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-	2	-	 Exascale	Science	

Breakthrough science conjecture


Exascale	compu-ng,	combined	with	state-of-the-art	
mathema-cal	models,	algorithms,	so:ware	
techniques	and	data	will	enable	breakthrough	science	
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Berkeley Lab Priorities in Exascale Science
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Berkeley Lab Priorities in Exascale Science


Combus-on	

Climate	Accelerators	 Astrophysics	

Cosmology	

Subsurface	

Earthquakes	Carbon	Capture	

All	the	above	will	use	Adap-ve	Mesh	Refinement	
(AMR)	mathema-cs	and	so:ware,		
a	method	pioneered	at	Berkeley	Lab		



UNIVERSITY OF 
CALIFORNIA 

Office of 
Science 

-	6	-	 Exascale	Science	

Breakthrough science conjecture


Compu-ng	challenges	at	the	exascale	
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Computing is energy-constrained


At	~$1M	per	MW,	energy	costs	are	substan1al	
•  1	petaflop	in	2008	used	3	MW	
•  1	exaflop	in	2018	at	200	MW	“usual	chip	scaling”	
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The “New Normal” for Computer Architecture
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Figure 4.1: Historical Trends.
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Goal:	1	Exaflop	in	20	MW		
						=	20	pJ	/	opera-on	
	
Note:	The	20	pJ	/	opera-on	is		
•  Independent	of	machine	size		
•  Independent	of	#	cores	used	per	

applica-on	
•  But	“opera-ons”	need	to	be	

useful	ones	
	

Missing	Tihanhe-2	at	18MW	
TaihuLight	at	15	MW	
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What Limits Computer Performance?
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The	rest	of	the	
compu1ng	world	
gets	parallelism	
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Specializa1on	at	
end	of	transistor	
scaling	
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Lightweight Cores are the Future 


•  Small,	simple	cores	are	energy	and	area	efficient	
–  10-100x	more	energy	efficient	

•  Encourage	“parallel	thinking”	in	algorithms	and	so:ware	

Cell	phone	
processor	(0.1	
Wa=,	4	Gflop/s)	

Server	processor		(100	Wa=s,	50	Gflop/s)	

10	
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Specialization: End Game for Moore’s Law


Google	designs	its	own	
Tensor	Processing	Unit	(TPU)	

Intel	buys	deep	learning	
startup,	Nervana	

NVIDIA	builds	deep	
learning	appliance	with	
P100	Tesla’s	

FPGAs	
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What’s the most expensive operation on a computer?
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The	memory	wall	(or	swamp)	



UNIVERSITY OF 
CALIFORNIA 

Office of 
Science 

Data Movement is Expensive
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CPU	cycle	-me	vs	memory	access	-me	

Source:		hOp://csapp.cs.cmu.edu/2e/figures.html,	hOp://csapp.cs.cmu.edu/3e/figures.html	
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Data Movement is Expensive


14	Image:	hOp://slideplayer.com/slide/7541288/	

120 pJ

2000 pJ

250 pJ

~2500 pJ

100 pJ

6 pJ

Cost	to	move	data	off	chip		
			to	a	neighboring	node	

Cost	to	move	data	off	chip		
			into	DRAM	

Cost	to	move	off-chip,		
			but	stay	within	the	package	(SMP)	

Cost	to	move	data	20	mm	on	chip	

Typical	cost	of	a	single	floa1ng	point	opera1on	

Cost	to	move	data	1	mm	on-chip	

Hierarchical	energy	costs.	
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Synchronization is Expensive


•  Machines	will	have	Frequent	
Faults	and	“Performance	
Instability”	

•  Do	all	applica-ons	become	
“irregular”?	

•  Locality-Load	balance	trade-off	
–  Most	work	on	dynamic	scheduling	

is	inside	a	shared	memory	node	
–  Largest	variability	will	be	between	

nodes	

15	

Brian	van	Straalen,	DOE	Exascale	Research	
Conference,	April	16-18,	2012.	Impact	of	persistent	
ECC	memory	faults.	
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-	16	-	 Exascale	Science	

Breakthrough science conjecture


Programming	languages	and	compilers	for	exascale	
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-	17	-	 Exascale	Science	

Breakthrough science conjecture


The	biggest	concern	for	Exascale	applica-on	
developers	is	the	need	to	write	and	maintain	mul-ple	
versions	of	their	so:ware	and	the	uncertainty	over	
what	the	architectures	will	be.	
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Why develop new languages?

