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Exascale computing, combined with state-of-the-art
mathematical models, algorithms, software
techniques and data will enable breakthrough science



The Science Challenges at Exascale
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Berkeley Lab Priorities in Exascale Science

Photon Science,,,
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Berkeley Lab Priorities in Exascale Science

All the above will use Adaptive Mesh Refinement
(AMR) mathematics and software,
a method pioneered at Berkeley Lab
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Computing challenges at the exascale



Computing is energy-constrained

At ~S1M per MW, energy costs are substantial &
e 1 petaflop in 2008 used 3 MW )
e 1 exaflopin 2018 at 200 MW “usual chip scaling”  Missing Tihanhe-2 at 18MW
Taihulight at 15 MW
egawatts -
Goal: 1 Exaflop in 20 MW 0T p}gr malglr':irlme
= 20 pJ / operation (Kogge/Shaln)
|
8
Note: The 20 pJ / operation is M
* Independent of machine size 5 —
 Independent of # cores used per
application 4
e But “operations” need to be
useful ones _
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What Limits Computer Performance?
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Flop/s

Computational Science has Moved through

Difficult Technology Transitions

Application Performance Growth/1 ‘

(Gordon Bell Prizes)

3. v .
ey Specialization at
end of transistor

scaling
=
Attack of the
“killer cellphones”?

Attack of the

The rest of the
computing world

gets parallelism

2005 2010

“killer micros”

1995 2000

2015 2020
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Lightweight Cores are the Future

Cell phone
processor (0.1 Sy
Watt, 4 Gflop/s)

| Shared L3 Cache S

g ] g ]
Server processor (100 Watts, 50 Gflop/s)
 Small, simple cores are energy and area efficient

— 10-100x more energy efficient
* Encourage “parallel thinking” in algorithms and software
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Specialization: End Game for Moore’s Law

NVIDIA builds deep
learning appliance with - "
P100 Tesla’s __t\\

10 TAARAANAAS.
2 v °

-

-

Intel buys deep learning
startup, Nervana

Google designs its own
Tensor Processing Unit (TPU)

U.S. DEPARTMENT OF Ofﬁce of

i {HENERGY Sternes



What’s the most expensive operation on a computer?
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Data Movement is Expensive
CPU cycle time vs memory access time

100,000,000 -
Disk
10,000,000
1,000,000
SSD
100,000 [y
10,000
1,000
g 100 DRAM
(<)) 10
§ 1 SRAM
- \-—.\.‘ CPU
0 —
0 I I I I I I I I

1980 1985 1990 1995 2000 2003 2005 2010 2015
Year

Source: http://csapp.cs.cmu.edu/2e/figures.html, http://csapp.cs.cmu.edu/3e/figures.html
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Data Movement is Expensive
Hierarchical energy costs.

6 pJ
P Cost to move data 1 mm on-chip

m Typical cost of a single floating point operation

m Cost to move data 20 mm on chip

250 pJ Cost to move off-chip,

but stay within the package (SMP)
2000 pJ C(?st to move data off chip
into DRAM
~2500 pJ Cost to move dfata off chip
to a neighboring node
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Synchronization is Expensive

Patch Hyperbolic Integration Time

* Machines will have Frequent 18—

Faults and “Performance

Instability” ol |
* Do all applications become

“irregular”?

Time (seconds)
T
|

* Locality-Load balance trade-off

— Most work on dynamic scheduling
Mol L Lo Lo e Ly

. . . 0 1000 2000 3000 4000 5000 6000 7000 8000
is inside a shared memory node Processor

— Largest variability will be between
nodes

Brian van Straalen, DOE Exascale Research
Conference, April 16-18, 2012. Impact of persistent
ECC memory faults.
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Programming languages and compilers for exascale



The biggest concern for Exascale application
developers is the need to write and maintain multiple
versions of their software and the uncertainty over
what the architectures will be.



Why develop new languages?

