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Computing for Science
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Compu&ng	research	driven	by	need	to	answer	fundamental	
science	ques&ons	and	address	societal	challenges	

Exascale	Science	
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NERSC Supercomputing for Science and Energy
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State-of-the	art	compu&ng	for	the	broad	science	
community	–	over	7000	users,	700	applica&ons	

Exascale	Science	
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-	4	-	 Exascale	Science	

Breakthrough science conjecture


Exascale	compu&ng,	combined	with	state-of-the-art	
mathema&cal	models,	algorithms,	and	soBware	
techniques	will	enable	breakthrough	science	
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•  Vendor	explora6on	of	technology	for	novel	architectures	
•  Apps	developed	and	ported	to	higher	roadmap	
•  So@ware	to	use	the	new	architectures	
•  Integra6on	through	co-design	

Exascale Computing Project (US DOE ECP) to Impact Broad 
HPC landscape


Year	

Capability	

2017	 2021	 2022	 2023	 2024	 2025	 2026	 2027	

10X	
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Environment	

Urban	

Transporta&on	

Genomics	

Climate	

Brain	

Cancer	

Earthquakes	 Subsurface	

The Science Challenges at Exascale


Simula6on	Data	

Exascale	Science	-	6	-	

Materials	

Chemistry	

Carbon	Capture	

Accelerators	

Astrophysics	

Cosmology	
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Data Growth is Outpacing Computing Growth


0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

2010	 2011	 2012	 2013	 2014	 2015	

Detector	
Sequencer	
Processor	
Memory	

Graph	based	on	
average	growth	



UNIVERSITY OF 
CALIFORNIA 

Office of 
Science 

Using Advanced Mathematics and Computer Science to maximize the 
science capabilities at Exascale


Adaptive Mesh Refinement Scalable (Sparse) Solvers 

Materials Genomics 

Chemistry 

Accelerators Astrophysics 

Cosmology 

Subsurface 

Earthquakes Carbon Capture Nuclei  

Berkeley Lab has demonstrated unsurpassed ability to harness the power of advanced mathematics 
and computer science for high-impact science.  

Defects, interfaces and 
disorder in functional 
materials 

Gene clusters for 
biomanufacturing 

Large neutron-rich 
nuclei and nuclear 
binding 

A 1 TeV electron-
positron collider 

 Geo-mechanical 
chemical evolution 
of fracking 

 Source of heaviest 
elements 

Dark energy 
equation of state 

1MWe chemical 
looping reactor 

Regional-scale model 
to simulate structures  

Catalytic conversion 
of biomass-derived 
intermediates 



UNIVERSITY OF 
CALIFORNIA 

Office of 
Science 

Cosmology at the Exascale


Exascale	is	needed	to	model	and	interpret	the	latest	observa&ons	
Improve	understanding	of	Dark Energy, Dark Matter, Primordial Gravitational 
Waves, Neutrino Mass, and parametrics such as the Hubble Constant	

Simula'on	of	Lyman-Alpha	Forest	with	
Nyx,	used	to	es'mate	neutrino	mass	
and	as	a	standard	ruler.		

Synthe'c	galaxy	catalog	for	LSST	
generated	with	HACC	and	Galac'cus	codes	

Exascale	Science	-	9	-	 US	DOE	ECP	PI:	Salman	Habib	(ANL)	
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Cosmology observations drive simulations


• Science: Dark Energy, Dark Matter, Gravitational Waves, Neutrino Mass 
• Computation: factor of X100 increase in science reach, order of 

magnitude improvement in modeling accuracy and predictability 

US	DOE	ECP	PI:	Salman	Habib	(ANL)	

	
DES	

	
	

	
DESI	

LSST	

2016	 2017	 2018	 2019	 2020	 2021	 2022	 2023	 2024	 2025	 2026	
	

CMB-S3	 CMB-S4	
Sky	Survey	

Simula6on	Requirements	

Required	Performance	
200	Pflops																																										Exaflops			