•  Produc-vity:	higher	level	syntax		

– We	need	a	language	
•  Correctness:	sta-c	analysis	can	eliminate	errors	

– We	need	a	compiler	(front-end)	
•  Performance:	op-miza-ons		

– We	need	a	compiler	(back-end)	

•  But	you	need	to	“know	your	audience”	
–  Need	to	rewrite	installed	base	of	code	(an1-produc1vity)	
–  Risk	of	compiler	disappearing	(maintainability)	
–  Syntax	maOers	(familiarity)		

•  Language	adop-on	is	o:en	about	its	libraries	
-	18	-	 Exascale	Science	

Language	design	
enforces	clarity	
in	concepts	
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Programming for diverse (specialized) architectures

•  Two	“hard”	compiler	problems:		

–  dependence	analysis	and		
–  accurate	performance	models	

•  Autotuners	are	code	generators	plus	search		

Work	by	Williams,	Oliker,	Shalf,	Madduri,	Kamil,	
Im,	Ethier,…		
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Autotuning	avoids	this	problem	
Domain-Specific	Languages	help	with	this	
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Libraries vs. DSLs (domain-specific languages)
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0%	 10%	 20%	 30%	 40%	 50%	

Adap1ve	

Dense	LA	

Monte	Carlo	

Par1cles	

Spectral	

Sparse	LA	

Structured	 Dense	Linear	Algebra	 Atlas	

Spectral	Algorithms	 FFTW,	
Spiral	

Sparse	Linear	Algebra	 OSKI	

Structured	Grids	 TBD	

Unstructured	Grids	

Par1cle	Methods	

Monte	Carlo	

NERSC	survey:	what	mo1fs	do	they	use?	 What	code	generators	do	we	have?	

Unstructured	

Stencils	are	both	the	most	important	mo1fs	and	a	gap	in	our	tools	
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Approach: Small Compiler for Small Language

•  Snowflake:	A	DSL	for	Science	Stencils	

–  Domain	calculus	inspired	by	Titanium,	UPC++,	and	AMR	in	general	

•  Complex	stencils:	red/black,	asymmetric		
•  Update-in-place	while	preserving	provable	parallelism	
•  Complex	boundary	condi-ons:	key	to	Adap-ve	Meshes		

21	

(a) Red-Black tiling (b) 4-color tiling (c) Asymmetric stencil used
near mesh boundary

(d) 5-point Jacobi stencil

Figure 4: (a) Red-black tiling allows cross-point updates simultaneously at points of the same color, so an update operation takes
only 2 passes. (b) 4-color tilings are common when each update requires the surrounding 3-by-3 neighborhood. Like red-black
tiling, all points of the same color in a 4-color tiling can be updated simultaneously. (c) An asymmetric stencil, sometimes used
near the mesh boundary of a standard 5-point stencil (d), results in odd dependency patterns. Purple points are read from, gray
points are written to.

1 top = Component("beta_x", WeightArray([[1]])

2 bot = Component("beta_x", WeightArray([[0], [1], [0]])

3 left = Component("beta_y", WeightArray([[1]]))

4 right = Component("beta_y", WeightArray([[0, 0, 1]])

5 Ax = Component("mesh", WeightArray([[0,top,0], [left, left+top+bot+right, bot], [0, bot, 0]]))

6 b = Component("rhs", WeightArray([[1]]))

7 difference = b - Ax

8 original = Component("mesh", WeightArray([[1]])

9 lambda_term = Component("lambda", WeightArray([[1]]))

10 final = original + lambda_term * difference

11 red = RectDomain((1,1), (-1,-1), (2,2)) + RectDomain(((2, 2), (-1, -1), (2, 2))

12 black = RectDomain((1,1), (-1,-1), (2,2)) + RectDomain(((2,2), (-1,-1), (2,2))

13 red_stencil = Stencil(final, "mesh", red)

14 black_stencil = Stencil(final, "mesh", black)

15 # Dirichlet zero boundary: 1 of 4 stencils shown...

16 top_boundary = Stencil("mesh", Component("mesh", WeightArray([[ 0],[ 0],[-1]])),

17 RectangularDomain((1, -1), (-1, -1), (1, 0)))

18 # ...others are rotationally equivalent

Figure 5: This complex-smoothing operation a strided colored (red-black) stencil with Dirichlet boundaries and variable coeffi-
cients.

l (lines 8–10).
Having defined the operation, we define the red and black

domains; each is defined as the union (+) of two domains
offset from each other and strided by 2 in each dimension
(lines 11–12). We can now define the main red-black stencil
by associating the operation, its output, and its domain (lines
13–14).

The last step is generating the boundary for a uniform linear
Dirichlet condition in 2 dimensions. This requires four stencils
(top, bottom, left, and right boundaries); for each one, the cell
immediately outside the boundary should be set to the negative
of the value inside the boundary, to make the boundary cell be
zero. Lines 16–17 show how to set up the stencil for the top
boundary; the others are rotationally equivalent.

Finally, the red and black stencils (lines 13–14) and the
boundary stencils (lines 16–17, plus three rotationally equiva-

lent boundary stencils omitted for brevity) can be combined
into a StencilGroup, which allows analysis to identify paral-
lelism across all these stencils as well as within each one. The
next section describes how the analysis is done.

