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“Big Data” Changes Everything...What about
Science?




Transforming Science: Finding Data
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Computing Challenges:
 Search for scientific data on the web

 Automated metadata annotation / feature identification
- Data: images, genomes, simulations, MRI, MassSpec,...
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The Future of Experimental Science
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Transforming experimental science:
“Superfacility” for Science

AAAAAAAA

Computlng Challenges
Robotics, Special purpose processors at experiments
Mathematics / algorithm for real-time and offline analysis
Massive numbers of simulations for inverse problems
Networks and software for data movement, management



Science at the Boundary of Simulation
and Observation

Adaptive Mesh Refmement
simulates sea level impacts from
melting of West Antarctic Ice Sheet

Deep learning algorithms identify
and help quantify extreme events

Computing Challenges:

« Multimodal analysis from sensors, genomes, images...

* High performance methods and implementations

« Data-driven simulations to predict regional effects on
environment and weather events



Finding smaller signals in noisy, biased data:
Removing Systematlc Bias in Cosmoloayv
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Computing Challenges:
« Better machine learning for event detection

* Removing systematic bias in experimental data
« Simulations to interpret data; data constrain simulations



Finding structure and function in noisy
data: Metagenomics data mining

Blind Spots - \
Nature Microbiol \ Ex &’“‘\” /\

2016 Earth Virome JOINT GENOME INSTITUTE (/. )
Submitted

Kryptonia ; A=
Nature Com. K| WV
oe

2016
Al N Selenocysteine
A
‘ﬁ ; \ el el \ Njw(OH Recoding
{ Recoding } . V. metagenomes £ 3 A. Chemie in pre
M

Science, 2014

Biosynthetic
clusters

(0 i @ Novel Protein
0y 8 folds

in preparation

Computing Challenges
* Distributed memory graph algorithms / hash tables
 Low latency interconnects; low overhead communication

« Algorithms to separate and assembly genomes
 Many-to-Many comparisons against databases



Science Trends

« Science needs (and will always need)
more computing

* New science questions at the boundary
of simulation and observation

 Changes to computing infrastructure
needed for open, reproducible science
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Roadmap

v Science Trends

* Political Trends
 Technology Trends

» Algorithmic Challenges
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The Politics of High Performance

Computing
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White House Announces the National

Strategic Computing Initiative (NSCI)

THE WHITE HOUSE

Office of the Press Secretary

For Immediate Release July 29, 2015

EXECUTIVE ORDER

CREATING A NATIONAL STRATEGIC COMPUTING INITIATIVE

he authority vested in me as President by the

ion and the laws of the United States of America,

ximize benefits of high-performance computing (HPC)
t,

m
rch, development, and deploymen it is hereby ordered as

Section 1. Policy. In order to maximize e nefits o
HPC for economic competitiveness and scientific discovery,
United States Government must create a coordinated Federal
strategy in HPC research, development, and deployment.
Investment in HPC has contributed substantially to national

conomic prosperity and rapidly accelerated scientific
discover V. Creating and deploying technology at the leading
edge is vital to advancing my Administration's priorities and
spurring innovation. Accordingly, this order establishes the

National Strategic Computing Initiative (NSCI). The NSCI is a

Five goals:

1. Create systems that can apply
exaflops of computing power to
exabytes of data.

Keep the United States at the
forefront of HPC capabilities.

Improve HPC application
developer productivity.