Large-scale	N-body,	Medium	Hydro	
Ini6al	sub-grid	models	

Large-scale	N-body	&	Hydro	
Improved	sub-grid	models	

Extreme	scale	N-body,	Hydro	
Complex	sub-grid	models	

DES LSST CMB-S4 DESI 
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Former cosmology breakthrough (Nobel prize)
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More accurate way to measure
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Image:	wikipedia	
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Recent cosmology breakthrough in observation


A.Goobar,	et	al,	Science.	2017	

This	composite	image	shows	the	gravita1onally	lensed	type	Ia	supernova	iPTF16geu,	about	4	billion	light	
years	away	as	seen	with	different	telescopes.	Image	credit:	Joel	Johansson,	Stockholm	University	

		

Exascale	Science	-	13	-	
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Precision Cosmology: Simulation Frontiers
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Petascale Exascale 

• 2nd-generation 
surveys 

• Multi-probe 
simulations 

• Few precision 
probes 

• Intermediate 
accuracy 
parameter 
estimation 

• Next-generation 
surveys 

• End-to-end, multi-
probe survey-scale 
simulations 

• Multiple cross-
calibrated probes 

• UQ-enabled cosmic 
calibration 
frameworks  

• 1st-generation 
surveys 

• Singzle-probe 
simulations 

Terascale 

US	DOE	ECP	PI:	Salman	Habib	(ANL)	
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Astrophysics at the Exascale


Exascale	is	needed	to	iden&fy	the	source	of	the	heaviest	elements	
Understand	rapid	neutron	capture	process	(r-process)	by	simula6ng	scenarios:	core-
collapse	supernovae,	neutron	star	mergers,	and	accre6ng	black	holes	

Expanding	debris	from	a	supernova	
explosion	(red)	running	over	and	
shredding	a	nearby	star	(blue)	

Less	than	a	second	aLer	igni'on,	the	
flame	breaks	through	the	surface	of	an	
expanded	white	dwarf	(using	AMR)	

Exascale	Science	-	15	-	 US	DOE	ECP	PI:	Dan	Kasen	(LBNL)	
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Subsurface Science at the Exascale


Exascale	is	needed	for	impacts	of	energy	extrac&on	and	waste	
storage	on	subsurface	integrity	

Simulate	an	en6re	field	of	well	bores	and	their	interac6on	through	the	reservoir	over	
100	year	6mescales.	Simulate	the	evolu6on	of	a	fracture	system	in	caprock	subject	to	
geomechanical	and	geochemical	stresses	over	scales	from	pore	(micron)	to	100	meters	

Exascale	Science	US	DOE	ECP	PI:	Carl	Steefel	(LBNL)	
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Subsurface science requires modeling across scales


-	17	-	 Exascale	Science	
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Combining codes to deliver new science capability
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Flow	driven	chemical	erosion	of	a	fracture	in	CaMg(CO3)2	(Chombo-Crunch)	

Pore	deforma'on	resul'ng	from	change	in	
stress	loading	in	a	Lagrangian	mechanics	
treatment	(GEOS)	

Combined	model	
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Accelerator Science at the Exascale


Exascale	is	needed	to	simulate	future	accelerators	
Goal:	Model	a	chain	of	up	to	a	hundred	plasma	accelera6on	stages	in	a	few	days,	
for	the	design	of	a	1	TeV	electron-positron	high-energy	collider	

Simula'on	of	laser-plasma	accelera'on	
with	wavefronts	of	laser	light	(red	and	
blue);	the	wake	fields	are	accelera'ng	
(pale	blue)	or	decelera'ng	(orange).			
Right	shows	wake	in	“boosted”	frame	
of	reference.	

