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Computing for Science

Computing research driven by need to answer fundamental
science questions and address societal challenges
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NERSC Supercomputing for Science and Energy
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State-of-the art computing for the broad science
community — over 7000 users, 700 applications
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Exascale computing, combined with state-of-the-art
mathematical models, algorithms, and software
techniques will enable breakthrough science



Exascale Computing Project (US DOE ECP) to Impact Broad

HPC landscape

* Vendor exploration of technology for novel architectures
* Apps developed and ported to higher roadmap

* Software to use the new architectures

* Integration through co-design

Capability

Year 2017 2021 2022 2023 2024 2025 2026 2027
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The Science Challenges at Exascale
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Data Growth is Outpacing Computing Growth
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Using Advanced Mathematics and Computer Science to maximize the
science capabilities at Exascale

Adaptive Mesh Refinement Scalable (Sparse) Solvers
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Accelerators{ 't Subgtirfacessss ophysi ~ Genomics ~ g ‘Materials
A 1TeV electron- Geo-mechanical Source of heaviest Gene clusters for Defects, interfaces and
positron collider chemical evolution elements biomanufacturing  disorder in functional
of fracking materials
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Carbon Capture f we "Cosmology -

TMWe chemical Regional-scale model Dark energy Catalytic conversion  Large neutron-rich
looping reactor to simulate structures equation of state of biomass-derived nuclei and nuclear
intermediates binding

Berkeley Lab has demonstrated unsurpassed ability to harness the power of advanced mathematics
and computer science for high-impact science.
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Cosmology at the Exascale

Simulation of Lyman-Alpha Forest with
Nyx, used to estimate neutrino mass
and as a standard ruler.

Synthetic galaxy catalog for LSST
generated with HACC and Galacticus codes

Improve understanding of Dark Energy, Dark Matter, Primordial Gravitational
Waves, Neutrino Mass, and parametrics such as the Hubble Constant
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Cosmology observations drive simulations

» Science: Dark Energy, Dark Matter, Gravitational Waves, Neutrino Mass

« Computation: factor of X100 increase in science reach, order of
magnitude improvement in modeling accuracy and predictability
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Simulation Requirements

Large-scale N-body, Medium Hydro Large-scale N-body & Hydro Extreme scale N-body, Hydro
Initial sub-grid models Improved sub-grid models  Complex sub-grid models

Required Performance

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
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Former cosmology breakthrough (Nobel prlze)
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Image: wikipedia
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Precision Cosmology: Simulation Frontiers
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Fidelity/Complexity

Petascale Exascale
® Next-generation
surveys
® 2nd-generation ® End-to-end, multi-
surveys probe survey-scale
Terascale ® Multi-probe simulations
simulations ® Multiple cross-
® Few precision calibrated probes
probes ® UQ-enabled cosmic
® 1st-generation ® Intermediate calibration
surveys accuracy frameworks
® Singzle-probe E:tri?nn:iger:

simulations
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Astrophysics at the Exascale

Less than a second after ignition, the Expanding debris from a supernova
flame breaks through the surface of an explosion (red) running over and
expanded white dwarf (using AMR) shredding a nearby star (blue)

Exascale is needed to identify the source of the heaviest elements

Understand rapid neutron capture process (r-process) by simulating scenarios: core-
collapse supernovae, neutron star mergers, and accreting black holes
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Subsurface Science at the Exascale

Geothermal Energy Hydrocarbon Resources
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Develop enhanced geothermal systems
to tap into vast resource potential

Improve efficiency and minimize
3’. environmental impact of gas and oil
production

#H
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Develop alternative solutions for
geologic disposal of radioactive waste
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Exascale is needed for impacts of energy extraction and waste
storage on subsurface integrity

Simulate an entire field of well bores and their interaction through the reservoir over
100 year timescales. Simulate the evolution of a fracture system in caprock subject to
geomechanical and geochemical stresses over scales from pore (micron) to 100 meters

J.S- DEPARTMEN OF Office of US DOE ECP PI: Carl Steefel (LBNL) Exascale Science
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Subsurface science requires modeling across scales

temporal scale

A ——_—
1 year
1 day
/
1 min
1) Scales covered
by different
models
- Y
100nm 1Tmm 1cm 1m 10 km
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Combining codes to deliver new science capability

Pore deformation resulting from change in
. stress loading in a Lagrangian mechanics

' treatment (GEOS)

Combined model
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Accelerator Science at the Exascale
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Simulation of laser-plasma acceleration

with wavefronts of laser light (red and
blue); the wake fields are accelerating
(pale blue) or decelerating (orange).

