 

 Buffer local to P0 

Distributed 
Hash table 

Local to P0 

Local to P0 

Local to P0 

Local to P0 

P0 

P0 stores the k-mers & extensions 
in its local buckets in a lock-free & 
communication-free fashion 

Full local buffer 
1 aggregate remote transfer 

Aggregating Stores Optimization 
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Parallel Graph Construction Challenge 

• Challenge	1:	Hash	table	for	de	Bruijn	graph	is	huge	(at	least	
mulGple	terabytes)	
– SoluGon:	Distribute	the	graph	over	mul5ple	processors.	

	
• Challenge	2:	Parallel	hash	table	construcGon	introduces	
communicaGon	and	synchronizaGon	costs	
– SoluGon:	Split	the	construc5on	in	two	phases	and	aggregate	
messages	à	10x-20x	performance	improvement.	

21 
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Parallel De Bruijn Graph Traversal   

22 

Algorithm:	Pick	a	
random	k-mer	
and	expand	
connected	
component	by	
consecuGve	
lookups	in	the	
distributed	hash	
table.	
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Parallel De Bruijn Graph Traversal 

• Algorithm:	Pick	a	random	k-mer	and	expand	connected	
component	by	consecuGve	lookups	in	the	distributed	hash	table.	

• Fine-grained,	irregular,	remote	accesses.	Need	fine-grained	
parallelizaGon.		
-  Worst	case:	the	result	is	a	single	very	long	chain	(high-diameter	graph).	
-  Global	address	space	and	one-sided	communica5on	simplifies	logic.	
-  If	mul5ple	processors	are	working	on	the	same	connected	component,	they	

cooperate	via	a	lightweight	synchronizaGon	protocol.	
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CGTATTGCCAATGCAACGTATCATGGCCAATCCGA
T 

P0 P1 P2 
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Lightweight synchronization protocol 
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ACTIVE 

ABORTED 

Found USED k-mers in both directions of 
the subcontig AND one of the 
neighboring subcontigs is ABORTED: 
1) Attach that subcontig to local subcontig, 
2) Set that state to ACTIVE 

Attached in a neighboring subcontig 

INACTIVE 

A processor picks a k-mer 
as seed and initiates a 
subcontig 

Found UNUSED k-mer in any 
direction of the subcontig: 
1) Successfully adding forward/
backward extension to subcontig, 
2) Mark k-mer as USED 

Found USED k-mers in both directions of the 
sub-contig AND both of the neighboring sub-
contigs are ACTIVE:  
1) Set own state to ABORTED, 
2) Pick another random seed from hash table 

COMPLETE 

Reached both endpoints of a UU contig. 
1) Set state to COMPLETE and store UU contig 
2) Pick another random seed from hash table 
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Read i 

Contig 1 Contig 2 

Read j 

Contig 3 

Reads 

Contigs 
 Contig 0 

•  Input : a set of reads and a set contigs 
•  Output : detailed alignments of the reads onto the contigs 

  Alignment with (large) input data; use of hash table to find possible matches 

Read ID Start-pos End-pos Contig ID Start-pos End-pos 
Read i 1 4 Contig 1 152 155 

Read i 130 150 Contig 2 1 21 

Read j 1 150 Contig 3 101 250 

Scaffolding: Main step maps reads to contigs 

25 
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1.  Given a set of reference sequences (contigs), build an index of them using 
seeds (substrings) of fixed length s. 

2.  Given a query sequence (read), extract substrings of length s and look 
those up in the reference index à locate candidate contigs to be aligned. 

3.  Perform an extension algorithm (e.g. Smith-Waterman) on the read and the 
candidate contig to obtain detailed alignments. 

Seed-and-extend Algorithm Summary 

26 
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Gap Closing 

• Gaps	found	from	alignment	and	informaGon	about	
distance	between	paired	reads	

• Leads	to	load	balancing	problems	(work	stealing)		

CHAPTER 2. BACKGROUND 12

Gap 1 Gap 2 Gap 3 

Gap 
closing 

closed 
scaffold 

v v 
v 

v 

v 
v 

scaffold 

Figure 2.5: The gap closing procedure.

that connects contigs i and j. By generating links for all the contigs that are supported
by pairs of reads we create a graph of contigs (see Figure 2.4(b)). By traversing this
graph of contigs we can form chains of contigs which constitute the sca↵olds. Note
that libraries with large insert sizes can be used to generate long-range links among
contigs. Additionally, sca↵olding can be performed in an iterative way by using links
generated from di↵erent libraries at each iteration.