Exascale	Science	-	19	-	 US	DOE	ECP	PI:	Jean	Luc	Vay	(LBNL)	
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Cancer Analytics at the Exascale


Exascale	is	needed	to	develop	cell-specific	interven&ons	
Mapping	gene6c	suscep6bility	to	cancer	and	its	outcomes;	intracellular	molecular	signaling	in	
complex	muta6onal	backgrounds;	combine	gene6c,	genomic,	and	clinical	data	

Metasta'c	cancer	
classifica'on	and	gene'cs	
improve	treatment	[Cell	2015]	

Exascale	Science	-	20	-	

Image:	NCI	

One	third	of	all	cancers	
caused	by	muta'ons	in	RAS	
genes		

Image:	Kashatus/NCI/UVA	

Combinatorial	explosion	
with	number	of	genomic	
features	considered	

US	DOE	ECP	PI:	Rick	Stevens	(ANL)	
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Cancer Analytics at the Exascale


Exascale	Science	-	21	-	 US	DOE	ECP	PI:	Rick	Stevens	(ANL)	
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Deep-Learning at Scale on HPC systems


Iden'fied	extreme	climate	events	using	supervise	(leL)	and	semisupervised	(right)	deep	
learning.		Green	=	ground	truth,	Red	=	predic'ons	(confidence	>	0.8).	[NIPS	2017]	

Deep	Learning	at	15	PF	on	NERSC	Cori	(Cray	+	Intel	KNL)	
-  Trained	in	10s	of	minutes	on	10	terabyte	datasets,	millions	of	Images	
-  9600	nodes,	op6mized	on	KNL	with	IntelCaffe	and	MKL	(NERSC	/	Intel	collabora6on)	
-  Synch	+	Asynch	parameter	update	strategy	for	mul6-node	scaling	(NERSC	/	Stanford)	

Evan	Racah,	Christopher	Beckham,	Tegan	Maharaj,	Samira	Ebrahimi	Kahou,		Prabhat,		
Christopher	Pal,	Evan	Racah		(LBNL,	Ecole	Poly.	Montreal,	Microso@)	
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Genome Science at the Exascale


Exascale	is	needed	to	characterize	microbial	communi&es	
Metagenome	analysis	with	high	performance	assembly	and	machine	learning;	
iden6fy	gene	clusters	for	energy,	environment,	biomanufacturing	and	health	

Thermophilic	microbial	mat	in	West	Thumb	
Geyser	Basin,	Yellowstone	Na'onal	Park		

Exascale	Science	-	23	-	

Marissa	Fessenden,	LBNL	

Compact	CRISPR	systems	found	in	deep	
underground	Crystal	Geyser	bacteria	(Banfield)	

Jill	Banfield,	UCB/	LBNL	

US	DOE	ECP	PI:	Kathy	Yelick	(LBNL)	
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Environment: orders of magnitude harder than humans


-	24	-	 Exascale	Science	

De	novo	genome	assembly	
Read		mul6ple	
6mes.		Chop	
reads	into	k-mers	

Histogram	k-
mers	(eliminate	
errors)	

DFS	walk	k-mer	
graph	(stored	as	
hash	table)	

Various	graph	
opera6ons	(more	
hash	tables)	
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Multi-Node Strong Scaling


25	

●  HipMer	scales	efficiently	to	100’s	and	1000’s	of	nodes	

Human	Genome	Results	
(small	problem)	
●  Minimum	aggregate	
memory	required	

●  Scales	linearly	on	
node,	KNL	(68	cores)	

●  Requires	high	
injec6on	rate,	low	
latency	

● Would	benefit	from	
remote	hardware	
atomics	

Ellis,	Georganas,	Egan,	Hofmeyr,	Buluc,	Cook,	
Oliker,	Yelick	[Europar	‘17]	
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Exascale Science in analytics from embedded sensors


26	 Exascale	Science	

Exascale	simula&on	and	combined	analy&cs	
Infrastructure	
planning	

Scenario	analysis,	
e.g.,	emergency	
response	

Behavioral	
analysis,	human	
in	the	loop		

Policy	and	
ecnomics	

Transporta&on	 Power	grid	

Urban	systems	

Earthquakes	
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•  First-ever	whole-mantle	seismic	model	from	numerical	waveform	tomography	
•  Finding:	Most	volcanic	hotspots	are	linked	to	two	spots	on	the	boundary	
between	the	metal	core	and	rocky	mantle	1,800	miles	below	Earth's	surface.	
	