* Productivity: higher level syntax
— We need a language

* Correctness: static analysis can eliminate errors

— We need a compiler (front-end) Language design
* Performance: optimizations enforces clarity
— We need a compiler (back-end) in concepts

e But you need to “know your audience”
— Need to rewrite installed base of code (anti-productivity)
— Risk of compiler disappearing (maintainability)
— Syntax matters (familiarity)

* Language adoption is often about its libraries
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Programming for diverse (specialized) architectures

* Two “hard” compiler problems:
— dependence analysis and Domain-Specific Languages help with this
— accurate performance models  Autotuning avoids this problem

* Autotuners are code generators plus search

Xeon X5550 (Nehalem) NVIDIA C2050 (Ferml)
1024 1024+ -
512 512 "
@n -
256 singlefp ecision peak| 256 DM
{128 //dolible-precision peak %_1 28 .RTM'wave ean:
o 64 Dpad,ﬁyneemm O 64 O
G— RTM/wave eqn: = 27pt Stencil
O 32 | O 32
| 27pt Stencil [7pt Stencil
16 7pt itir:‘cn/D & 16 /*\: -GTCIpu Chi
/@ GTClpushi somv’ |/
8 SPMV.L ‘ 8 Ill .,”
4 ’;/ , GTClchargei 4 i\_ ,/ lehardei
2 ‘\_Q"/ 2 —
Vg g g My Y, 1 2 4 8 16 32 Vg g g My Yy 1 2 4 8 16 32

Algorithmic intensity: Flops/Word Algorithmic intensity: Flops/Word
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Libraries vs. DSLs (domain-specific languages)

NERSC survey: what motifs do they use? What code generators do we have?
Structured
ructare ' | | Dense Linear Algebra Atlas
Sparse LA . . | Spectral Algorithms FFTW,
Spiral
Spectral | | .
Sparse Linear Algebra OSKiI
Particles | :
[ Structured Grids TBD ]
Monte Carlo L Unstructured Grids
Dense LA | | Particle Methods
Adaptive — Monte Carlo
Unstructured

0% 10% 20% 30% 40% 50%

Stencils are both the most important motifs and a gap in our tools
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Approach: Small Compiler for Small Language

* Snowflake: A DSL for Science Stencils
— Domain calculus inspired by Titanium, UPC++, and AMR in general

(a) Red-Black tiling (b) 4-color tiling (c) Asymmetric stencil used (d) 5-point Jacobi stencil
near mesh boundary

* Complex stencils: red/black, asymmetric
* Update-in-place while preserving provable parallelism
 Complex boundary conditions: key to Adaptive Meshes
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Snowflake performance

X Runtimes for (2°9)"3 6.0 Performance for 256”3
10 1 T
— HPGMG OHPGMG
—  Snowflake 5.0 +|HSnowflake ©
—  Optimal <¢Roofline Bound
240
S
B % 3.0 <
S 10 %
’ & 2.0 O
1.0 =
0.0
. CC7pt CC VC CC7pt CC VC
105 o1 3 >3 Stencil Jacobi GSRB Stencil Jacobi GSRB
Num Threads Core i7-4765T K20c GPU
* Performance on the HPGMG application benchmark using all

BERKELEY LAB

the features of Snowflake
Competitive with hand-optimized performance
Within 2x of optimal roofline

oY EnEm ey Ofice of Nathan Zhang, C. Markley, S. Williams, A. Fox
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Real-Time MRI Challenge

Time (min)  Architecture
6.15 KNL

5.42 Ivy Bridge
. 4.47 Broadwell
3 min 4.31 Kepler
goal 4.12 Haswell
3.71 Broadwell
o Loper Compressed Sensing Approach by Mike Lustig et al
Michael Driscoll HPC optimization MRI results Wenwen Jiang
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Matrix-free (loop optimization) vs. Matrix-full

coil data sample KB kernel FFT  preapodize sens. maps image

Operators as loop  Operators as matrices with Operators as arbitrary
nests structure that compiler can optimize sparse matrices
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Domain-specific library with runtime optimizations

HPC Numpy
Scientist Expert |

l MKL \
‘ Transformation CustomCPU KNL

Recipe

%; * C{%: CUDA
GPU
CustomGPU

Structured Optimized
Linear Operator Operator

CPU

Backend Platform

Tree transformation with matrix
pattern knowledge
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Python-Based Domain-Specific Language (EDSL)