Make HPC readily available.
Establish hardware technology

[DOE SC and NNSA] will execute a  for future HPC systems.
joint program focused on advanced

simulation through a capable
exascale computing ...
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Advanced Computing: Not just for Simulation

‘ ‘ Comprehensive

Test ban treaty

. Petascale Computing for Small
COmpu’Clng Number of Hero Simulations

-14 -



Science Needs Computing for Both Experiments (Data)
and Theory (Modeling and Simulation)

Commercial “Big Data”
Growth in Sequencers,

CCDs, etc.
Data Analysis Simulation

Computing foundation includes
research (math/stat and CS) and . Future Performance from
facilities (data and compute) Computing Exascale Technology

15




US DOE Exascale Computing Project (ECP)

The Project has three phases:

» Phase 1 — R&D before DOE facilities exascale systems RFP in 2019

* Phase 2 — Exascale architectures and NRE are known. Targeted development
* Phase 3 — Exascale systems delivered. Meet Mission Challenges

Application Development

tbeds & Prototypes
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Proposed DOE Exascale Science Problems

\

Carbon Capture

Light Sources Power Grid Mangfacturing



Site

Manufacturer

Computer

Country

Cores

Rmax Power

[Pfiops] | [MW]
. . Sunway TaihuLight
1 | National Supercomputing | \pepe | NRCPC Sunway SW26010, | China |10,649,600 93.0| 15.4
Center in Wuxi 260C 1.45GHz
. . . Tianhe-2
2| National Universtty of | \ypr NUDT TH-IVB-FEP, China | 3,120,000 33.9] 17.8
gy Xeon 12C 2.2GHz, IntelXeon Phi
0ak Rid Titan
aK rhiage Cray XK7,
3 National Laboratory Cray Opteron 16C 2.2GHz, Gemini, NVIDIA USA 560,640 17.6/ 8.21
K20x
. Sequoia
4 ';\;"t"lge:;el_';g’jg;‘g’e IBM BlueGene/Q, USA | 1,572,864| 17.2| 7.89
ry Power BQC 16C 1.6GHz, Custom
. K Computer
RIKEN Advanced Institute ..
5 for Computational Science Fujitsu SP?Efiﬁit\éI:lf:nZAgstHz, Japan 795,024 10.5 12.7
Mira
Argonne
6 . IBM BlueGene/Q, USA 786,432 8.59| 3.95
National Laboratory Power BQC 16C 1.6GHz, Custom
Trinity
7 L°SS':‘:1ad'?a°§|["L’ Cray Cray XC40, USA | 301,0564) 8.10| 4.23
Xeon E5 16C 2.3GHz, Aries
Swiss National Piz Daint Switzer-
8| Supercomputing Centre | Cray Cray XC30, 115,984 6.27| 2.33
Xeon E5 8C 2.6GHz, Aries, NVIDIA land
(CSCS) K20x
Hazel Hen
9 HLRS - Stuttgart Cray Cray XC40, Germany 185,088 5.64| 3.62
Xeon E5 12C 2.5GHz, Aries
10| King Abdullah University | . _ ghahigr;(')' Saudi 196.608 5.54 2.83
of Science and Technology y Xeon Es';?é 2_3GHZ’, Aries Arabia ’ ) )




« 125.4 Pflop/s theoretical peak
« SW26010 processor, 1.45 GHz

« Node = 260 Cores (1 socket)
— 4 — core groups; 32 GB memory (DDR3) = —1—
* 40,960 nodes in the system =l [

— 10,649,600 cores total
* 1.31 PB of primary memory
« 93 Pflop/s HPL, 74% peak
* 15.3 Mwatts (6 MF/Watt)

Supernode Supernode Supernode Supernode

e

Node | Node il Node Node | Node Jl Node Node | Node il Node

One piece of entire computing
strategy on applications, fabs,

1 Supernode 256 Nodes = 1 Supernode 256 Nodes = 1 Supernode 256 Nodes = 1 Supernod:

>
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Technology Trends
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Computing is energy-constrained
A*
At ~$1M per MW, energy costs are substantial
» 1 petaflop in 2008 used 3 M

* 1 exaflop in 2018 at 200 MW fusual chip scaling”

Missing Tihanhe-2 at 18MW

12
k"ega""’at.tS' = Goal: 1 Exaflop in 20 MW
1 per machine ]
10,  (Kogge/Shalf) = 20 pJ / operation
8 Note: The 20 pJ / operation is
4 « Independent of machine size
6 —— * Independent of # cores used
per application
4  But “operations” need to be
useful ones
2