After the sca↵old generation step, it is possible that there are gaps between pairs of
contigs. We then further assess the reads-to-contigs mappings and locate the reads that
are placed into these gaps (see Figure 2.5). Ultimately, we leverage this information
and close the contig gaps by performing a mini-assembly algorithm involving only the
localized reads for each gap. The outcome of this step constitutes the result of the
Meraculous assembly pipeline.

In Chapters 3, 4, 5, 6 and 7 we examine in more detail the algorithms involved in the
Meraculous pipeline along with their parallelization.

2.2 The Partitioned Global Address Space Model in
Unified Parallel C

The Partitioned Global Address Space (PGAS) model is a communication mechanism em-
ployed in parallel programming languages. In this model, any thread is allowed to directly
access memory on other threads. In the PGAS model, two threads may share the same
physical address space or they may own distinct physical address spaces. In the former case,
remote-thread accesses can be done directly using load and store instructions while in the
latter case a remote access must be translated into a communication event, typically using
a communication library such as GASNet [11] or hardware specific layers such as Cray’s
DMAPP [15] or IBM’s PAMI [58].
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Extending HipMer for Metagenomes 
•  Primary	change	in	conGg	
generaGon	on	k-mer	graph	

–  Itera5ve	con5g	genera5on,	from	
small	to	large	k-mer	size	

–  Small	k:	low	coverage	genomes	
–  Large	k:	high-coverage	genomes	
–  Added/modified	steps	in	HipMer:	
merging	bubbles,	itera5ve	
pruning,	local	assembly	

•  Some	changes	to	scaffolding	
–  Looping	over	scaffolding	
–  Opportuni5es	for	future	

improvements	
•  Scaffolding	steps	omibed	
from	figure	for	simplicity	

Iterate	
over	k	
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Quality Metrics 
•  A	goal	of	this	milestone	was	to	idenGfy	good	quality	metrics	
•  Want	to	simultaneously	maximize	conGg	length	and	

minimize	errors			
– Sort output contigs by length and find the halfway point. 
– Several standard metrics, simplest is N50. 
– N50 is the minimal contig length X such that contigs of length at least x 
account for at least 50% of the total assembly length 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

	

120 
90 
90 
50 
50 
50 
50 

Total assembly length = 500 
 
First 3 contigs account for over half 
 
N50 = 90 (length of 3rd contig) 
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Quality Metrics: Error-free contiguity 
ConGguity	

– N50		is	the	con5g	length	such	that	using	longer	or	equal	length	con5gs	produces	
at	least	half	(50%)	the	bases	of	the	assembly.		

– NG50		is	the	con5g	length	such	that	using	longer	or	equal	length	con5gs	
produces	half	(50%)	the	bases	of	the	reference	genome.	This	metric	could	be	
computed	only	if	the	reference	is	given.	

Error-free	conGguity	
– NGA50	similar	to	NG50,	but	uses	lengths	of	aligned	blocks	rather	than	con5gs.	if	
a	con5g	has	a	misassembly	with	respect	to	the	reference,	we	break	the	con5g	
into	smaller	pieces.	Also,	if	a	con5g	has	bases	that	don't	align	to	the	reference,	
they	are	not	counted	in	NGA50.			