Optimized MRI Pipeline

1.80 SPMM -maps |
B 1.60 W FFT —
[*]
@ 1.40 M SpMM - grid T
£120 — : —
v ¥ SpMM - grid

- maps
[
mkl custom mkl custom cusparse custom
Haswell Xeon Phi (KNL) GPU (Pascal)

e Original Numpy code on Haswell: 87 sec/iteration

* Runtime optimization reorganize tree of operators (matrices
+ FFTs) cognizant of matrix structure

* Library or custom matrix kernels

U.S. DEPARTMENT OF Ofﬁce of
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Compiler challenges

Auto- Auto-
Auto- SIMDization parallelism for
vectorization Auto- attached Auto-
for vector parallelization accelerators parallelization
processors for SMPs for HPC

_—

Architecture difficulty (related to granularity of parallelism)

Autotuner 5 _ . Gjrneori General
code domaln sp:ceu c'1£i|n.t |Ot P N purpose
generation egrees of specificity) strongly type loosely typed

————————————eee 3>
Language difficulty
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Avoiding Communication in Iterative Solvers

 Consider Sparse lterative Methods for Ax=b
— Krylov Subspace Methods: GMRES, CG,...

* Solve time dominated by:

— Sparse matrix-vector multiple (SPMV)

* Which even on one processor is dominated by
“‘communication” time to read the matrix

— Global collectives (reductions)
» Global latency-limited

« Can we lower the communication costs?

— Latency: reduce # messages by computing multiple
reductions at once

— Bandwidth to memory, i.e., compute Ax, A2x, ... Akx

with one read of A Joint work with Jim Demmel, Mark
Hoemman, Marghoob Mohiyuddin
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Communication Avoiding Kernels

A3-x
A2-x

A-X

The Matrix Powers Kernel : [Ax, A’x, ..., Ax]

Replace k iterations of y = A-x with [Ax, A%X, ..., AX]

e 0 o o o 06 06 06 0 0 0 06 0 0 0 0 0 0 0o 0 0o 0 o o
o o o o 06 06 0 0 0 0 0 0 0 0 O O 0 0 0 0o 0 o
° o 06 06 0 0 0 0 0 0 0 0 0 O 0 0 0 0 o
(] o 06 06 06 0 0 0 06 06 0 0 O 0 0 0o o o
12 3 4. 32

ldea: pick up part of A and x that fit in fast memory, compute each
of k products

Example: A tridiagonal matrix (a 1D “grid”), n=32, k=3
General idea works for any “well-partitioned” A

Py us. o 2 Office of
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Communication Avoiding Kernels (Sequential case)

The Matrix Powers Kernel : [Ax, A%, ..., A*x]

 Replace k iterations of y = A-x with [Ax, A%, ..., AXX]
* Sequential Algorithm

Step 1 Step 2
A3-x

A2-x

A-X

X

1 2 3 4. .. 32
 Example: A tridiagonal, n=32, k=3
e Saves bandwidth (one read of A&x for k steps)
e Saves latency (number of independent read events)
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Communication Avoiding Kernels:

The Matrix Pow‘ers‘ Kernel [AX, A%X, ..., A¥x]
 Replace k iterations of y = A-x with [Ax, A%x, ..., A¥x]
* Parallel Algorithm

Proc1 Proc 2
A3-x

1 2 3 4.. .. 32
 Example: A tridiagonal, n=32, k=3
* Each processor works on (overlapping) trapezoid
e Saves latency (# of messages); Not bandwidth
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Matrix Powers Kernel on a General Matrix

For implicit memory
management (caches)
uses a TSP algorithm for
layout

Joint work with Jim Demmel, Mark Hoemman,
Marghoob Mohiyuddin

Saves communication for “well partitioned’
*  Serial: O(1) moves of data moves vs. O(k)
Parallel: O(log p) messages vs. O(k log p)

U.S. DEPARTMENT OF Ofﬁce of
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A*x has higher performance than Ax