92 '96 ‘00 ‘04 ‘08 ‘12 ‘16
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Multi-Core is NOT good enough! (need to
go to simpler cores)
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Communication Consumes Energy
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Latency is physics; bandwidth is money, ...
but overhead we can fix
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Algorithm Challenge:
Communication
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Analytics vs. Simulation Kernels:

7 Giants of Data 7 Dwarfs of Simulation
Basic statistics Monte Carlo methods
Generalized N-Body Particle methods
Unstructured meshes
Linear algebra Dense Linear Algebra
Optimizations 4[ Sparse Linear Algebra
Integrations Spectral methods
Alignment Structured Meshes

There are some differences between data and simulation algorithms, but
more similarities than differences. Some of the data algorithms use no

I arithmetic (genomics) or lower precision (deep learning)



Never Waste Fast Memory

Don’t get hung up on the
“owner computes” rule.
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Beyond Domain Decomposition: 2.5D Matrix
Multiply

» Conventional “2D algorithms” use P2 x P'2mesh and minimal memory
« New “2.5D algorithms” use (P/c)'? x (P/c)'?2 x ¢'2 mesh and c-fold memory

Surprises:
* Even Matrix Multiply had room for
Improvement
 |dea: make copies of C matrix (as in prior 3D
algorithm, but not as many) saling
* Result is provably optimal in communication
Lesson: Never waste fast memory

Percentage of machine peak

Can we generalize for compiler writers?

. . ]

512 1024 2048
#nodes

29



Deconstructing 2.5D Matrix Multiply

Solomonick & Demmel

<X,
"y Tk, Tiling the iteration space
« 2D algorithm: never chop k dim
.  2.50r 3D: Assume + is
) :_:_:_:_:,:_:_:,:_:Qiz associative; chop k, which is >
i y replication of C matrix
T A J

| <—
Matrix Multiplication code has a 3D iteration space
Each point in the space is a constant computation (*/+)

fori
for j
for k
C[i,j] ... Ali,k] ... B[k,j] ...

30




Lower Bound Idea on C = A*B

Iromy, Toledo, Tiskin

P Kk

X “C shadow”

«—>» L
X

“A shadow”

e_
) ) i,k) is in “A shadow” if (i,j,k) in 3D set
Cubes in black box with gjk; is in “B shadow” if ﬁ.in& in 3D set
3'0:9 |e"9tfh|:| X, '3(/ snd z (i,j) is in “C shadow” if (i,j,k) in 3D set
= Volume of black box
= x*y*z Thm (Loomis & Whitney, 1949)
= (#Aos * #Bos * #Cos )12 # cubes in 3D set = Volume of 3D set
= (X2 * zy * yx)12 < (area(A shadow) * area(B shadow) *
area(C shadow)) 12 =

31 BERKELEY LAB




Generalizing Communication Lower Bounds
and Optimal Algorithms

 For serial matmul, we know #words_moved = Q (n3/M"?2),
attained by tile sizes M2 x M1/2

 Thm (Christ,Demmel,Knight,Scanlon,Yelick):
For any program that “smells like” nested loops, accessing
arrays with subscripts that are linear functions of the loop
indices

#words _moved = Q) (#iterations/M°)
for some e we can determine

« Thm (C/D/K/S/Y): Under some assumptions, we can
determine the optimal tiles sizes

— E.g., index expressions are just subsets of indices

 Long term goal: All compilers should generate
communication optimal code from nested loops




Implications for Arithmetic

* Much of the work on compilers is based on
owner-computes

— For MM: Divide C into chunks, schedule
movement of A/B

— Data-driven domain decomposition partitions
data; but we can partition work instead
 Ways to compute C “pencil”
1. Serially
X += ... 2. Parallel reduction Standard vectorization trick
3. Parallel asynchronous (atomic) updates
4. Or any hybrid of these

v * For what types / operators does this work?
Using x for C[i,jj here — “+” is associative for 1,2 rest of RHS is “simple”
— and commutative for 3

X+= ...