– Median	NGA50:	median	NGA50	across	all	genomes	for	which	NGA50	can	be	
computed	(requires	sufficient	coverage	of	genome)	

We	will	use	NGA50	and	Median	NGA50	for	error-free	conGguity	
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Results for low complexity data (mg64) 

•  Low	complexity	dataset	-	only	64	genomes	
•  All	assemblers	find	most	genomes,	with	low	errors	
•  MetaHipMer	has	more	misassemblies	due	to	small	number	of	

species	(recall	this	is	not	normalized	to	assembly	length)	
•  MetaHipMer	has	fewer	mismatches,	greater	predicted	genes	

and	beker	NGA50	

Genome Statistics MetaHipMer metaSPAdes MEGAHIT 

Genome Fraction (%) 95.5 94.2 95.3 

Misassemblies (↓)	 456 239 309 

Mismatches per 100 kpb (↓)	 45.6 99.3 71.9 

Median NGA50  95129 89288 58468 

Predicted Genes 202228 191307 200367 
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Error free contiguity (NGA50) on mg64 

            metaspades-mg64 
            megahit-mg64 
            metahipmer-mg64 
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Results for medium complexity data (CAMI) 

•  Medium	complexity	dataset	-	225	genomes	
•  Lower	coverage	than	mg64,	with	more	errors	
•  MetaHipMer	has	a	lower	genome	frac5on,	but	beker	NGA50	

than	the	others	

Genome Statistics MetaHipMer metaSPAdes MEGAHIT 

Genome Fraction (%) 66.3 68.7 73.0 

Misassemblies (↓)	 2031 1210 1579 

Mismatches per 100 kpb (↓)	 80.3 152.6 100.1 

Median NGA50  24906 14219 16123 

Predicted Genes 632459 635289 637085 
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Results for high complexity data (MC04) 

•  High	complexity	dataset	-	800	genomes	
•  Low	coverage	from	all	assemblers	due	to	challenging	nature	

of	dataset	
•  High	rates	of	misassembly	
•  MetaHipMer	has	a	lower	genome	frac5on,	but	beker	

NGA50	than	the	others	

Genome Statistics MetaHipMer metaSPAdes MEGAHIT 

Genome Fraction (%) 28.6 32.7 32.3 

Misassemblies (↓)	 12730 9014 17479 

Mismatches per 100 kpb (↓)	 27.4 70.3 67.9 

Median NGA50 15098 10540 12744 

Predicted Genes 1386760 1381479 1355607 
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MetaHipMer Performance (preliminary results) 

•  Performance on a mock community 
•  metaSPAdes: 11.5 hours  on a 32 core machine with 500 GB of RAM 
•  metaHipMer: 17 minutes on 80 Edison nodes (~2K cores) – 41x faster 

 
•  metaSPAdes can’t scale to the massive datasets (up to 80x larger) 

•  For assembling TaraOceans dataset (8 TBytes, 80x larger), it would 
take 38 days, on a machine with 40 TBytes of memory. 

 
•  metaHipMer modules scale to full machine ! 

•  Assuming 40% efficiency, the TaraOceans dataset could be assembled 
in < 1 hour using full Edison 

35 
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Summary on MetaGenomeAssembly 
•  Assembly	is	an	HPC	problem	
–  (Meta)HipMer	can	handle	previously	unassembled	data	sets	

•  Hardware	support	
–  High	injec5on	rate	RDMA	communica5on;	low	latency;	remote	atomics	
–  High	bisec5on	bandwidth	(synchronous	and	asynchronous	all-to-all)	

•  Sodware	support	
–  PGAS	model	for	distributed	data	structures,	one-sided	communica5on	
–  Hierarchical	algorithms	probably	useful,	but	scaling	well	on/off	node	with	UPC		

•  Benchmarks	and	proxy	applicaGons	
–  NERSC-9	“Meraculous”	benchmark	is	con5g	genera5on	(graph/hash	table)		
–  Latency	/	bandwidth	tests	(“roofline	like”)	for	remote	atomics,	async	all-to-all	

•  MetaHipMer	is	a	parameterized	toolkit	for	HPC	genome	analysis	
–  Quality	results	comparable	to	other	state-of-art	assemblers,	but	can	solve	

problems	they	cannot	due	to	memory/performance	scaling	
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ExaBiome: Exascale Solutions for Microbiome Analysis 

PI:	Katherine	Yelick	(LBNL)	

Metagenome 
Assembly 

Protein        
Clustering 

Comparative   
Analysis 

Graph algorithms, Hash 
Tables, alignment 
(Smith-Waterman)