__ | Speedups on Intel Clovertown (8 core) B Akx
- By mm SpMV
Q.
Q5
Ll
g 4 k=14
s — k=T k=15
8 328 S 3x 2.5X 26Xk =19
c 3 k=4 k=4 k=3 h—4 '
© 1.8X 1.3X 1.5X 17X k=4
£, 1.3
| -
b,
—
o 1
o
0 E (_3 4y o © © (4] 4 ) o ©
c c & £ £ £ & a ~ o ~
) Q ~— — ol ~ — . : -
= = 3 § £ ¥ 3 5 E & B
2 B8 ~ © © @& o = S & =
» & 3 s 8 £ ¢ g
= = =4
© © E 7 (o) o &=
(o] 0O 8
©
=

ST

emmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick
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Minimizing Communication of GMRES to solve Ax=b

« GMRES: find x in span{b,Ab,...,Akb} minimizing || Ax-b ||,

Standard GMRES Communication-avoiding GMRES
for i=1 to k W =[v, Av, A2y, ..., AKy ]
w=A-v(i-1) ... SpMV [Q,R] = TSQR(W)
MGS(w, v(0),...,v(i-1)) ... “Tall Skinny QR”
update v(i), H build H from R
endfor solve LSQ problem with H

solve LSQ problem with H

Sequential case: #words moved decreases by a factor of k
Parallel case: #messages decreases by a factor of k

eOops — W from power method, precision lost!

Py uS-D 0 Office of
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Parallel:

S

Sequential: -

SIS

Dual Core:

SSSS

Veove

\;

R 01

R
ﬁ 02 — R,

Work by Laura Grigori, Jim
Demmel, Mark Hoemmen,
Julien Langou
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Matrix Powers Kernel (and TSQR) in GMRES

100' T T I I
A 4 4 . | — Original GMRES :
N A A4as CA-GMRES (Monomial basis) ||
4|> o SN 00 CA-GMRES (Newton basis)
A _— r_Y
%‘3 a A A . . A,
A
= A A Al
-8 1072
‘»n
o
©
§ 1073
o
c
o
=
© 107
)
o
1077} _
; 500 100 600 300 1000

lteration count
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Communication-Avoiding Krylov Method (GMRES)

Performance on 8 core Clovertown

Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices,
using 8 threads and restart length 60

4.5 .
- Matrix powers
VR | O NN SNSRI MIEENRSRORN Se———— .. kernel -
= TSQR
T VI Y | % SURRUHUIRRRSTINE. RRETIURUIRRST: TUIIRRETIINUIERS RuSRURSTIEo e Block Gram- il
oy — Schmidt
B= Small dense
83\4 30_ .................................................................................. e - operations
-
SH Sparse matrix-
g‘ﬁ 2.3 W | octor product
=g Modified
5% 2 0_ ............................................................ . - Gram_schmidt -
ST
Eg 15 B B B B B N i
m&—
xg
% 1.0

shipsec

rrrrrrrrrr

Sparse matrix name
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DSLs popular outside scientific computing

Developed for Image Processing Halide performance
.  Autogenerated schedule for CPU
FAN

- o &+
m * Hand created schedule for GPU
Adobe - Enfiance . -

No change to the algorithm
— 10+ FTEs developing Halide
— 50+ FTEs use it; > 20 kLOC

HPGMG (Multigrid on Halide) 18
* Halide Algorithm by domain expert YT 113
1.4 213
012 | 413
€ — A
= 2
2 | 1673
So8 || 1
g i W 3213
. Hallde Schedule elther 06 [ eas
— Auto-generated by autotuning with opentuner ] W128%3
W 25613

— Or hand created by an optimization expert

Original Halide CPU Halide GPU
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Open Problem: Compiling for communication
optimality...

... With irregular loop nests and sparsity



Beyond Domain Decomposition

2.50D Matrix Multiply on BG/P, 16K nodes / 64K cores

Surprises:

 Even Matrix Multiply had room for improvement

e |dea: make copies of C matrix (as in prior 3D
algorithm, but not as many)

e Result is provably optimal in communication

Can we generalize for compiler writers?