3. Analysis
One major goal of the Snowflake DSL was to make analysis
of stencils easier in order to ensure correctness and ease the
burden on the optimization process. Given the highly regular
access patterns of stencils and stencil groups, the inherent
parallelism is statically determinable in many nontrivial cases
[10]. These dependencies reduce to a system of Diophantine
equations that determine whether or not a stencil interferes
with itself and other stencils. Diophantine equations are equa-
tions where integer solutions are sought. For example, the
equation x2 + y2 = 1 has an infinite number of general solu-

4
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•  Performance	on	the	HPGMG	applica-on	benchmark	using	all	
the	features	of	Snowflake	

•  Compe--ve	with	hand-op-mized	performance		
•  Within	2x	of	op-mal	roofline		

Snowflake performance 


22	

Figure 9: Due to overhead from spawning extra parallel re-
gions and Python-to-C calls, Snowflake performs poorly when
running small sizes across multiple threads, but improves con-
siderably in comparison when the problem size increases.

Threading. While GPU experiments were conducted on an
NVIDIA K20c GPU. The former has a STREAM Triad band-
width of about 22.2GB/s while the GPU has an Empirical
Roofline Toolkit bandwidth of about 127GB/s. For compar-
ison purposes, we compare snowflake performance to the
2nd order, hand-optimized OpenMP HPGMG and HPGMG-
CUDA modified to run 10 V-Cycles instead of 1 F-Cycle.
Moreover, we compare to a Roofline-inspired DRAM band-
width bound. Snowflake was compiled with GCC version 4.9
with -std=c99 -03 -fgcse and -fPIC flag for linking. The
OpenCL backend additionally used -lOpenCL with OpenCL
version 1.2. HPGMG was compiled with ICC 14.0 with -03

-openmp

We evaluate the performance on 3 stencils, the canonical
7-point, constant coefficient Laplacian, a Jacobi smoother
(xn+1 = xn+ 2

3 D�1( f �Lxn) where L is the 7-point constant co-
efficient Laplacian, and a Gauss-Seidel, Red-Black smoother
using a variable-coefficient, 7-point Laplacian. The data move-
ments associated with these stencils are on average 24, 40, and
64 bytes per stencil respectively. Finally, we evaluate perfor-
mance on the full geometric multigrid solver, which includes
smoother, residual, interpolation, restriction, and boundary
condition stencils. For the GMG solver, we use a 2nd order,
variable coefficient, GSRB smoother (4 pre-smooths plus 4
post-smooths) with a fixed 10 v-cycles.

Multigrid solvers, and applications in general must com-
pose a number of stencils together. It is imperative any sys-
tem deliver performance for a variety of stencil computations.
Figure 10 presents Snowflake performance with either the
OpenMP or OpenCL backends for three different stencils/s-
moothers on a fixed 2563 problem. We include performance
comparisons to the equivalent operations in HPGMG and
HPGMG-CUDA as well as to a Roofline-inspired DRAM
performance bound. Unfortunately, NVIDIA does not pro-
vide a bare 7-point constant coefficient Laplacian stencil, but

only includes it in the context of a smoother. As we can see
Snowflake/OpenMP performance does very well, delivering
performance close to HPGMG/Roofline. Conversely, it is clear
the additional low-level optimizations found in NVIDIA’s
HPGMG-CUDA are necessary as Snowflake’s OpenCL back-
end underperforms. Note, it is unclear whether GPU caches
are write-allocate. As such, GPU Roofline estimates for the
Laplacian and Jacobi may underestimate performance poten-
tial. Nevertheless, it is clear Snowflake was able to deliver
performance portability within a factor of 2 across CPUs and
GPUs from a single-source Python description.
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Figure 10: Snowflake performance with OpenMP and OpenCL
compared to HPGMG, HPGMG-CUDA, and the DRAM-based
Roofline performance bound for a fixed 2563 problem size.
Note, NVIDIA does not provide a constant coefficient ApplyOp
in their HPGMG implementation. Snowflake productively de-
livers performance across architecture and operators.

In order to realize a high-performance multigrid solver —
O(N) solve time in the number of variables N — one must
deliver constant performance across a range of exponentially
varying problem sizes. Figure 11 shows performance for the
variable-coefficient GSRB smoother across the range of prob-
lem sizes found in a multigrid solver. Observe that runtime
decreases with problem size as bound by Roofline. Moreover,
Snowflake OpenMP and OpenCL performance track the hand-
optimized HPGMG and HPGMG-CUDA performances. Note,
the smallest 323 problem likely fits in CPU caches and can
thus receive a super linear benefit.

