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ExaBiome: Exascale Solutions for Microbiome Analysis

® Microbes: single cell organisms, such as bacteria and viruses

e Microbiomes: communities of 1000s of microbial species, less
than 1% individually culturable in a lab (and thus sequenced)

e Metagenomics: genome sequencing on these communities
(growing exponentially)

¢ = y. /,/ (N

\‘

R g

Bio-Energy Bio-Manufacturing

Environment (Health)

i ]
/—‘\l /\ A 1.9 ’Q\ \
ALLELLEE N \ EXASCALE
‘ - Los Alamos JGI/ — ( \) —J) COMPUTING
NATIONAL LABORATORY r\ PROJECT
——————— EST.1943 ————— JOINT GENOME INSTITUTE ® ) —




Metagenome database growth

* Metagenomic data double every 11 months

SRA database growth

5,181,178, 908,884,484 total bases
3,035,704,074,319,920 open access bases
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Metagenomics data mining efforts at JGI
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ExaBiome: Exascale Solutions for Microbiome Analysis

Metagenome Protein Comparative

Assembly Clustering Analysis

Graph algorithms, Hash Machine learning Alignment, Machine

Tables, alignment (clustering), sparse learning (dimensionality

(Smith-Waterman) linear algebra / reduction), linear

graphs algebra

Fine-grained comm., all- Fast barriers, All-to-all

to-all, remote atomics subset reductions

and fast I/0
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Metagenome assembly is hard
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* There is no genome reference.
* Reads are significantly shorter than whole genome.
—Reads consist of 20 to 30K bases
—Genomes vary in length and complexity — up to 30G bases
* Reads include errors.
 Genomes have repetitive regions.
—Repetitive regions increase genome complexity

* Microbial genomes occur with thousands of others
—The coverage (frequency) may vary be orders of magnitude
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Strong scaling (human genome) on Cray XC30
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Single Node Scaling on KNL

Strong Scaling (small dataset, chromosome14)
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Speedup on Human Data (single genome)

Speedup (relative to smallest)

1000
==Cori |
=0=Cori Il

100 Edison
=>=Titan

1 10 100 1000 10000
Nodes

« Complete assembly of human genome in 4 minutes using 23K cores.
« 700x speedup over original Meraculous code used in production (only ran on
shared memory where it took 2,880 minutes)
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Strong scaling (wheat genome) on Cray XC30
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Early version of HipMer were used for the first whole genome assembly of wheat
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Original HipMer Pipeline Summary (Single Genome)

e ——— — ——— Input: Reads that may contain errors

N S S B s S S S S m— ChOp reads into k-mers, process
. k-mers to exclude errors
k-mer analysis

k-mers e R T T Lo B W

@ Construct & traverse de Bruijn graph

of k-mers, generate contigs

NERSC-9

“Meraculous”
benchmark

contigs

scaffolding @
|

Leverage read information to link
- contigs and generate scaffolds.

scaffolds

(Assembly output is generally called “contigs” even when a scaffolding phase is included.)
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K-Mer Analysis: Pass 1 (I/0 + Independent + Reduce)

Parallel Reduction Create local Bloom
Reads k-mer cardinality filters
I Parse to k-mers estimation
I E—
I— I . Bloom Filter of
— im i --- size (G/n)
— -
I E—
I E—
I E—
I— - . - Bloom Filter of
I E—
— ii ) e size (G/n)
—
I E— -
I G = Global
I E— . . i
— Also identify estimation
| high-frequency k-mers
— .
N — at this step
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K-Mer Analysis: Pass 2 (Iterative All-to-All)

Reads All-to-all Store a k-merinthe The local set does
Hash k-mers & communication local set only if it was the actual counting
I Parse to k-mers find owners of k-mers seen before of the k-mers
I
I
|
— E— --- ; Received i Bloom i Local
— i i -y S Filter set
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Bloom Filter

Bloom filter is a probabilistic data structure used for
membership queries

* Given a bloom filter, we can ask: I

Error k-mers &l

“Have we seen this k-mer before?”

0.010

* No false negatives.