=%, U.S.DEPARTMENTOF ()ffice of EuroPar’11 (Solomonik, Demmel)

' ' ENERGY Science SC’11 paper (Solomonik, Bhatele, Demmel)



Deconstructing 2.5D Matrix Multiply

Solomonick & Demmel

«X
"y

1z

Tiling the iteration space

2D algorithm: never chop k dim
2.5 or 3D: Assume + is
associative; chop k, which is 2>
replication of C matrix

e_
| Matrix Multiplication code has a 3D iteration space
Each point in the space is a constant computation (*/+)

fori
for j

for k
Cli,jl1 ... A[i,K] ...

f'f’ U.S. DEPARTMENT OF Oﬁ-‘ice Of
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Beyond Domain Decomposition

 Much of the work on compilers is based on

1 owner-computes (domain decomposition)
X+= ... — For MM: Divide C into chunks, schedule movement of A/B
— Data-driven domain decomposition partitions data; but
X += ... we can partition work instead
 Ways to compute C “pencil”
X += . 1. Serially

2. Parallel reduction

3. Parallel asynchronous (atomic) updates

4. Orany hybrid of these tandard vectorization trick

* For what types / operators does this work?
! “+” is associative for 1,2 rest of RHS is “simple”
— and commutative for 3

X+=..

Using x for CJi,j] here

U.S. DEPARTMENT OF Ofﬁce of
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Lower Bound: What is the minimum amount of

communication required?

Segment 1

« Matrix Multiply Proof from Irony/
Toledo/Tiskin (2004)

Assume fast memory of size M

« How much work (F) can we do with
—— O(M) data?

Segment 2

Time

 For matrix multiplication, this uses a
result from Loomis an Whitney (1949)

# cubes in 3D set = Volume of 3D set
Y < (area(A shadow) * area(B shadow) *
area(C shadow)) /2

Segment 3

.f'f’ U.S. DEPARTMENT COF Oﬁ-’lce Of

NERGY Science
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Generalizing Communication Lower Bounds and

Optimal Algorithms

* For serial matmul, we know #words_moved = Q (n3/M*/?),
attained by tile sizes M/2x M'/2

 Thm (Christ,Demmel,Knight,Scanlon,Yelick): For any
program that “smells like” nested loops, accessing arrays with
subscripts that are linear functions of the loop indices

#words_moved = Q (#iterations/M°)
for some e we can determine

 Thm (C/D/K/S/Y): Under some assumptions, we can determine
the optimal tiles sizes

— E.g., index expressions are just subsets of indices

* Long term goal: All compilers should generate communication
optimal code from nested loops

f'f’ U.S. DEPARTMENT OF Oﬁ-‘ice Of
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Using .5D ideas on N-body

* n particles, k-way interaction.
— Molecules, stars in galaxies, etc.

* Most common: 2-way N-body

for t timesteps

forall i, ..., i,
forcel[i,] += interact(particlel[i,], ..., particle[i.])

forall i \

move(particle]i], forceli]) O(nk).

* Best algorithm is to divide n particles into p groups??
reatatecensaeyees aathcechace TRRCCO R ST SR PO RRL COT O R CYL TR COIY PERETE) IER XY Nol
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Communication Avoiding 2-way N-body

using a “1.5D” decomposition

Divide p into c groups

l

* Replicate particles across groups

* Repeat: shift copy of n/(p*c) particles to the left within a group
* Reduce across c to produce final value for each particle

Total Communication: O(log(p/c) + log c) messages,
O(n*(c/p+1/c)) words

%% U.S. DE

: Office of
D Il, K kool, Sol ik, Yelick
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Less Communication..

Cray XE6; n=24K particles, p=6K cores

Execution Time vs. Replication Factor

shift time (red)

0.01
0.005 I I
0
c=1 =2 c=4 =8 =16 c=32
Replication Factor

S 0.045 , . , — ,

L2 0.04 mm Communication (Reduce) i

Q sl | == Communication (Shift)

% 0.035 m= Computation - -
£ 003 o)
~ S
E 0.025 S
o 0.02 s et
E 0.015 96% reduction in @
c o
O o
£ Q.
O

)

x

n
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Strong Scaling of 1.5D N-body

Relative Efficiency vs. One Core

BERKELEY LAB

—

o
(o3

&
o

=
~

&
N

\Y)

Parallel Efficiency on BlueGene/P (n=262,144)

U.S. DEPARTMENT OF Ofﬁce of
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r4.4x

8192 16384 32768

Machine size (# cores)
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Challenge: Symmetry & Load Balance

* Force symmetry (f; = -f;;) saves computation
e 2-body force matrix vs 3-body force cube

i
0 5 10 15 20

oT .‘!‘i!
5T 20
i 10 B 15

k

15 10
5

| 2X save
“T of O(n?)