Whole-Mantle Seismic Model Using


Scot	French,	Barbara	Romanowicz,	Nature,	2015	

Makes	unsolvable	
problems	solvable!	
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Data Fusion for Observation with Simulation


•  Unaligned	data	from	observa&on	
•  One-sided	strided	updates		

Scot	French,	Y.	Zheng,	B.	Romanowicz,	K.	Yelick	
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Computer Science breakthroughs 
at the Exascale


challenges
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ITRS	now	sets	the	end	of	transistor	shrinking	to	the	year	2021	
	
	

End of Transistor Density Scaling


30	
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Source:	John	Shalf	and	Kunle	Olukotun,	Lance	Hammond,	Herb	
Suter,	and	Burton	Smith	

2020 2025 2030
Year	

Technology Scaling Trends"
The many ends of “Moore’s” Law
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Transistors	

Thread	
Performance	

Clock	Frequency	

Power	(wa\s)	

#	Cores	
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Device alternatives require lower clock à more parallelism


Today’s	CMOS	
Technology		

Tunneling FET 
advantage only at 
low clock rates
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Specialization: End Game for Moore’s Law


Google	designs	its	own	
Tensor	Processing	Unit	(TPU)	

Intel	buys	deep	learning	
startup,	Nervana	

NVIDIA	builds	deep	
learning	appliance	with	
P100	Tesla’s	
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Programming for diverse (specialized) architectures

•  Two	“unsolved”	compiler	problems:		

–  dependence	analysis	and		
–  accurate	performance	models	

•  Autotuners	are	code	generators	plus	search		

Work	by	Williams,	Oliker,	Shalf,	Madduri,	Kamil,	
Im,	Ethier,…		
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34	

Autotuning	avoids	this	problem	
Domain-Specific	Languages	help	with	this	

✔	
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Libraries vs. DSLs (domain-specific languages)


35	

0%	 10%	 20%	 30%	 40%	 50%	

Adap6ve	

Dense	LA	

Monte	Carlo	

Par6cles	

Spectral	

Sparse	LA	

Structured	 Dense	Linear	Algebra	 Atlas	

Spectral	Algorithms	 FFTW,	
Spiral	

Sparse	Linear	Algebra	 OSKI	

Structured	Grids	 TBD	

Unstructured	Grids	

Par6cle	Methods	

Monte	Carlo	

NERSC	survey:	what	mo6fs	do	they	use?	 What	code	generators	do	we	have?	

Unstructured	

Stencils	are	both	the	most	important	mo6fs	and	a	gap	in	our	tools	
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Developed	for	Image	Processing	

–  10+	FTEs	developing	Halide	
–  50+	FTEs	use	it;	>	20	kLOC		

HPGMG	(Mul&grid	on	Halide)	
•  Halide	Algorithm	by	domain	expert	

	
	
	

•  Halide	Schedule	either	
–  Auto-generated	by	autotuning	with	opentuner	
–  Or	hand	created	by	an	op6miza6on	expert	

   DSLs popular outside scientific computing

Halide	performance	
•  Autogenerated	schedule	for	CPU	
•  Hand	created	schedule	for	GPU	
•  No	change	to	the	algorithm	

	