Machine learning 
(clustering), sparse 
linear algebra / 
graphs 


Alignment, Machine 
learning (dimensionality 
reduction), linear 
algebra


Fine-grained comm., all-
to-all, remote atomics 
and fast I/O


Fast barriers, 
subset reductions

 
 

All-to-all 
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Discovering Biosynthetic Gene Clusters 
“A	biosyntheGc	gene	cluster	is	a	physically	clustered	group	of	two	or	more	genes	
in	a	par5cular	genome	that	together	encode	a	biosynthe0c	pathway	for	the	
produc5on	of	a	specialized	metabolite	(including	its	chemical	variants)”	
[Medema	et	al.	"Minimum	informa5on	about	a	biosynthe5c	gene	cluster."	Nature	chemical	biology,	2015	]	

	
Input:	Sparse	matrix	encoding	genes	and	their	nonzero	pairwise	similari5es	
Method:	High-performance	Markov	clustering	(HipMCL)		
Desired	scale:	10s	of	billions	of	genes,	trillions	of	nonzero	pairwise	similari5es	
•  Use	proteins	rather	than	genes	(constant	factor)	
•  Find	connected	components	first	(heuris5c)	
•  Requires	supercomputers	
	
MCL	is	the	de-facto	algorithm	in	community	for	finding	gene/protein	families	
“…MCL	is	remarkably	robust	to	graph	altera5ons…”		
[Brohée,	van	Helden,	“Evalua5on	of	clustering	algorithms	for	protein-protein	interac5on	networks”,	2006]	



Office of 
Science 

DNA to Proteins  
•  DNA based on 4-character alphabet 
•  Three-letter codons 

represent one of the 
20 regularly used 
amino acids	

•  Start	and	Stop	codons	
mark	the	beginning/
end	of	genes 
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Markov Cluster algorithm 

40 

IteraGon	1	 IteraGon	2	 IteraGon	3	

Image	source:	hkp://micans.org/mcl/	

IniGal	network	

At	each	iteraGon:	
Step	1	(Expansion):	Squaring	the	matrix	while	 	 	

	pruning	(a)	small	entries,	(b)	denser	columns	
Naïve	implementaGon:	sparse	matrix-matrix	product	(SpGEMM),	
followed	by	column-wise	top-K	selec5on	and	column-wise	pruning	
Step	2	(Infla5on)	:	taking	powers	entry-wise	

Input: Adjacency matrix A (sparse) 
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Scalable Distributed Memory, Memory Efficient SpGEMM  

41	SIAM	ALA	2015	

x	 	=	

100K	
25K	

20K	

100K	

A	 B	 C	

Processor	Grid	p × p

•  Parts	of	the	result	is	produced	and	pruned		
•  Memory	requirement	can	be	significantly	reduced	by	increasing	k	
•  However,	A	is	needed	to	be	broadcasted	k	5mes	
•  With	k=20:	MCL	ran	on	64	nodes	of	Cori	in	about	20	minutes	

Split	B	into	k	pieces	
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Challenges in distributed-memory MCL 

42 

• “Small”	test	dataset	from	Joint	Genome	InsGtute	
–  47	Million	proteins	
–  14	Billion	interac5on	
–  4.2	Trillion	expected	nonzeros	in	A2	

–  Memory	requirement	of	naïve	implementa5on:	~100	TB	
• UlGmate	dataset	is	1000	Gmes	larger.		
• Memory	efficient	SpGEMM	algorithm	being	developed	

– Since	the	output	is	sparsified	by	column-wise	pruning,	we	create	A2	part	by	
part	and	prune	on	the	fly	to	save	memory.	

– Need	to	find	the	kth	largest	entry	of	each	column	at	every	itera)on:	Trivial	
in	single	node,	harder	in	distributed	memory.	