Density

* May have false positives

0.005
1

(in practice 5% false positive rate)

0.000

Coverage

k-mers with frequency =1 are useless (either error or can
not be distinguished from error), and can safely be

eliminated.
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K-Mer Analysis: Step 3 (All-to-All)

Use a threshold &

Reads Find extensions of find the high
k-mers, hash them All-to-all communication quality extensions
EEEE E— - . . :
— E— Parse to k-mers & find their owners of k-mers and extensions of k-mers
[ ——
—
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Heavy Hitters

Long-tailed distribution for genomes with repetitive content:
- The maximum count for any k-mer in the wheat dataset is 451 million

- Our original scheme (SC'14) was “owner counts”, after an all-to-all
- Counting an item w/ 451 million occurrences alone is load imbalanced

3200 ¢ T T T T T
Solution: Quickly identify 16001 1
high-frequency k-mers using 3
minimal communication E’, 800f ]
during the “cardinality E Lol —— . |
estimation” step and treat | o—o H::Vuy Hittors
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Distributed De Bruijn Graph

* The de Bruijn graph of k-mers is represented as a hash table.
* A k-meris anodeinagraph < ak-mer is an entry (key) in the hash table.
* An edge in the graph connects two nodes that overlap in k-1 bases.

* The edges in the hash table can be stored efficiently by storing the

extensions of the k-mers as their corresponding values.

* The connected components represent contigs.
Contig 2: AACCG
Contig 1: GATCTGA

| cAv—aro—~ror—~cTar—aan |

18 Contig 3: AATGC
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Parallel De Bruijn Graph Construction

Graph construction, traversal, and all later stages are written in UPC to take
advantage of its global address space

Lng# tq k;.r;eres ?::S%ﬁg Read k-mers & Store k-mers & a;séﬂbt:ﬁg
i uality extensi : :
extensions extensions Shared Private
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Aggregating Stores Optimization

B Distributed
d 1 aggregate remote transfer Hash table
Full local buffer
Local buffer for P Buffer local to P,
> Local to P,

- Local to P,

B Local buffer for P,

- !90 _stores the k-mer§ & extensions Local to P,
in its local buckets in a lock-free &
communication-free fashion

Local to P,

— Local buffer for P,
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Parallel Graph Construction Challenge

* Challenge 1: Hash table for de Bruijn graph is huge (at least
multiple terabytes)

—Solution: Distribute the graph over multiple processors.

* Challenge 2: Parallel hash table construction introduces
communication and synchronization costs

—Solution: Split the construction in two phases and aggregate
messages =2 10x-20x performance improvement.
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Parallel De Bruijn Graph Traversal

Contig: AACCG

P

Contig GATCTG
g A GET

Algorithm: Pick a e e e _{}
random lemer

and expand w P
connected GET G SET 0
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consecutive Shared Private
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Parallel De Bruijn Graph Traversal

 Algorithm: Pick a random k-mer and expand connected
component by consecutive lookups in the distributed hash table.

* Fine-grained, irregular, remote accesses. Need fine-grained
parallelization.
— Worst case: the result is a single very long chain (high-diameter graph).
— Global address space and one-sided communication simplifies logic.

— If multiple processors are working on the same connected component, they
cooperate via a lightweight synchronization protocol.

Py P,
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Lightweight synchronization protocol

zf)ung UNL:,?ED k-g1er i? a_ny Found USED k-mers in both directions of the
irection ot the subcontig: sub-contig AND both of the neighboring sub-
1) Successfully adding forward/ contigs are ACTIVE:

backward extension to subcontig, 1) Set own state to ABORTED

2) Mark k-mer as USED 2) Pick another random seed from hash table
INACTIVE

ABORTED

A processor picks a k-mer
as seed and initiates a ACTIVE
subcontig

Attached in a neighboring subcontig

Reached both endpoints of a UU contig.
1) Set state to COMPLETE and store UU contig
2) Pick another random seed from hash table

Found USED k-mers in both directions of
the subcontig AND one of the

neighboring subcontigs is ABORTED: COMPLETE
1) Attach that subcontig to local subcontig,
2) Set that state to ACTIVE
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Scaffolding: Main step maps reads to contigs

* Input : a set of reads and a set contigs
« Output : detailed alignments of the reads onto the contigs

Alignment with (large) input data; use of hash table to find possible matches

p— 4 1.
: : : i Read j
Reads ' S
Readi i
"oon fT 7 4 1
Contigs . . 3 .. - :E: i : & : . £ L
Contig 0 Contig 1 Contig 2 Contig 3
Read ID Start-pos m Contig ID Start-pos m
Read i 1 4 Contig 1 152 155
Read i 130 150 Contig 2 1 21
Read | 1 150 Contig 3 101 250
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Seed-and-extend Algorithm Summary

1. Given a set of reference sequences (contigs), build an index of them using
seeds (substrings) of fixed length s.

2. Given a query sequence (read), extract substrings of length s and look
those up in the reference index - locate candidate contigs to be aligned.