Func Ax_n("Ax_n"), lambda("lambda"), chebyshev("chebyshev");
Var i("i"),j("j"),k("k");
Ax_n(i,j,k) =  a*alpha(i,j,k)*x_n(i,j,k) - b*h2inv*(
    beta_i(i,j,k)  *(valid(i-1,j,k)*(x_n(i,j,k) + x_n(i-1,j,k)) - 2.0f*x_n(i,j,k))
  + beta_j(i,j,k)  *(valid(i,j-1,k)*(x_n(i,j,k) + x_n(i,j-1,k)) - 2.0f*x_n(i,j,k))
  + beta_k(i,j,k)  *(valid(i,j,k-1)*(x_n(i,j,k) + x_n(i,j,k-1)) - 2.0f*x_n(i,j,k))
  + beta_i(i+1,j,k)*(valid(i+1,j,k)*(x_n(i,j,k) + x_n(i+1,j,k)) - 2.0f*x_n(i,j,k))
  + beta_j(i,j+1,k)*(valid(i,j+1,k)*(x_n(i,j,k) + x_n(i,j+1,k)) - 2.0f*x_n(i,j,k))
  + beta_k(i,j,k+1)*(valid(i,j,k+1)*(x_n(i,j,k) + x_n(i,j,k+1)) - 2.0f*x_n(i,j,k)));
lambda(i,j,k) = 1.0f / (a*alpha(i,j,k) - b*h2inv*(
    beta_i(i,j,k)  *(valid(i-1,j,k) - 2.0f)
  + beta_j(i,j,k)  *(valid(i,j-1,k) - 2.0f)
  + beta_k(i,j,k)  *(valid(i,j,k-1) - 2.0f)
  + beta_i(i+1,j,k)*(valid(i+1,j,k) - 2.0f)
  + beta_j(i,j+1,k)*(valid(i,j+1,k) - 2.0f)
  + beta_k(i,j,k+1)*(valid(i,j,k+1) - 2.0f)));
chebyshev(i,j,k) = x_n(i,j,k) + c1*(x_n(i,j,k)-x_nm1(i,j,k))+ 
                   c2*lambda(i,j,k)*(rhs(i,j,k)-Ax_n(i,j,k));
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Approach: Small Compiler for Small Language

•  Snowflake:	A	DSL	for	Science	Stencils	

–  Domain	calculus	inspired	by	Titanium,	UPC++,	and	AMR	in	general	

•  Complex	stencils:	red/black,	asymmetric		
•  Update-in-place	while	preserving	provable	parallelism	
•  Complex	boundary	condi&ons		

37	

(a) Red-Black tiling (b) 4-color tiling (c) Asymmetric stencil used
near mesh boundary

(d) 5-point Jacobi stencil

Figure 4: (a) Red-black tiling allows cross-point updates simultaneously at points of the same color, so an update operation takes
only 2 passes. (b) 4-color tilings are common when each update requires the surrounding 3-by-3 neighborhood. Like red-black
tiling, all points of the same color in a 4-color tiling can be updated simultaneously. (c) An asymmetric stencil, sometimes used
near the mesh boundary of a standard 5-point stencil (d), results in odd dependency patterns. Purple points are read from, gray
points are written to.

1 top = Component("beta_x", WeightArray([[1]])

2 bot = Component("beta_x", WeightArray([[0], [1], [0]])

3 left = Component("beta_y", WeightArray([[1]]))

4 right = Component("beta_y", WeightArray([[0, 0, 1]])

5 Ax = Component("mesh", WeightArray([[0,top,0], [left, left+top+bot+right, bot], [0, bot, 0]]))

6 b = Component("rhs", WeightArray([[1]]))

7 difference = b - Ax

8 original = Component("mesh", WeightArray([[1]])

9 lambda_term = Component("lambda", WeightArray([[1]]))

10 final = original + lambda_term * difference

11 red = RectDomain((1,1), (-1,-1), (2,2)) + RectDomain(((2, 2), (-1, -1), (2, 2))

12 black = RectDomain((1,1), (-1,-1), (2,2)) + RectDomain(((2,2), (-1,-1), (2,2))

13 red_stencil = Stencil(final, "mesh", red)

14 black_stencil = Stencil(final, "mesh", black)

15 # Dirichlet zero boundary: 1 of 4 stencils shown...

16 top_boundary = Stencil("mesh", Component("mesh", WeightArray([[ 0],[ 0],[-1]])),

17 RectangularDomain((1, -1), (-1, -1), (1, 0)))

18 # ...others are rotationally equivalent

Figure 5: This complex-smoothing operation a strided colored (red-black) stencil with Dirichlet boundaries and variable coeffi-
cients.

l (lines 8–10).
Having defined the operation, we define the red and black

domains; each is defined as the union (+) of two domains
offset from each other and strided by 2 in each dimension
(lines 11–12). We can now define the main red-black stencil
by associating the operation, its output, and its domain (lines
13–14).