* How to divide work equally?

Py Us-D Office of

7 2 .S. DEPARTMENT OF
%%f ENERGY Science Koanantakool & Yelick



Communication-Avoiding 3-body

* p=5 (in colors)
* 6 particles per processor

15 Kk

e 5x5 subcubes

Equivalent triplets in
the big tetrahedron

Communication optimal.
Replication by c decreases
20 #messages by c2and

j #words by c2

30 0 Actual triplets

15

U.s. DEPARTMENT OF = ()ffice of [Koanantakool and Yelick

g EN ERGY Science



3-Way N-Body Speedup
* Cray XC30, 24k cores, 24k particles

600 T T T T T T T T I
‘ ‘ ‘ ‘ ‘ w + Hl Allreduce
| | | | | | | |d|e
| [ R B o o uf-Shifting |
>0 o msewp
B Computation
400

300

200

Execution Time Per Timestep (sec)

poob s1 umo(

100

1 2 4 8 16 32 64 128 256

Replication Factor (c)

US. DEPARTMENT OF (yefioo of Koanantakool & Yelick
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Perfect Strong Scaling

BlueGene/Q 16k particles, Strong Scaling

| | |
‘ A

o
©

o
o

o
N

Relative Efficiency vs. One Core

&
\V)

O | | |
1024 2048 4096 8192 16384

Machine size (# cores)

ENERCY Jficeof Koanantakool & Yelick

{2/ENERGY science
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Sparse-Dense Matrix Multiply Too!

Execution Time vs. Replication Factor
(Edison, n=65536, nonzeroes per row=655, 12288 cores)

Gather C
Reduce C
Broadcast B
Broadcast A
Shift A
Replicate B
Replicate A
Idle
Computation

Execution Time (sec)

SupSy, C\O/ C\O/ C\O/ C\O/ CO/ C\O/ C\O/ C\0/ C\O/ C\O/ C\O/ C\O/ c‘0/ CO/
/h’b,;b ”),94‘1 45444617 614 3 éq ‘6‘44 ‘1%9%5 Jgecis’di@ci@

C%/cho 2 ) /) ) /7@//) /7@//7 s ) s ‘n s
%ﬁ%

898 °Crq'Crq Srq Srq Srq 'S
S C PO 64646464646
Q@ " 7 CC Cq Cié, C16039

Algorithm - Replication Factor (c)

* Variety of algorithms that divide in or 2 dimensions

U.S. DEPARTMENT OF Ofﬁce of

o 'ENERGY onceo Koanantakool et al
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100x Improvement

o AB66kx172k B172kx66k (0 0038% nnz, Cray XC30

400 I I I
—+— 1.5D Col A
350 | * —t—1 5D Inner ABC al
1.5D Col ABC
- —+— 2.5D SUMMA ABC /\

250

Mflops per core
N
o
o

150
100 -
50
H v
0 - —_—
384 768 1536 3072 6144

Machine size (# cores)
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Linear Algebra is important to Machine Learning too!

Logistic : : : : Graphical
: Dimensionality Clustering :
Regression, . Model Deep Learning
Reduction (e.g., (e.g., MCL, .
Support Structure (Convolutional
NMF, CX/CUR, Spectral .
Vector PCA) Clustering) Learning (e.g., Neural Nets)
Machines & CONCORD)

%
Spar§e Spar§e Spars.e Matrix Sparse - Dense Sparse - Dense
Matrix- Matrix- Times Sparse . Dense :
: . Matrix , Matrix
Sparse Dense Multiple Matrix Matrix Matri
Vector Vector Dense Vectors Product HECIT] Product SR
(BLAS2) (BLAS3)

(SpDM3)

(SpMV) (SpMM) (SpPGEMM)
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Inverse Covariance Matrix Estimation (CONCORD)

1,048,576

—— Bigauic ]
262,144 | —w— TWO1 - -
TWO-4 | | ?
6553 - —=— TWO6 -
TWO-64 | f |
_ 16384 - e TWO-256 P ]
—— ; | 1 | 1
2 400 - TWOA0RE " S SE—
S | | | | | |
g 1,024
g 256
~ 64
16
4 : . . . )
| | | | |