X+= ...

X+= ...

33



Traditional (Naive n?) Nbody Algorithm
(using a 1D decomposition)

* Given n particles and p processors, size M
memory

 Each processor has n/p particles

« Algorithm: shift copy of particles to the left p
times, calculating all pairwise forces

« Computation cost: n?/p

« Communication cost: O(p) messages, O(n)
words




Communication Avoiding Version
(using a “1.5D” decomposition)

D/c —

grivendedpe oot tenfudrtendudg - eent ey refnf e e e

B T I P T S E P |

e e e T o e |

MMMMMMMM

Divide p into ¢ groups. Replicate particles within group.
— First row responsible for updating all by orange, second all by green,.

« Algorithm: shift copy of n/(p*c) particles to the left

— Combine with previous data before passing further level (log steps)
 Reduce across c to produce final value for each particle
 Total Computation: O(n?/p); Limit: ¢ < p'/2
 Total Communication: O(log(p/c) + log c) messages,
™ O(n*(c/p+1/c)) words




Challenge: Symmetry & Load Balance

* Force symmetry (f; = -f;) saves
computation

« 2-body force matrix vs 3-body force cube

J
0 5 10 15
or .:‘i*:
5 -

i 10T

20

15

15+ 10

20t

 How to divide work equally?

Koanantakool & Yelick




3-Way N-Body Animation

* p=5, n=30
* 6 particles per processor
* 5x5 subcubes

2 Equivalent

el triplets in the

5 big tetrahedron
. " Actual triplets

30 0 .
Koanantakool & Yelick =
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3-Way N-Body Animation

* p=5, n=30
* 6 particles per processor
* 5x5 subcubes

Equivalent
“ triplets in the
big tetrahedron
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3-Way N-Body Animation

* p=5, n=30
* 6 particles per processor
* 5x5 subcubes

- Equivalent
15 K triplets in the
big tetrahedron

W«

@«

5 Actual triplets

KoanaBontoakooI & Yelick
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3-Way N-Body Animation

* p= 5, n=30 e
* 6 particles per processor o
 5x5 subcubes

25

2 Equivalent
el triplets in the
big tetrahedron

30

25

Actual triplets

5
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3-Way N-Body Speedup

. Cray XC3O 24k cores, 24k particles

L Allreduce
Idle

L __w____l___:____:____:____|_-Shlftmg
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mm Computation
400
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Execution Time Per Timestep (sec)

100
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Replication Factor {c)

Koanantakool & Yelick




Strong Scaling of .5D Algorithns

1 = — ———— X
e | 1
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Sparse-Dense Matrix Multiply

Execution Time vs. Replication Factor
(Edison, n=65536, nonzeroes per row=655, 12288 cores)

Too!

Execution Time (sec)

Sty Co;,Cos,Coy,Coy,Coy, Coy, Coy. Co,. Co,, Co,, Co,,Co,.CorCor
Pmainard +2 e e gt asteg et bcleciscts

/
5360574
536
ocke,

Algorithm - Replication Factor (c)

CoroLneinenineingn
C NN

Gather C
Reduce C
Broadcast B
Broadcast A
Shift A
Replicate B
Replicate A
Idle
Computation

S/
69646,
78 263

« Variety of algorithms that divide in or 2 dimensions

Koanantakool & Yelick
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Have We Seen this Idea Before?