The last step is generating the boundary for a uniform linear
Dirichlet condition in 2 dimensions. This requires four stencils
(top, bottom, left, and right boundaries); for each one, the cell
immediately outside the boundary should be set to the negative
of the value inside the boundary, to make the boundary cell be
zero. Lines 16–17 show how to set up the stencil for the top
boundary; the others are rotationally equivalent.

Finally, the red and black stencils (lines 13–14) and the
boundary stencils (lines 16–17, plus three rotationally equiva-

lent boundary stencils omitted for brevity) can be combined
into a StencilGroup, which allows analysis to identify paral-
lelism across all these stencils as well as within each one. The
next section describes how the analysis is done.

3. Analysis
One major goal of the Snowflake DSL was to make analysis
of stencils easier in order to ensure correctness and ease the
burden on the optimization process. Given the highly regular
access patterns of stencils and stencil groups, the inherent
parallelism is statically determinable in many nontrivial cases
[10]. These dependencies reduce to a system of Diophantine
equations that determine whether or not a stencil interferes
with itself and other stencils. Diophantine equations are equa-
tions where integer solutions are sought. For example, the
equation x2 + y2 = 1 has an infinite number of general solu-

4
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•  Performance	on	the	HPGMG	applica&on	benchmark	using	all	
the	features	of	Snowflake	

•  Compe&&ve	with	hand-op&mized	performance		
•  Within	2x	of	op&mal	roofline		

Snowflake Performance


38	

Figure 9: Due to overhead from spawning extra parallel re-
gions and Python-to-C calls, Snowflake performs poorly when
running small sizes across multiple threads, but improves con-
siderably in comparison when the problem size increases.

Threading. While GPU experiments were conducted on an
NVIDIA K20c GPU. The former has a STREAM Triad band-
width of about 22.2GB/s while the GPU has an Empirical
Roofline Toolkit bandwidth of about 127GB/s. For compar-
ison purposes, we compare snowflake performance to the
2nd order, hand-optimized OpenMP HPGMG and HPGMG-
CUDA modified to run 10 V-Cycles instead of 1 F-Cycle.
Moreover, we compare to a Roofline-inspired DRAM band-
width bound. Snowflake was compiled with GCC version 4.9
with -std=c99 -03 -fgcse and -fPIC flag for linking. The
OpenCL backend additionally used -lOpenCL with OpenCL
version 1.2. HPGMG was compiled with ICC 14.0 with -03

-openmp

We evaluate the performance on 3 stencils, the canonical
7-point, constant coefficient Laplacian, a Jacobi smoother
(xn+1 = xn+ 2

3 D�1( f �Lxn) where L is the 7-point constant co-
efficient Laplacian, and a Gauss-Seidel, Red-Black smoother
using a variable-coefficient, 7-point Laplacian. The data move-
ments associated with these stencils are on average 24, 40, and
64 bytes per stencil respectively. Finally, we evaluate perfor-
mance on the full geometric multigrid solver, which includes
smoother, residual, interpolation, restriction, and boundary
condition stencils. For the GMG solver, we use a 2nd order,
variable coefficient, GSRB smoother (4 pre-smooths plus 4
post-smooths) with a fixed 10 v-cycles.

Multigrid solvers, and applications in general must com-
pose a number of stencils together. It is imperative any sys-
tem deliver performance for a variety of stencil computations.
Figure 10 presents Snowflake performance with either the
OpenMP or OpenCL backends for three different stencils/s-
moothers on a fixed 2563 problem. We include performance
comparisons to the equivalent operations in HPGMG and
HPGMG-CUDA as well as to a Roofline-inspired DRAM
performance bound. Unfortunately, NVIDIA does not pro-
vide a bare 7-point constant coefficient Laplacian stencil, but

only includes it in the context of a smoother. As we can see
Snowflake/OpenMP performance does very well, delivering
performance close to HPGMG/Roofline. Conversely, it is clear
the additional low-level optimizations found in NVIDIA’s
HPGMG-CUDA are necessary as Snowflake’s OpenCL back-
end underperforms. Note, it is unclear whether GPU caches
are write-allocate. As such, GPU Roofline estimates for the
Laplacian and Jacobi may underestimate performance poten-
tial. Nevertheless, it is clear Snowflake was able to deliver
performance portability within a factor of 2 across CPUs and
GPUs from a single-source Python description.
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Figure 10: Snowflake performance with OpenMP and OpenCL
compared to HPGMG, HPGMG-CUDA, and the DRAM-based
Roofline performance bound for a fixed 2563 problem size.
Note, NVIDIA does not provide a constant coefficient ApplyOp
in their HPGMG implementation. Snowflake productively de-
livers performance across architecture and operators.