3. Perform an extension algorithm (e.g. Smith-Waterman) on the read and the
candidate contig to obtain detailed alignments.
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Gap Closing

closed
scaffold

* Gaps found from alignment and information about
distance between paired reads

 Leads to load balancing problems (work stealing)

! !
/—‘\l A ﬁ) /.7? ’-Q-\ \
fffffff n 7 \ EXASCALE
| | » Los Alamos JGI/ — ( \) —J) COMPUTING
AAAAAAAAAAAAAAAAAA ﬂ\ \\ PROJECT
—————— EST.1943 ————— JOINT GENOME INSTITUTE ) —




Extending HipMer for Metagenomes

° Primary change in conﬁg . . i —.. . Iteratlf
. ) , over
generation on k-mergraph W kemeranaysi
— Iterative contig generation, from eSS T -
small to large k-mer size oo ¢ De Bruiin graph traversal
— Small k: low coverage genomes T oo T " e i DUBDI
_ Chich. 0—0—0—0—0"" S 0~
Large k: hlgh f:overage -genf)mes e .—o
— AddEd/mOdlﬁEd steps N HlpMer: ’ Bubble merging and hair removal
merging bubbles, iterative o—o0—o, oo
1 X0—0—0—0¢
pruning, local assembly o—0—0—0—0" .
* Some changes to scaffolding & tterative graph pruning

— Looping over scaffolding

— Opportunities for future ooooe’  Ne—sososses oo

improvements ’ Local Assembly
» Scaffolding steps omitted '
from figure for simplicity
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Quality Metrics

* A goal of this milestone was to identify good quality metrics
* Want to simultaneously maximize contig length and

minimize errors

—Sort output contigs by length and find the halfway point.

—Several standard metrics, simplest is N5O.

—N50 is the minimal contig length X such that contigs of length at least x
account for at least 50% of the total assembly length

90 Total assembly length = 500

— 20 First 3 contigs account for over half
— 50

— 50 N50 = 90 (length of 3rd contig)
— 50

= igames JGIY =(CP s
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Quality Metrics: Error-free contiguity

Contiguity
—N50 is the contig length such that using longer or equal length contigs produces
at least half (50%) the bases of the assembly.
—NG50 is the contig length such that using longer or equal length contigs
produces half (50%) the bases of the reference genome. This metric could be
computed only if the reference is given.

Error-free contiguity
—NGAS50 similar to NG50, but uses lengths of aligned blocks rather than contigs. if
a contig has a misassembly with respect to the reference, we break the contig
into smaller pieces. Also, if a contig has bases that don't align to the reference,
they are not counted in NGASO0.
—Median NGA50: median NGA50 across all genomes for which NGA50 can be
computed (requires sufficient coverage of genome)

We will use NGA50 and Median NGA50 for error-free contiguity
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Results for low complexity data (mg64)

Genome Statistics I MetaHipMer I metaSPAdes MEGAHIT

Genome Fraction (%) |95.5 I 94.2 95.3
Misassemblies (1) |456 I 239 309
Mismatches per 100 kpb () |45.6 I 99.3 71.9
Median NGA50 I 95129 I 89288 58468

Predicted Genes I 202228 I 191307 200367

Low complexity dataset - only 64 genomes
All assemblers find most genomes, with low errors
MetaHipMer has more misassemblies due to small number of
species (recall this is not normalized to assembly length)
MetaHipMer has fewer mismatches, greater predicted genes
and better NGA50
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Error free contiguity (NGA50) on mg64

NGA50
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Results for medium complexity data (CAMI)

Genome Statistics MetaHipMer metaSPAdes MEGAHIT
Genome Fraction (%) 66.3 68.7 73.0
Misassemblies (1) 2031 1210 1579
Mismatches per 100 kpb () 80.3 152.6 100.1
Median NGA50 24906 14219 16123
Predicted Genes 632459 635289 637085