• InterpretaGon	of	final	clusters	need	distributed-memory	
connected	components		
– Not	a	bokleneck:	cheaper	and	only	done	once	(not	per	itera5on)		
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Dense	
Matrix	
Vector 
(BLAS2) 

Sparse	-	
Sparse	
Matrix	
Product 

(SpGEMM) 

Sparse	Matrix	
Times	

Mul5ple	
Dense	Vectors 

(SpMM) 

Sparse	
Matrix-
Dense	
Vector	
(SpMV) 

Sparse	
Matrix-
Sparse	
Vector	

(SpMSpV) 

Increasing	arithme5c	intensity 

Graphical	
Model	

Structure	
Learning	(e.g.,	
CONCORD) 

Clustering	
(e.g.,	MCL,	
Spectral	

Clustering) 

Logis5c	
Regression,	
Support	
Vector	

Machines 

Dimensionality	
Reduc5on	(e.g.,	
NMF,	CX/CUR,	

PCA) 

Machine Learning Mapping to Linear Algebra in General 

Deep	Learning	
(Convolu5onal	
Neural	Nets) 

Sparse	-	
Dense	
Matrix	
Product 
(SpDM3) 

Dense	
Matrix	
Matrix	
(BLAS3) 

Aydin Buluc, Sang Oh, John Gilbert, 
Kathy Yelick 
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ExaBiome: Exascale Solutions for Microbiome Analysis 

PI:	Katherine	Yelick	(LBNL)	

Metagenome 
Assembly 

Protein        
Clustering 

Comparative   
Analysis 

Graph algorithms, Hash 
Tables, alignment 
(Smith-Waterman)


Machine learning 
(clustering), sparse 
linear algebra / 
graphs 


Alignment, Machine 
learning (dimensionality 
reduction), linear 
algebra


Fine-grained comm., all-
to-all, remote atomics 
and fast I/O


Fast barriers, 
subset reductions

 
 

All-to-all 
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Metagenome composition description 

Three	approaches	to	describe	and	analyze	the	
metagenome	sequencing	dataset:	
1) taxonomic	composi5on-based	(who	is	in	the	metagenome)	
2) func5onal	annota5on-based	(what	can	this	metagenome	do)	
3) k-mers	(shingles)	composi5on-based	(i.e.,	shingle	frequency	
vector-based	)	

K-mer	based	approach	(MASH)	is:	
– More	resilient	to	errors	/degrada5on	of	DNA,	coverage	bias,	
composi5on,	short	and	redundant	fragments	

Taxonomic	(GOTTCHA)	or	funcGonal	approaches:	
– Fast	and	memory	efficient;	also	gives	some	seman5c	
informa5on	about	differences	

“features” 
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MASH – an alternate MinHash based approach 

• “…extends	MinHash	dimensionality-reducGon	technique	
to	include	a	pairwise	mutaGon	distance	and	P	value	
significance	test,	enabling	the	efficient	clustering	and	
search	of	massive	sequence	collecGons…”	

Ondov et al. Genome Biology (2016) 17:132 DOI 10.1186/s13059-016-0997-x  
 

Metagenome 
#1 

Metagenome 
#2 

Metagenome 
#N 

Min 
Hashing 

Sketch #1 

Sketch #2 

Sketch #N 

Jaccard 
Index 

Distance 
Matrix 

… …
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MASH distance is sufficiently accurate 
Ondov et al. Genome Biology (2016) 17:132 DOI 10.1186/s13059-016-0997-x  
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MASH pros and cons 

+	REALLY	fast	(just	four	simple	consecuGve	steps).		
– K-mer	extrac5on	->	MinHash	->	sketch	->	distance	
+	Reduces	metagenome	data	size	significantly	
– |sketch|<<|metagenome|	
+ Can	cluster	metagenomes	with	a	lot	of	unknowns	(un-
annotatable)	
- There	is	a	threshold	in	k-mer	and	sketch	sizes	which	
affects	the	tradeoff	between	specificity/sensiGvity	and	
the	computaGonal	complexity/space	requirements	
– The	threshold	can	be	es5mated	if	the	divergence	between	
metagenomes	can	be	roughly	approximated	

- Provides	no	insight	into	the	genome	taxonomic	or	
funcGonal	composiGon		
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GOTTCHA - Genome Signature Discovery 