In order to realize a high-performance multigrid solver —
O(N) solve time in the number of variables N — one must
deliver constant performance across a range of exponentially
varying problem sizes. Figure 11 shows performance for the
variable-coefficient GSRB smoother across the range of prob-
lem sizes found in a multigrid solver. Observe that runtime
decreases with problem size as bound by Roofline. Moreover,
Snowflake OpenMP and OpenCL performance track the hand-
optimized HPGMG and HPGMG-CUDA performances. Note,
the smallest 323 problem likely fits in CPU caches and can
thus receive a super linear benefit.

5.4. Design of the OpenMP Backend

The OpenMP backend makes heavy use of the dependency
analysis in prior sections in order to establish barrier points
in the generated OpenMP code. Since this paper describes

7
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Data Movement is Expensive
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CPU	cycle	&me	vs	memory	access	&me	

Source:		htp://csapp.cs.cmu.edu/2e/figures.html,	htp://csapp.cs.cmu.edu/3e/figures.html	
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Data Movement is Expensive


41	Image:	htp://slideplayer.com/slide/7541288/	

120 pJ

2000 pJ

250 pJ

~2500 pJ

100 pJ

6 pJ

Cost	to	move	data	off	chip		
			to	a	neighboring	node	

Cost	to	move	data	off	chip		
			into	DRAM	

Cost	to	move	off-chip,		
			but	stay	within	the	package	(SMP)	

Cost	to	move	data	20	mm	on	chip	

Typical	cost	of	a	single	floa6ng	point	opera6on	

Cost	to	move	data	1	mm	on-chip	

Hierarchical	energy	costs.	
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Beyond Domain Decomposition"
2.5D Matrix Multiply on BG/P, 16K nodes / 64K cores
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Matrix multiplication on 16,384 nodes of BG/P

95% reduction in comm computation
idle

communication

c	=	16	copies	

EuroPar’11	(Solomonik,	Demmel)	
SC’11	paper	(Solomonik,	Bhatele,	Demmel)	

	
Surprises:		
•  Even	Matrix	Mul6ply	had	room	for	improvement	
•  Idea:	make	copies	of	C	matrix		(as	in	prior	3D	
algorithm,	but	not	as	many)	

•  Result	is	provably	op6mal	in	communica6on	
	
Lesson:	Never	waste	fast	memory	
			And	don’t	get	hung	up	on	the	owner	computes	rule	
	
Can	we	generalize	for	compiler	writers?	
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Deconstructing 2.5D Matrix Multiply 
Solomonick & Demmel 

x 

z 

z 

y 

x 
y •  Tiling the iteration space 

•  2D algorithm: never chop k dim 
•  2.5 or 3D: Assume + is 

associative; chop k, which is à 
replication of C matrix 

k 

j 

i Matrix Multiplication code has a 3D iteration space 
Each point in the space is a constant computation (*/+) 
 

for i 
   for j 
      for k 

B[k,j]  … A[i,k] …  C[i,j] … 
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Using .5D ideas on N-body

•  n	par&cles,	k-way	interac&on.	

– Molecules,	stars	in	galaxies,	etc.	
•  Most	common:	2-way	N-body	

•  Best	algorithm	is	to	divide	n	par&cles	into	p	groups??	

	

for t timesteps 
    forall i1, …, ik 

     force[i1] += interact(particle[i1], …, particle[ik]) 
    forall i 
        move(particle[i], force[i]) 

.......................................................................................	

O(nk).	