 These algorithms also maximize parallelism
beyond “domain decomposition”

— SIMD machine days

 Automation depends on associative operator
for updates (e.g., M. Wolfe)

« Also used for “synchronization avoidance” in
Particle-in-Cell code (Madduri, Su, Oliker,
Yelick)

— Replicate and reduce optimization given p copies
— Useful on vectors / GPUs

Koanantakool & Yelick
44




Avoid Latency and Implicit
Synchronization in Communication

two-sided message host
. CPU
message id data payload —
ded out network
one-sided put message interface
address data payload —
memory

« Two-sided message passing (e.g., send/receive in
MPI) requires matching a send with a receive to

identify memory address to put data

— Couples data transfer with synchronization, which is sometimes
what you want

 Using global address space decouples synchronization
— Pay for what you need!
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Avoid Synchronization from Applications

Computations as DAGs

View parallel executions as the directed acyclic graph of the
computation

Cholesky
4 x4

Slide source: Jack Dongarra
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Event Driven LU in UPC

« Assignment of work is static; schedule is dynamic

* Ordering needs to be imposed on the schedule
— Critical path operation: Panel Factorization

« General issue: dynamic scheduling in partitioned memory
— Can deadlock in memory allocation
— “memory constrained” lookahead

-
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Sparse Cholesky

- Timings on NERSC Edison, 24 Intel Ivy-bridge cores per node

_ Running times for pwtk

100j
“n
SN~—"
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=
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10~ H = coL2p (PuLL)
[| === COL2D (PUSH)
| == ROW2D (PULL)
| = MUMPS 5.0
N \x
o ¢ EP PP g

Processor count

Fan-both algorithm by Jacquelin & Ng, in UPC++ —~
rrrrrrr ""l
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OpenMP Loop Parallelism is the Wrong Level

 OpenMP is popular for its convenient loop parallelism
 Loop level parallelism is too coarse and too fine:

— Too coarse: Implicit synchronization between loops limits
parallelism and adds overhead

— Too fine: Need to create larger chunks of serial work by
combining across loops (fusion) to minimize data movement

1SOMP PARALLEL DO
DO I=2,N
B(I) = (A(I) + A(I-1)) / 2.0
ENDDO
1SOMP END PARALLEL DO




Sources of Unnecessary Synchronization

Loop Parallelism Abstraction

1$SOMP PARALLEL DO
DO I=2,N
B(I) = (A(I) + A(I-1)) / 2.0
ENDDO
1SOMP END PARALLEL DO

Bulk Sl
Synchrono

“Simple” OpenMP parallelism implicitly
synchronized between loops
LAPACK: removing barriers ~2x faster
(PLASMA)

Accelerator Offoad

!$Sacc data copyln(c1x @il ;@2 e@il3, eldl, @i, chtlE, Ll ek, @it calil), cailil &
!Sacc& cil2,cil3,cild, r,b,uxyz,cell, rho,grad, index_max, index, &
!Sacc& ciy,ciz,wet,np,streaming sbufl, &

!Saccs str eamlngisbufl,st eaming sbuf2,streaming sbuf4, streaming sbuf5, &
!Saccé streaming_sbuf7s,streaming_sbuf8s,streaming sbuf9n, streaming sbuflOs, &
!$accs streaming_sbuflln,streaming_sbufl2n,streaming_sbufl3s,streaming_sbufldn, &
!Sacc& streaming sbuf7e,streaming_sbuf8w,streaming sbuf9e,streaming sbuflle, &
!Saccé streaming_sbufllw, streaming sbufl2e, streaming sbufl3w, streaming sbufldw, &
!$accs streaming_rbufl, streaming_rbuf2, streaming_rbuf4,streaming_rbuf5, &
!$acce streaming_ rbuf7n,streaming_rbuf8n,streaming rbuf9s,streaming rbuflOn, &
() " !Saccé streaming_rbuflls, streaming_rbufl2s, streaming_rbufl3n, streaming_rbuflés, &

Auto 42 /0 1 3 /o !$accs streaming_rbuf7w,streaming_rbuf8e, streaming_rbuf9w,streaming_ rbufllw, &
!Saccé streaming rbuflle,streaming rbufl2w,streaming rbufl3e,streaming rbuflie, &
!Saccs send_e, send_w,send_n,send_s,recv_e,recv_w,recv_n,recv_s)

Guided 63% 14%

NWChem: most of barriers are unnecessary The transfer between host and GPU can be slow
e and cumbersome, and may (if not careful) get
synchronized
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