5.4. Design of the OpenMP Backend

The OpenMP backend makes heavy use of the dependency
analysis in prior sections in order to establish barrier points
in the generated OpenMP code. Since this paper describes

7

Nathan	Zhang,	C.	Markley,		S.	Williams,	A.	Fox	
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Real-Time MRI Challenge


Compressed	Sensing	Approach	by	Mike	Lus1g	et	al	
MRI	results	Wenwen	Jiang	

Time (min) Architecture 
6.15 KNL 
5.42 Ivy Bridge 
4.47 Broadwell 
4.31 Kepler 
4.12 Haswell 
3.71 Broadwell 
3.16 Kepler 
0.94 Pascal 

3	min	
goal	

Michael	Driscoll	HPC	op1miza1on	
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Matrix-free (loop optimization) vs. Matrix-full
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	coil	data														sample								KB	kernel									FFT							preapodize				sens.	maps															image	

Loops	 Structured	matrices	 Matrices	

Operators	as	loop	
nests		

Operators	as	matrices	with	
structure	that	compiler	can	op1mize		

Operators	as	arbitrary	
sparse	matrices	
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Domain-specific library with runtime optimizations


-	25	-	 Exascale	Science	
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Python-Based Domain-Specific Language (EDSL)


•  Original	Numpy	code	on	Haswell:	87	sec/itera-on	
•  Run-me	op-miza-on	reorganize	tree	of	operators	(matrices	

+	FFTs)	cognizant	of	matrix	structure	
•  Library	or	custom	matrix	kernels	

-	26	-	 Exascale	Science	
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Compiler challenges


-	27	-	 Exascale	Science	

Architecture	difficulty	

Auto-
paralleliza1on	
for	HPC		

Auto-
vectoriza1on	
for	vector	
processors	

Auto-
SIMDiza1on	

Auto-
paralleliza1on	
for	SMPs	

Auto-
parallelism	for	
aOached	
accelerators	

(related	to	granularity	of	parallelism)	

Language	difficulty	

General	
purpose	
loosely	typed	

Autotuner	
code	
genera1on	

Domain	specific	(in	
degrees	of	specificity)	

General	
purpose	
strongly	typed	
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Avoiding Communication in Iterative Solvers

•  Consider Sparse Iterative Methods for Ax=b 

–   Krylov Subspace Methods: GMRES, CG,… 

•  Solve time dominated by: 
–  Sparse matrix-vector multiple (SPMV) 

•  Which even on one processor is dominated by 
“communication” time to read the matrix  

–  Global collectives (reductions) 
•  Global latency-limited  

•  Can we lower the communication costs? 
–  Latency: reduce # messages by computing multiple 

reductions at once 
–  Bandwidth to memory, i.e., compute Ax, A2x, … Akx 

with one read of A Joint	work	with	Jim	Demmel,	Mark	
Hoemman,	Marghoob	Mohiyuddin	
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1			2			3			4		…	 	…	32	
x	

A·x	

A2·x	

A3·x	

Communication Avoiding Kernels

"

The Matrix Powers Kernel : [Ax, A2x, …, Akx] 


•  Replace	k	itera1ons	of	y	=	A⋅x	with	[Ax,	A2x,	…,	Akx]		
	

	
•  Idea:	pick	up	part	of	A	and	x	that	fit	in	fast	memory,	compute	each	

of	k	products	
•  Example:	A	tridiagonal	matrix	(a	1D	“grid”),	n=32,	k=3	
•  General	idea	works	for	any	“well-par11oned”	A	
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1			2			3			4	…	 	…	32	

x	

A·x	

A2·x	

A3·x	

Communica-on	Avoiding	Kernels	(Sequen-al	case)	
The	Matrix	Powers	Kernel	:	[Ax,	A2x,	…,	Akx]		

•  Replace	k	itera1ons	of	y	=	A⋅x	with	[Ax,	A2x,	…,	Akx]	
•  Sequen-al	Algorithm		

	
•  Example:	A	tridiagonal,	n=32,	k=3	
•  Saves	bandwidth	(one	read	of	A&x	for	k	steps)	
•  Saves	latency	(number	of	independent	read	events)	

Step	1	 Step		2	 Step		3	 Step		4	
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1			2			3			4	…	 	…	32	

x	

A·x	

A2·x	

A3·x	

Communica-on	Avoiding	Kernels:	
(Parallel	case)	

The	Matrix	Powers	Kernel	:	[Ax,	A2x,	…,	Akx]		

•  Replace	k	itera1ons	of	y	=	A⋅x	with	[Ax,	A2x,	…,	Akx]	
•  Parallel	Algorithm		

	
•  Example:	A	tridiagonal,	n=32,	k=3	
•  Each	processor	works	on	(overlapping)	trapezoid	
•  Saves	latency	(#	of	messages);	Not	bandwidth	
									But	adds	redundant	computa1on	

Proc	1	 Proc		2	 Proc		3	 Proc		4	
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Matrix Powers Kernel on a General Matrix


•  Saves	communica-on	for	“well	par--oned”	matrices	
•  Serial:	O(1)	moves	of	data		moves	vs.	O(k)	
•  Parallel:	O(log	p)	messages	vs.		O(k	log	p)		

32	

Joint	work	with	Jim	Demmel,	Mark	Hoemman,	
Marghoob	Mohiyuddin	

For	implicit	memory	
management	(caches)	
uses	a	TSP	algorithm	for	
layout	
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Akx	has	higher	performance	than	Ax				