No!	
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Communication Avoiding 2-way N-body "
(using a “1.5D” decomposition)


•  Divide	p	into	c	groups		
•  Replicate	par&cles	across	groups	
•  Repeat:	shiB	copy	of	n/(p*c)	par&cles	to	the	leB	within	a	group	
•  Reduce	across	c	to	produce	final	value	for	each	par&cle	
Total	Communica6on:	O(log(p/c)	+	log	c)	messages,		
																																											O(n*(c/p+1/c))	words	
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c	

p/c	

Driscoll,	Georganas,	Koanantakool,	Solomonik,	Yelick	
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Less Communication..

Cray	XE6;	n=24K	par&cles,	p=6K	cores	

46	

D
ow

n is good 

96% reduction in 
shift time (red) 
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Strong Scaling


Koantakool	&	Yelick	 47	

4.4x 

U
p is good 
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Challenge: Symmetry & Load Balance


•  Force	symmetry	(fij = -fji) saves	computa&on	
•  2-body	force	matrix	vs	3-body	force	cube	

•  How	to	divide	work	equally?	

6x save 
of O(n3)! 2x save 

of O(n2) 

Koanantakool	&	Yelick	
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Communication-Avoiding 3-body


•  p=5	(in	colors)	
•  6	par&cles	per	processor	
•  5x5	subcubes	

Actual	triplets	

Equivalent	triplets	in	
the	big	tetrahedron	

49	[Koanantakool	and	Yelick	

Communica&on	op&mal.	
Replica&on	by	c	decreases		
#messages	by		c3	and	
#words	by	c2	
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3-Way N-Body Speedup

D

ow
n is good 

•  Cray	XC30,	24k	cores,	24k	par&cles	

22.1x	

Koanantakool & Yelick 
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Perfect Strong Scaling

U

p is good 

42x 

51	

BlueGene/Q	16k	par6cles,	Strong	Scaling	

Koanantakool & Yelick 
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Sparse-Dense Matrix Multiply Too!


•  Variety	of	algorithms	that	divide	in	or	2	dimensions	

52	
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Koanantakool et al 
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100x Improvement


•  A66k	x	172k,	B172k	x	66k,	0.0038%	nnz,	Cray	XC30	

53	

100x	

U
p is good 

Koanantakool & Yelick 
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Dense	
Matrix	
Vector	
(BLAS2)	

Sparse	-	
Sparse	
Matrix	
Product	

(SpGEMM)	

Sparse	Matrix	
Times	

Mul6ple	
Dense	Vectors	

(SpMM)	

Sparse	
Matrix-
Dense	
Vector	
(SpMV)	

Sparse	
Matrix-
Sparse	
Vector	

(SpMSpV)	

Increasing	arithme6c	intensity	

Graphical	
Model	

Structure	
Learning	(e.g.,	
CONCORD)	

Clustering	
(e.g.,	MCL,	
Spectral	

Clustering)	

Logis6c	
Regression,	
Support	
Vector	

Machines	

Dimensionality	
Reduc6on	(e.g.,	
NMF,	CX/CUR,	

PCA)	

Linear Algebra is important to Machine Learning too!


Deep	Learning	
(Convolu6onal	
Neural	Nets)	

Sparse	-	
Dense	
Matrix	
Product	
(SpDM3)	

Dense	
Matrix	
Matrix	
(BLAS3)	

Aydin	Buluc,	Sang	Oh,	John	Gilbert,	Kathy	Yelick	
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•  Exascale	compu&ng	will	deliver	science	breakthroughs	
–  In	simula6on	and	data	analy6cs	
–  But	requires	advances	in	models,	algorithms	and	soBware	

•  Exascale	will	impact	a	broad	set	of	applica&ons	
–  Science,	health,	manufacturing,	environment,	infrastructure	

•  There	are	s&ll	many	computer	science	challenges	
–  Architectures,	code	genera6on,	algorithms,	integra6on	

Summary


55	Exascale	Science						
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Moore:	The	Law	that	taught	performance	programmers	to	relax		

The end of relaxed programming
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