Medium complexity dataset - 225 genomes

Lower coverage than mg64, with more errors

MetaHipMer has a lower genome fraction, but better NGA50
than the others
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Results for high complexity data (MC04)

Genome Statistics MetaHipMer metaSPAdes MEGAHIT
Genome Fraction (%) 28.6 32.7 32.3
Misassemblies (1) 12730 9014 17479
Mismatches per 100 kpb ({) 27.4 70.3 67.9
Median NGA50 15098 10540 12744
Predicted Genes 1386760 1381479 1355607

* High complexity dataset - 800 genomes

* Low coverage from all assemblers due to challenging nature
of dataset

* High rates of misassembly

 MetaHipMer has a lower genome fraction, but better
NGAS5O0 than the others
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MetaHipMer Performance (preliminary results)

- Performance on a mock community
- metaSPAdes: 11.5 hours on a 32 core machine with 500 GB of RAM
- metaHipMer: 17 minutes on 80 Edison nodes (~2K cores) — 41x faster

- metaSPAdes can’t scale to the massive datasets (up to 80x larger)

- For assembling TaraOceans dataset (8 TBytes, 80x larger), it would
take 38 days, on a machine with 40 TBytes of memory.

- metaHipMer modules scale to full machine !

- Assuming 40% efficiency, the TaraOceans dataset could be assembled
in <1 hour using full Edison
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Summary on MetaGenomeAssembly

 Assembly is an HPC problem

— (Meta)HipMer can handle previously unassembled data sets

 Hardware support

— High injection rate RDMA communication; low latency; remote atomics

— High bisection bandwidth (synchronous and asynchronous all-to-all)
* Software support

— PGAS model for distributed data structures, one-sided communication

— Hierarchical algorithms probably useful, but scaling well on/off node with UPC
 Benchmarks and proxy applications

— NERSC-9 “Meraculous” benchmark is contig generation (graph/hash table)

— Latency / bandwidth tests (“roofline like”) for remote atomics, async all-to-all
 MetaHipMer is a parameterized toolkit for HPC genome analysis

— Quality results comparable to other state-of-art assemblers, but can solve
problems they cannot due to memory/performance scaling
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ExaBiome: Exascale Solutions for Microbiome Analysis

Graph algorithms, Hash
Tables, alignment
(Smith-Waterman)

Protein
Clustering

Machine learning
(clustering), sparse
linear algebra /
graphs

Comparative
Analysis

Alignment, Machine
learning (dimensionality

reduction), linear

algebra

Fine-grained comm., all-
to-all, remote atomics

Fast barriers,
subset reductions

All-to-all

and fast I/0
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Discovering Biosynthetic Gene Clusters

“A biosynthetic gene cluster is a physically clustered group of two or more genes
in a particular genome that together encode a biosynthetic pathway for the
production of a specialized metabolite (including its chemical variants)”

Input: Sparse matrix encoding genes and their nonzero pairwise similarities
Method: High-performance Markov clustering (HipMCL)

Desired scale: 10s of billions of genes, trillions of nonzero pairwise similarities
e Use proteins rather than genes (constant factor)

* Find connected components first (heuristic)

e Requires supercomputers

MCL is the de-facto algorithm in community for finding gene/protein families
“...MCL is remarkably robust to graph alterations...”

[Brohée, van Helden, “Evaluation of clustering algorithms for protein-protein interaction networks”, 2006]
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DNA to Proteins

 DNA based on 4-character alphabet

* Three-letter codons
represent one of the
20 regularly used
amino acids

e Start and Stop codons
mark the beginning/
end of genes
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Markov Cluster algorithm

Image source: http://micans.org/mcl/

Input: Adjacency matrix A (sparse)

A3
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el =

Initial network

| At each iteration:
i Step 1 (Expansion): Squaring the matrix while

pruning (a) small entries, (b) denser columns
Naive implementation: sparse matrix-matrix product (SpGEMM),
followed by column-wise top-K selection and column-wise pruning
Step 2 (Inflation) : taking powers entry-wise
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Scalable Distributed Memory, Memory Efficient SpGEMM

) /p X /p Processor Grid

25K
oo > 100K A4

— i 20K

Split B into k pieces

x 100K -_—

A 3 C
e Parts of the result is produced and pruned
* Memory requirement can be significantly reduced by increasing k

* However, A is needed to be broadcasted k times
 With k=20: MCL ran on 64 nodes of Cori in about 20 minutes
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Challenges in distributed-memory MCL

* “Small” test dataset from Joint Genome Institute
— 47 Million proteins
— 14 Billion interaction
— 4.2 Trillion expected nonzeros in A?
— Memory requirement of naive implementation: ~100 TB

* Ultimate dataset is 1000 times larger.
* Memory efficient Sp GEMM algorithm being developed

—Since the output is sparsified by column-wise pruning, we create A? part by
part and prune on the fly to save memory.