Speedups	on	Intel	Clovertown	(8	core)	

Jim	Demmel,	Mark	Hoemmen,	Marghoob	Mohiyuddin,	Kathy	Yelick		
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Minimizing Communication of GMRES to solve Ax=b 

•  GMRES: find x in span{b,Ab,…,Akb} minimizing || Ax-b ||2 

Standard	GMRES	
		for	i=1	to	k	
					w	=	A	·	v(i-1)			…	SpMV	
					MGS(w,	v(0),…,v(i-1))	
					update	v(i),	H	
		endfor	
		solve	LSQ	problem	with	H	
	

Communica1on-avoiding	GMRES	
			W	=	[	v,	Av,	A2v,	…	,	Akv	]	
			[Q,R]	=	TSQR(W)			
										…		“Tall	Skinny	QR”	
			build	H	from	R		
			solve	LSQ	problem	with	H	
	
	
	
	Sequen1al	case:	#words	moved	decreases	by	a	factor	of	k	

Parallel	case:	#messages	decreases	by	a	factor	of	k	

• Oops	–	W	from	power	method,	precision	lost!	
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TSQR: An Architecture-Dependent Algorithm


W	=		

W0	
W1	
W2	
W3	

R00	
R10	
R20	
R30	

R01	

R11	

R02	Parallel:	

W	=		

W0	
W1	
W2	
W3	

R01	 R02	

R00	

R03	
Sequen1al:	

W	=		

W0	
W1	
W2	
W3	

R00	
R01	

R01	
R11	

R02	

R11	
R03	

Dual	Core:	

Can	choose	reduc1on	tree	dynamically	
Mul1core	/	Mul1socket	/	Mul1rack	/	Mul1site	/	Out-of-core:		?	

Work	by	Laura	Grigori,	Jim	
Demmel,	Mark	Hoemmen,	
Julien	Langou
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Matrix Powers Kernel (and TSQR) in GMRES


36	
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Jim	Demmel,	Mark	Hoemmen,	Marghoob	Mohiyuddin,	Kathy	Yelick		
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Communication-Avoiding Krylov Method (GMRES)

Performance	on	8	core	Clovertown	
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Developed	for	Image	Processing	

–  10+	FTEs	developing	Halide	
–  50+	FTEs	use	it;	>	20	kLOC		

HPGMG	(Mul-grid	on	Halide)	
•  Halide	Algorithm	by	domain	expert	

	
	
	

•  Halide	Schedule	either	
–  Auto-generated	by	autotuning	with	opentuner	
–  Or	hand	created	by	an	op1miza1on	expert	

   DSLs popular outside scientific computing

Halide	performance	
•  Autogenerated	schedule	for	CPU	
•  Hand	created	schedule	for	GPU	
•  No	change	to	the	algorithm	

	

Func Ax_n("Ax_n"), lambda("lambda"), chebyshev("chebyshev");
Var i("i"),j("j"),k("k");
Ax_n(i,j,k) =  a*alpha(i,j,k)*x_n(i,j,k) - b*h2inv*(
    beta_i(i,j,k)  *(valid(i-1,j,k)*(x_n(i,j,k) + x_n(i-1,j,k)) - 2.0f*x_n(i,j,k))
  + beta_j(i,j,k)  *(valid(i,j-1,k)*(x_n(i,j,k) + x_n(i,j-1,k)) - 2.0f*x_n(i,j,k))
  + beta_k(i,j,k)  *(valid(i,j,k-1)*(x_n(i,j,k) + x_n(i,j,k-1)) - 2.0f*x_n(i,j,k))
  + beta_i(i+1,j,k)*(valid(i+1,j,k)*(x_n(i,j,k) + x_n(i+1,j,k)) - 2.0f*x_n(i,j,k))
  + beta_j(i,j+1,k)*(valid(i,j+1,k)*(x_n(i,j,k) + x_n(i,j+1,k)) - 2.0f*x_n(i,j,k))
  + beta_k(i,j,k+1)*(valid(i,j,k+1)*(x_n(i,j,k) + x_n(i,j,k+1)) - 2.0f*x_n(i,j,k)));
lambda(i,j,k) = 1.0f / (a*alpha(i,j,k) - b*h2inv*(
    beta_i(i,j,k)  *(valid(i-1,j,k) - 2.0f)
  + beta_j(i,j,k)  *(valid(i,j-1,k) - 2.0f)
  + beta_k(i,j,k)  *(valid(i,j,k-1) - 2.0f)
  + beta_i(i+1,j,k)*(valid(i+1,j,k) - 2.0f)
  + beta_j(i,j+1,k)*(valid(i,j+1,k) - 2.0f)
  + beta_k(i,j,k+1)*(valid(i,j,k+1) - 2.0f)));
chebyshev(i,j,k) = x_n(i,j,k) + c1*(x_n(i,j,k)-x_nm1(i,j,k))+ 
                   c2*lambda(i,j,k)*(rhs(i,j,k)-Ax_n(i,j,k));
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Breakthrough science conjecture