NCBI RefSeq  
(or a custom) 

genomic 
database 

Metagenome 
#2 

Metagenome 
#N 

Taxonomic 
assignment #1 

Taxonomic 
assignment #2 

Taxonomic 
assignment #N 

Distance 
(between 
taxonomic 
abundance 

vectors) 

Distance 
Matrix 

… … 

GOTTCHA 
signature 
extraction 

GOTTCHA 
DB 

Metagenome 
#1 

Alignment 
process 
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GOTTCHA – an interactive comparative visual display 
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GOTTCHA2 implementation 

• Developed	at	LANL,	will	be	released	with	GPL-2	
• The	database	crea5on	tool	is	not	yet	publicly	
available,	coded	in	MPI	C/C++	(we	distribute	binary	
database	files)	

• The	taxonomic	assignment	pipeline	is	GPL-2	open	
sourced	hkps://github.com/poeli/GOTTCHA2	

• Currently	relies	on	BWA	for	alignment	
hkps://github.com/lh3/bwa,	distributed	under	
GPL-3,	we	are	working	on	the	MerAligner	integra5on	
from	MetaHipMer	
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Summary on Post-Assembly Analytics 
Finding	gene	clusters	related	groups	(ML	–	clustering)	
–  Large	graph	/	sparse	matrix	problems	(sparse	matrix-matrix	mul5ply)	
–  Needs	memory-efficient	as	well	as	scalable	distributed	memory	approach	

•  Hardware	support	(preliminary)	
–  High	bisec5on	bandwidth;	low	latency;	fast	I/O	

•  Sodware	support	
–  Sparse	matrix	and	graph	libraries	(e.g.,	Graph	BLAS	approach)	
–  MPI	(bulk	synchronous	so	far)	

ComparaGve	metagenome	analysis	(ML	–	dimensionality	reducGon)	
-  Dominated	by	alignment;	see	MerAligner	discussion	
-  Also	sta5s5cal	(coun5ng)	and	sparse	matrix	algorithms	
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•  Physical Models: Assembly of genomes using DNA 
sequence fragments from metagenomes. Clustering of 
genes culled from metagenomes to identify novel 
protein families.  Comparative analysis across whole 
metagenomes. 

•  Codes: (Meta)HipMer, HipMCL, Mash, GOTCCHA, 
Combinatorial BLAS 

•  Motifs: Graph Traversal, Sparse Matrices, Dynamic 
Programming, (possibly Graphical Models) 

ExaBiome: Exascale Solutions for Microbiome Analysis (1.2.1.20) 

Application Domain Physical Models and Code(s) 

First Year Development Plans Partnerships 

PI 

•  Application Area: Microbiomes are integral to the environment, 
health, and biomanufacturing.  They occur in communities that 
are collected and sequenced as a group, called metagenomes.  
These metagenomes lead to some of the most computationally 
demanding problems in bioinformatics, including assembly, 
protein clustering and comparative whole-metagenome analysis. 

•  Challenge Problem:  
•  4 Year:  Provide scalable tools for and complete assembly and 

analysis of metagenome data in SRA and IMG. 
•  10 Year: Perform high quality assembly and analysis of 1 million 

metagenomes on an early exascale system to reveal microbial 
functions for environmental remediation and other applications. 

Co-Design Centers:  
•  ExaGraph (if funded) and possibly AMReX 
Software Technology Centers: 
•  Programming: PAGODA, PROTEAS, Legion, ExaMPI and OMPI-X 
•  Performance/Systems: HPCToolkit, PAPI, Qthreads, ExaHDF5 
•  Libraries: xSDK4ECP, Sparse Solvers, Trilinos 
Application Projects:   
•  Cancer, NWChem 

Develop high quality, scalable metagenome assembly 
•  Extend HipMer with features for metagenomes, now called 

MetaHipMer (currently a research prototype) 
•  Evaluate and improve quality and scalability of MetaHipMer; 

compare to other metagenome assemblers 
•  Release MetaHipMer 
Use machine learning algorithms for metagenome analysis 
•  Develop and demonstrate HipMCL clustering algorithm for genes 

from metagenomes 
•  Evaluate use of MerAligner (a phase in MetaHipMer) for GOTTCHA’s 

metagenome characterization 