Right shows wake in “boosted” frame
of reference.

Goal: Model a chain of up to a hundred plasma acceleration stages in a few days,
for the design of a 1 TeV electron-positron high-energy collider

U.S. DEPARTMENT OF
rrrrrrrrrr Office of

= 5 -19- . Exascale Science
B;m\ylm %,'j ENERGY Seience US DOE ECP PI: Jean Luc Vay (LBNL)




Cancer Analytics at the Exascale
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Metastatic cancer
classification and genetics
improve treatment [Cell 2015]

One third of all cancers Combinatorial explosion
caused by mutations in RAS with number Pf genomic
genes features considered

Mapping genetic susceptibility to cancer and its outcomes; intracellular molecular signaling in
complex mutational backgrounds; combine genetic, genomic, and clinical data
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Cancer Analytics at the Exascale

——— Unsupervised learning
coupled with multi-scale
molecular simulations

Semi-supervised RAS
learning, scalable data ' Pathway

analysis and agent
based simulations on

population scale data

G

Supervised learning
augmented by stochastic
pathway modeling and
experimental design

-
Scope of CANDLE

Deep Learning

Treatment
Strategy

Drug
Response

U.S. DEPARTMENT OF Ofﬁce of
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Deep-Learning at Scale on HPC systems

Identified extreme climate events using supervise (left) and semisupervised (right) deep
learning. Green = ground truth, Red = predictions (confidence > 0.8). [NIPS 2017]

Deep Learning at 15 PF on NERSC Cori (Cray + Intel KNL)

- Trained in 10s of minutes on 10 terabyte datasets, millions of Images
- 9600 nodes, optimized on KNL with IntelCaffe and MKL (NERSC / Intel collaboration)

- Synch + Asynch parameter update strategy for multi-node scaling (NERSC / Stanford)

U.S. DEPARTMENT OF Office of Evan Racah, Christopher Beckham, Tegan Maharaj, Samira Ebrahimi Kahou, Prabhat,

é ' EN ERGY Science Christopher Pal, Evan Racah (LBNL, Ecole Poly. Montreal, Microsoft)
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Genome Science at the Exascale
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Thermophilic microbial mat in West Thumb  Compact CRISPR systems found in deep
Geyser Basin, Yellowstone National Park underground Crystal Geyser bacteria (Banfield)

Exascale is needed to characterize microbial communities

Metagenome analysis with high performance assembly and machine learning;
identify gene clusters for energy, environment, biomanufacturing and health

U.S. DEPARTMENT OF Ofﬁce of
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Environment: orders of magnitude harder than humans

All metagenomes Qe —
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Gbp sequenced scaffolds I—— v ;v S N

De novo genome assembly

Read multiple Histogram k- DFS walk k-mer Various graph
times. Chop mers (eliminate graph (stored as operations (more
reads into k-mers errors) hash table) hash tables)
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Multi-Node Strong Scaling

® HipMer scales efficiently to 100’s and 1000’s of nodes

Human Genome Results
(small problem)
® Minimum aggregate
memory required
® Scales linearly on
node, KNL (68 cores)
® Requires high
injection rate, low
latency
e Would benefit from
remote hardware
atomics

Total Runtime (Seconds)
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©Cray XC40 - Aries
&Cray XC30 - Aries |
Cray XK7 - Gemini

32

64 128 256 512
# Nodes

U.S. DEPARTMENT OF Ofﬁce of

Ellis, Georganas, Egan, Hofmeyr, Buluc, Cook,
Oliker, Yelick [Europar ‘17]
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Exascale Science in analytics from embedded sensors
Iransportgtion‘ N\ e ‘l

.,;"'M“
3l =t Earthquakes
Exascale simulation and combined analytics
Infrastructure Scenario analysis, Behavioral Policy and
planning e.g., emergency analysis, human ecnomics

response in the loop

U.S. DEPARTMENT OF . .
Office of Exascale Science
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Whole-Mantle Seismic Model Using

* First-ever whole-mantle seismic model from numerical waveform tomography
* Finding: Most volcanic hotspots are linked to two spots on the boundary
between the metal core and rocky mantle 1,800 miles below Earth's surface.