Open	Problem:	Compiling	for	communica-on	
op-mality…	
		...	with	irregular	loop	nests	and	sparsity	
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Beyond Domain Decomposition!
2.5D Matrix Multiply on BG/P, 16K nodes / 64K cores
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Matrix multiplication on 16,384 nodes of BG/P

95% reduction in comm computation
idle

communication

c	=	16	copies	

EuroPar’11	(Solomonik,	Demmel)	
SC’11	paper	(Solomonik,	Bhatele,	Demmel)	

	
Surprises:		
•  Even	Matrix	Mul1ply	had	room	for	improvement	
•  Idea:	make	copies	of	C	matrix		(as	in	prior	3D	
algorithm,	but	not	as	many)	

•  Result	is	provably	op1mal	in	communica1on	
	
Lesson:	Never	waste	fast	memory	
			And	don’t	get	hung	up	on	the	owner	computes	rule	
	
Can	we	generalize	for	compiler	writers?	
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Deconstructing 2.5D Matrix Multiply 
Solomonick & Demmel 

x 

z 

z 

y 

x 
y •  Tiling the iteration space 

•  2D algorithm: never chop k dim 
•  2.5 or 3D: Assume + is 

associative; chop k, which is à 
replication of C matrix 

k 

j 

i Matrix Multiplication code has a 3D iteration space 
Each point in the space is a constant computation (*/+) 
 

for i 
   for j 
      for k 

B[k,j]  … A[i,k] …  C[i,j] … 

41	
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Beyond Domain Decomposition


•  Much	of	the	work	on	compilers	is	based	on	
owner-computes	(domain	decomposi-on)	
–  For	MM:	Divide	C	into	chunks,	schedule	movement	of	A/B	
–  Data-driven	domain	decomposi1on	par11ons	data;	but	

we	can	par11on	work	instead	
•  Ways	to	compute	C	“pencil”	

1.  Serially	
2.  Parallel	reduc1on	
3.  Parallel	asynchronous	(atomic)	updates	
4.  Or	any	hybrid	of	these	

•  For	what	types	/	operators	does	this	work?	
–  “+”	is	associa1ve	for	1,2	rest	of	RHS	is	“simple”	
–  and	commuta1ve	for	3	

42	

Using	x	for	C[i,j]	here	

x	+=	…	

x	+=	…	

x	+=	…	

x	+=	…	

Standard	vectoriza`on	trick	
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Load	

Load	

Load	

Load	

Load	

Load	

Load	

Store	

Store	

Store	

Store	

FLOP	

FLOP	

FLOP	

FLOP	

FLOP	

FLOP	

FLOP	

Ti
m

e 

Segment 1 

Segment 2 

Segment 3 

Lower Bound: What is the minimum amount of 
communication required? 

 ..
.  
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•  Matrix Multiply Proof from Irony/
Toledo/Tiskin (2004) 

•  Assume fast memory of size M 
•  How much work (F) can we do with 

O(M) data?  

•  For matrix multiplication, this uses a 
result from Loomis an Whitney (1949) 
#	cubes	in	3D	set	=	Volume	of	3D	set	
			≤	(area(A	shadow)	*	area(B	shadow)	*											
																																									area(C	shadow))	1/2	
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Generalizing Communication Lower Bounds and 
Optimal Algorithms


•  For	serial	matmul,	we	know	#words_moved	=		Ω	(n3/M1/2),	
asained	by	-le	sizes	M1/2	x	M1/2	

•  Thm	(Christ,Demmel,Knight,Scanlon,Yelick):																		For	any	
program	that	“smells	like”	nested	loops,	accessing	arrays	with	
subscripts	that	are	linear	func`ons	of	the	loop	indices	

											#words_moved	=			Ω	(#itera`ons/Me)	
					for	some	e	we	can	determine	
•  Thm	(C/D/K/S/Y):	Under	some	assump-ons,	we	can	determine	

the	op-mal	-les	sizes	
–  E.g.,	index	expressions	are	just	subsets	of	indices	

•  Long	term	goal:	All	compilers	should	generate	communica-on	
op-mal	code	from	nested	loops	
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Using .5D ideas on N-body

•  n	par-cles,	k-way	interac-on.	

– Molecules,	stars	in	galaxies,	etc.	
•  Most	common:	2-way	N-body	

•  Best	algorithm	is	to	divide	n	par-cles	into	p	groups??	

	

for t timesteps 
    forall i1, …, ik 

     force[i1] += interact(particle[i1], …, particle[ik]) 
    forall i 
        move(particle[i], force[i]) 

.......................................................................................	

O(nk).	