—Need to find the kth largest entry of each column at every iteration: Trivial
in single node, harder in distributed memory.

* Interpretation of final clusters need distributed-memory
connected components
—Not a bottleneck: cheaper and only done once (not per iteration)
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Machine Learning Mapping to Linear Algebra in General

Logistic . : . : Graphical
: Dimensionality Clustering .
Regression, . Model Deep Learning
Reduction (e.g., (e.g., MCL, .
Support Structure (Convolutional
NMF, CX/CUR, Spectral .
Vector PCA) Clustering) Learning (e.g., Neural Nets)
Machines & CONCORD)

""
| '
Spar§e Spar§e Spars.e Matrix Sparse - Dense Sparse - Dense
Matrix- Matrix- Times Sparse : Dense :
: Matrix Matrix
Sparse Dense Multiple

Matrix Vect Matrix Matrix
Vector Vector Dense Vectors Product (Bi;\sozr) Product
(SpDV3)

(BLAS3)

(SpMSpV) (SpMV) (SpMM) (SpPGEMM)

Increasing arithmetic intensity
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ExaBiome: Exascale Solutions for Microbiome Analysis

Comparative
Analysis
Graph algorithms, Hash Machine learning Alignment, Machine
Tables, alignment (clustering), sparse | learning (dimensionality
(Smith-Waterman) linear algebra / reduction), linear

graphs algebra

Fine-grained comm., all- Fast barriers, All-to-all
to-all, remote atomics subset reductions
and fast /O
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Metagenome composition description

Three approaches to describe and analyze the
metagenome sequencing dataset:
1)taxonomic composition-based (who is in the metagenome)
2)functional annotation-based (what can this metagenome do)
3)k-mers (shingles) composition-based (i.e., shingle frequency
vector-based )

K-mer based approach (MASH) is:

—More resilient to errors /degradation of DNA, coverage bias,
composition, short and redundant fragments

Taxonomic (GOTTCHA) or functional approaches:

—Fast and memory efficient; also gives some semantic
information about differences
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MASH - an alternate MinHash based approach

 “...extends MinHash dimensionality-reduction technique
to include a pairwise mutation distance and P value
significance test, enabling the efficient clustering and

search of massive sequence collections...”
Ondov et al. Genome Biology (2016) 17:132 DOI 10.1186/s13059-016-0997-x
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MASH distance is sufficiently accurate
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Ondov et al. Genome Biology (2016) 17:132 DOI 10.1186/s13059-016-0997-x
a) UCSC genome browser b) mash
Human Chimpanzee
Chimpanzee Bonobo
Bonobo Human
Gorilla Gorilla
Orangutan — Orangutan . .
Northern white-cheeked gibbon Northem white-cheeked gibbon
Rhesus macaque Rhesus macaque
| Crab-eating macaque Crab-eating macaque
Olive baboon Olive baboon
Green monkey Green mgnkey
Proboscis monkey Proboscis monkey
Golden snub-nosed monkey Golden snub-nosed monkey
Common marmoset Common marmoset
_:Black-capped squirrel monkey £Blackc§ppgd squirrel monkey
Philippine tarsier Philippine tarsier
Gray mouse lemur Gray mouse lemur
Northem greater galago Northern greater galago
0T
Fig. 4 Primate trees from the UCSC genome browser and Mash. a A primate phylogenetic tree model from the UCSC genome browser, with
branch lengths derived from fourfold degenerate sites extracted from reference gene multiple alignments. b A comparable Mash-based tree
generated from whole genomes using a sketch size of s=1000 and k-mer size of k=21. Additional file 1: Figure 56 includes this Mash tree with
five additional mammals of increasing divergence
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MASH pros and cons

+ REALLY fast (just four simple consecutive steps).
—K-mer extraction -> MinHash -> sketch -> distance

+ Reduces metagenome data size significantly
—|sketch |<<| metagenome|

+Can cluster metagenomes with a lot of unknowns (un-
annotatable)