10k 20k 40k 80k 160k 320k 640k 1,280k
p (#features)
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HP-CONCORD on Brain fMRI data

0 20000 40000 60000 80000

80000

A1 = 0.48, A5 = 0.39, € = 3, A1 = 0.5, Ao = 0-.397 e =3, A1 = 0.48, A2 = 0.39, € = 3,
% of best score = 100 % of best score = 100 % of best score = 100

0 20000 40000 60000 80000

80000

A1 =0.64, A\ =0.13, k=1, A1 = 0.5425, A5 = 0.39, k=0, A1 =0.64, Ao =0.13, k=1,
% of best score = 75.03 % of best score = 73.45 % of best score = 75.03

0 20000 40000 60000 80000

80000

t=199.9, k = 4, t=199.9, k = 3, t=199.9, k=4
% of best score = 32.24 % of best score = 32.45 % of best score = 32.24
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Problem 3: Runtimes



PGAS: A programming model for exascale

eGlobal address space: thread may directly read/write
remote data using an address (pointers and arrays)

.. = *gp; gali] = ...
ePartitioned: data is designated as local or global

shared int[] ga; and upc_malloc(...)

X: 1/7 x: 5 x: 7
O f y: 0 \ Examples:
VA 5 :

UPC
L / UPC++
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One-Sided Communication is Closer to Hardware

one-sided message host
CPU
address data payload ———
. ded out network
WO-Si m .
0-sided put message interface
message ID data payload
— memory
* Hardware does 1-sided communication
* Overhead for send/receive messaging is worse at exascale
35000
30000
W 2.9 GHz x86
25000
B 1 GHz x86 (model)
4 20000 B 1 GHz 3-SIMT (model)
C
) 15000 ——
O
A
o 10000 —
C
© 5000 —
= e
0 - , BN B .
isend (off) irecv (off) isend (on) irecv (on)
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What we love about Partitioned Global Address Space

Programming (PGAS)

8 ? ? ? ?
© . . . 3
% key: act key: cga key: gac key: tac Key: Never
n val: a |val: g | val: ¢ | val: ¢
@ ; , ; cache remote
S5 | key:'cea | key:'gta ; data (trivially
© : : : val: ¢ !
& k| coherent)
©
o)
L)
O

PO pi pn

* Convenience
— Build large shared structures
— Read and write data “anywhere” (global), “anytime”
(asynchronous) and without the other thread (one-sided)

* Performance control
— Explicit control over data layout, direct use of RDMA hardware
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HipMer is all about the runtime and data structures

reads T e 1) K'merAna/ySiS
(synchronous) irregular all-to-all

e 2) Contig Generation

asynchronous remote insert
(aggregate and overlap) and get

3) Alignment

read-Contig | m———— asynchronous remote insert and

alignments || lookup (software caching)

contig-contig

scaffol asynchronous remote insert and

lookup (software caching)
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Graph algorithms (hash tables) in genome assembly

Graph construction, traversal, and all later stages are written in UPC to take

advantage of its global address space

Input: k-mersand  pagq k-mers &  Store k-mers &
extensions extensions

4
Q
S
& buckets

their high quality
extensions

Distributed
sharddash table

entries

Key:
ATC

VaI |._|_>|

Key:
ACC

AAC CF
ACC GA

TGA FC

Key:
AAC

Val:
CF

A\ 4

GAT CF
AAT GF

Key:
TGA

Val:

FC

ATG CA
TCT GA

CCG FA

Key:
GAT

Val:

CF

A 4

Key:
ATG

A 4

Key:

Val:

AAT [ GF

Key: | Val:
TCT| GA

CTG AT
TGC FA
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Key:
CCG

Val:

FA

A 4

Key:
CTG

Val:

AT

A 4

Global Address Space




Lessons in Antisocial Parallelism

Compress Data Structures

Target Higher Level Loops
Understand theory / numerics
Replicate data

Understand theory / lower bounds
Aggregate communication

Overlap communication

Use one-sided communication

00 NSO E WNKH

Synchronization strength reduction
10. Combine the techniques
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Communication Hurts!
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