No!	
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Communication Avoiding 2-way N-body !
(using a “1.5D” decomposition)


•  Divide	p	into	c	groups		
•  Replicate	par-cles	across	groups	
•  Repeat:	shi:	copy	of	n/(p*c)	par-cles	to	the	le:	within	a	group	
•  Reduce	across	c	to	produce	final	value	for	each	par-cle	
Total	Communica1on:	O(log(p/c)	+	log	c)	messages,		
																																											O(n*(c/p+1/c))	words	
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............	

............	

............	
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............	

............	

c	

p/c	

Driscoll,	Georganas,	Koanantakool,	Solomonik,	Yelick	
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Less Communication..

Cray	XE6;	n=24K	par-cles,	p=6K	cores	

47	

D
ow

n is good 

96% reduction in 
shift time (red) 
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Strong Scaling of 1.5D N-body


Koantakool	&	Yelick	 48	

4.4x 

U
p is good 
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Challenge: Symmetry & Load Balance


•  Force	symmetry	(fij = -fji) saves	computa-on	
•  2-body	force	matrix	vs	3-body	force	cube	

•  How	to	divide	work	equally?	

6x save 
of O(n3)! 2x save 

of O(n2) 

Koanantakool	&	Yelick	
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Communication-Avoiding 3-body


•  p=5	(in	colors)	
•  6	par-cles	per	processor	
•  5x5	subcubes	

Actual	triplets	

Equivalent	triplets	in	
the	big	tetrahedron	

50	[Koanantakool	and	Yelick	

Communica-on	op-mal.	
Replica-on	by	c	decreases		
#messages	by		c3	and	
#words	by	c2	
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3-Way N-Body Speedup

D

ow
n is good 

•  Cray	XC30,	24k	cores,	24k	par-cles	

22.1x	

Koanantakool & Yelick 
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Perfect Strong Scaling

U

p is good 

42x 

52	

BlueGene/Q	16k	par1cles,	Strong	Scaling	

Koanantakool & Yelick 
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Sparse-Dense Matrix Multiply Too!


•  Variety	of	algorithms	that	divide	in	or	2	dimensions	

53	
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100x Improvement


•  A66k	x	172k,	B172k	x	66k,	0.0038%	nnz,	Cray	XC30	

54	

100x	

U
p is good 

Koanantakool & Yelick 
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Dense	
Matrix	
Vector	
(BLAS2)	

Sparse	-	
Sparse	
Matrix	
Product	

(SpGEMM)	

Sparse	Matrix	
Times	

Mul1ple	
Dense	Vectors	

(SpMM)	

Sparse	
Matrix-
Dense	
Vector	
(SpMV)	

Sparse	
Matrix-
Sparse	
Vector	

(SpMSpV)	

Increasing	arithme1c	intensity	

Graphical	
Model	

Structure	
Learning	(e.g.,	
CONCORD)	

Clustering	
(e.g.,	MCL,	
Spectral	

Clustering)	

Logis1c	
Regression,	
Support	
Vector	

Machines	

Dimensionality	
Reduc1on	(e.g.,	
NMF,	CX/CUR,	

PCA)	

Linear Algebra is important to Machine Learning too!


Deep	Learning	
(Convolu1onal	
Neural	Nets)	

Sparse	-	
Dense	
Matrix	
Product	
(SpDM3)	

Dense	
Matrix	
Matrix	
(BLAS3)	

Aydin	Buluc,	Sang	Oh,	John	Gilbert,	Kathy	Yelick	
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Inverse Covariance Matrix Estimation (CONCORD)


-	56	-	 Exascale	Science	
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HP-CONCORD on Brain fMRI data


-	57	-	 Exascale	Science	

Figure 6: The clusterings from [14], for the left and right
hemispheres of the brain; the clusterings were generated by
applying a multi-class, shallow neural network to the same
data we use [29], but use a significant amount of domain
knowledge in order to post-processes the results by hand.
The colors have no significance, except to demarcate the
di↵erent clusters.

�1 = 0.48, �2 = 0.39, ✏ = 3, �1 = 0.5, �2 = 0.39, ✏ = 3, �1 = 0.48, �2 = 0.39, ✏ = 3,
% of best score = 100 % of best score = 100 % of best score = 100

�1 = 0.64, �2 = 0.13, k = 1, �1 = 0.5425, �2 = 0.39, k = 0, �1 = 0.64, �2 = 0.13, k = 1,
% of best score = 75.03 % of best score = 73.45 % of best score = 75.03

t = 99.9, k = 4, t = 99.9, k = 3, t = 99.9, k = 4
% of best score = 32.24 % of best score = 32.45 % of best score = 32.24

Table 2: Top row: the best clusterings generated by HP-CONCORD followed by the persistent homology method,
relative to the clusterings of [14] presented in Figure 6, according to the (modified) Jaccard score; the left and
middle columns present the results for the left and right hemispheres, respectively, while the right column
presents the sparsity pattern (black indicates a nonzero entry) of the HP-CONCORD estimate yielding the best
clustering for the left hemisphere (the sparsity patterns for the right hemisphere are in the supplement, for space
reasons). Middle row: the same plots, except for HP-CONCORD followed by the Louvain method. Bottom
row: the same plots, except generated by thresholding the sample covariance matrix at various levels. Indicated
below each clustering is the percentage of the best Jaccard score it attains (higher is better); since the persistent
homology clusterings perform the best, these percentages are just 100. The actual Jaccard scores, as well as a
significantly expanded set of results, can be found in the supplement. Also indicated are the tuning parameter
values yielding the clusterings (i.e., �1,�2 for HP-CONCORD; " � 0, k 2 Z+ controlling the number of clusters
for the persistent homology and Louvain methods, respectively; and t denoting the percentage of discarded
sample covariance matrix entries). The colors in the various plots have no special meaning.