—There is a threshold in k-mer and sketch sizes which
affects the tradeoff between specificity/sensitivity and
the computational complexity/space requirements
—The threshold can be estimated if the divergence between

metagenomes can be roughly approximated

—Provides no insight into the genome taxonomic or
functional composition
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GOTTCHA - Genome Signature Discovery

GOTTCHA NCBI Re{Seq
GOTTCHA signature (or a custom)

genomic

DB extraction T

Metagenome Taxonomic

Distance
Matrix

#1 assignment #1
Distance
i . between
Metagenome Gl Taxonomic t;xonomic
#2 U assignment #2 abundance
vectors)
Metagenome Taxonomic
#N assignment #N
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GOTTCHA - an interactive comparative visual display

Bacillus subtilis

Alicycliphilus denitrificans
Acinetobacter baumannii
Acidovorax ebreus

Bacillus cereus
Achromobacter xylosoxidans
Acidovorax sp. JS42
Acidovorax sp. KKS102
Azospira oryzae

Aeromonas salmonicida

Normalized abundance: Il 00

107 10° 10’

10%
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GOTTCHA2 implementation

* Developed at LANL, will be released with GPL-2

*The database creation tool is not yet publicly
available, coded in MPI C/C++ (we distribute binary
database files)

*The taxonomic assignment pipeline is GPL-2 open
sourced https://github.com/poeli/GOTTCHA?2

* Currently relies on BWA for alignment
https://github.com/lIh3/bwa, distributed under
GPL-3, we are working on the MerAligner integration
from MetaHipMer
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Summary on Post-Assembly Analytics

Finding gene clusters related groups (ML — clustering)
— Large graph / sparse matrix problems (sparse matrix-matrix multiply)
— Needs memory-efficient as well as scalable distributed memory approach
 Hardware support (preliminary)
— High bisection bandwidth; low latency; fast I/O
* Software support
— Sparse matrix and graph libraries (e.g., Graph BLAS approach)
— MPI (bulk synchronous so far)
Comparative metagenome analysis (ML — dimensionality reduction)

— Dominated by alignment; see MerAligner discussion
— Also statistical (counting) and sparse matrix algorithms
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ExaBiome: Exascale Solutions for Microbiome Analysis (1.2.1.20)

Application Domain

* Application Area: Microbiomes are integral to the environment,
health, and biomanufacturing. They occur in communities that
are collected and sequenced as a group, called metagenomes.
These metagenomes lead to some of the most computationally
demanding problems in bioinformatics, including assembly,

protein clustering and comparative whole-metagenome analysis.

+ Challenge Problem:

* 4 Year: Provide scalable tools for and complete assembly and
analysis of metagenome data in SRA and IMG.

* 10 Year: Perform high quality assembly and analysis of 1 million
metagenomes on an early exascale system to reveal microbial
functions for environmental remediation and other applications.

Physical Models and Code(s)

» Physical Models: Assembly of genomes using DNA
sequence fragments from metagenomes. Clustering of
genes culled from metagenomes to identify novel
protein families. Comparative analysis across whole
metagenomes.

» Codes: (Meta)HipMer, HipMCL, Mash, GOTCCHA,
Combinatorial BLAS

» Motifs: Graph Traversal, Sparse Matrices, Dynamic
Programming, (possibly Graphical Models)

Partnerships
Co-Design Centers:

«  ExaGraph (if funded) and possibly AMReX

Software Technology Centers:

*  Programming: PAGODA, PROTEAS, Legion, ExaMPI and OMPI-X
«  Performance/Systems: HPCToolkit, PAPI, Qthreads, ExaHDF5

*  Libraries: xXSDK4ECP, Sparse Solvers, Trilinos

Application Projects:

«  Cancer, NWChem
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First Year Development Plans

Develop high quality, scalable metagenome assembly
«  Extend HipMer with features for metagenomes, now called
MetaHipMer (currently a research prototype)

*  Evaluate and improve quality and scalability of MetaHipMer;
compare to other metagenome assemblers

*  Release MetaHipMer

Use machine learning algorithms for metagenome analysis

+  Develop and demonstrate HipMCL clustering algorithm for genes
from metagenomes

«  Evaluate use of MerAligner (a phase in MetaHipMer) for GOTTCHA’s
metagenome characterization
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