(2) apply a graph-based clustering algorithm to the
partial correlation graph arising from the sparsity pat-
tern of the HP-CONCORD estimate. For (1), we
consider all combinations of the tuning parameters
�1 2{0.48, 0.5, 0.52, 0.54, 0.57, 0.59, 0.61, 0.64, 0.67,

0.69, 0.72}⇥�2 2{0.10, 0.13, 0.16, 0.2, 0.25, 0.31, 0.39,
0.49} (tuning parameters outside these ranges yielded
either trivially sparse or dense estimates); running HP-
CONCORD on a single (�1,�2) pair took ⇡ 37 min-
utes. For (2), the clustering algorithms we consider
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Breakthrough science conjecture


Problem	3:	Run-mes	
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PGAS: A programming model for exascale


• Global	address	space:	thread	may	directly	read/write	
remote	data	using	an	address	(pointers	and	arrays)	
							…	=	*gp;								ga[i]	=	…		

• Par``oned:	data	is	designated	as	local	or	global	
												shared	int	[	]	ga;			and			upc_malloc	(…)	

G
lo

ba
l a

dd
re

ss
 s

pa
ce x: 1 

y:  

l:  l:  l:  

g:  g:  g:  

x: 5 
y:  

x: 7 
y: 0 

p0 p1 pn

A	programming	model	can	influence	how	programmers	think	

Examples:	
UPC	
UPC++	
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One-Sided Communication is Closer to Hardware


•  Hardware	does	1-sided	communica-on	
•  Overhead	for	send/receive	messaging	is	worse	at	exascale		
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1	GHz	3-SIMT		(model)	
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What we love about Partitioned Global Address Space 
Programming (PGAS)


•  Convenience	
–  Build	large	shared	structures	
–  Read	and	write	data	“anywhere”	(global),	“any1me”	
		(asynchronous)	and	without	the	other	thread	(one-sided)	

•  Performance	control	
–  Explicit	control	over	data	layout,	direct	use	of	RDMA	hardware	
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key: act 
val: a 

key: cga 
val: g  

key: gac 
val: c 

p0 p1 pn

                                                                                                                              . . .                                                                                                                      

key: cca 
val: t  

key: gta 
val: c  

key: tac 
val: c 

Key:	Never	
cache	remote	
data	(trivially	
coherent)	
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HipMer is all about the runtime and data structures	

1)  K-mer	Analysis	
(synchronous)	irregular	all-to-all	
	

3)	Alignment	
asynchronous	remote	insert	and	
lookup	(so�ware	caching)	
	
4)	Scaffolding	&	Gap	Closing	
asynchronous	remote	insert	and	
lookup	(so�ware	caching)	
	
	

2)	Con`g	Genera`on	

asynchronous	remote	insert	
(aggregate	and	overlap)	and	get	

xxx	 xx	 xxxx	

reads	

k-mers	

read-con1g	
alignments	

con1g-con1g	
scaffolds	

con1gs	

1	

2	

3	

4	
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AAC  CF 
ATC  TG 
ACC  GA 
 
TGA  FC 
GAT  CF 
AAT  GF 
 
ATG  CA 
TCT  GA 
 
CCG FA 
CTG  AT 
TGC  FA 
	

P0	

P1	

Pn	

Input:	k-mers	and	
their	high	quality	

extensions	

Read	k-mers	&	
extensions	

Distributed	
Hash	table	

Store	k-mers	&	
extensions	

…
	

buckets entries 
Key: 
ATC 

Val: 
TG ! ! 

! 
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Val: 
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Shared Private 

…
 

x 
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z 

Graph algorithms (hash tables) in genome assembly
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Graph construction, traversal, and all later stages are written in UPC to take 
advantage of its global address space
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Lessons in Antisocial Parallelism


1.   Compress	Data	Structures 		
2.   Target	Higher	Level	Loops	
3.   Understand	theory	/	numerics	
4.   Replicate	data	
5.   Understand	theory	/	lower	bounds	
6.   Aggregate	communica-on	
7.   Overlap	communica-on	
8.   Use	one-sided	communica-on	
9.   Synchroniza-on	strength	reduc-on	
10.  	Combine	the	techniques	
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Communication Hurts!


65	