SEMUCB-WM1 at 2800 km depth Makes unsolvable
T problems solvable!

+2.0%

Min: -3.4 %
Max: +3.9 %

@® “Primary” plumes () Somewhat resolved
@ Clearly resolved © Not associated with any hotspot

U.S. DEPARTMENT OF Ofﬁce of

¥ ENERGY Science Scott French, Barbara Romanowicz, Nature, 2015



Data Fusion for Observation with Simulation

100F —

Strong Scaling (NERSC Edison)

B

m—a 1le5x1.1e5(45GB) |
B8 2.2e5 x 2.2e5 (180 GB)
B—8 8.2e5 x 8.2e5 (2.5 TB)

20f

Relative Parallel Efficiency (%)

48 192 768 3072 12288
Cores

* Unaligned data from observation
* One-sided strided updates

Scott French, Y. Zheng, B. Romanowicz, K. Yelick

U.S. DEPARTMENT OF Ofﬁce of
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challenges

Computer Science W

at the Exascale




End of Transistor Density Scaling

ITRS now sets the end of transistor shrinking to the year 2021
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Technology Scaling Trends
The many ends of “Moore’s” Law

Performance

()
g . ‘
S 107} L Clock Frequency.
\ .
B 10" ¢
Tt . A ] Power (watts) _
(a8 ; - 2 # Cores
101 | s
|
10 ¢

1975 1980 1985 1990 1995 3000 2005 2010 2015 2020 2025 2030
ear

U.S. DEPARTMENT OF Office of Source: John Shalf and Kunle Olukotun, Lance Hammond, Herb
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Device alternatives require lower clock - more parallelism

Today’s CMOS
Technology

A
OD J
= Bulk Si MOSFET/
LIJ /
a4
4 I
|
|
|

Tunneling FET
advantage only at
low clock rates

)

Performance
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Specialization: End Game for Moore’s Law
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NVIDIA builds deep
learning appliance with _ s
P100 Tesla’s AL |

10 TAARAANAAS.
~y K °c
- -

Intel buys deep learning
startup, Nervana

B DALLAS A
DS1225Y
#* NONVOLATILE SRAM 8838D1

Google designs its own
Tensor Processing Unit (TPU)

U.S. DEPARTMENT OF Ofﬁce of
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Programming for diverse (specialized) architectures

* Two “unsolved” compiler problems:
— dependence analysis and Domain-Specific Languages help with this
v accurate performance models  Autotuning avoids this problem

* Autotuners are code generators plus search

Xeon X5550 (Nehalem) NVIDIA C2050 (Ferml)
1024 1024+ -
512 512 "
@n -
256 singlefp ecision peak| 256 DM
{128 //dolible-precision peak %_1 28 .RTM'wave ean:
o 64 Dpad,ﬁyneemm O 64 O
G— RTM/wave eqn: = 27pt Stencil
O 32 | O 32
| 27pt Stencil [7pt Stencil
16 7pt itir:‘cn/D & 16 /*\: -GTCIpu Chi
/@ GTClpushi somv’ |/
8 SPMV.L ‘ 8 Ill .,”
4 ’;/ , GTClchargei 4 i\_ ,/ lehardei
2 ‘\_Q"/ 2 —
Vg g g My Y, 1 2 4 8 16 32 Vg g g My Yy 1 2 4 8 16 32

Algorithmic intensity: Flops/Word Algorithmic intensity: Flops/Word

*%, U.S- DEPARTMENT OF Office of Work by Williams, Oliker, Shalf, Madduri, Kamil,

B;ELE\VILM & N ERGY Science Im, Ethier,...



Libraries vs. DSLs (domain-specific languages)

NERSC survey: what motifs do they use? What code generators do we have?
Structured
ructare ' | | Dense Linear Algebra Atlas
Sparse LA . . | Spectral Algorithms FFTW,
Spiral
Spectral | | .
Sparse Linear Algebra OSKiI
Particles | :
[ Structured Grids TBD ]
Monte Carlo L Unstructured Grids
Dense LA | | Particle Methods
Adaptive — Monte Carlo
Unstructured

0% 10% 20% 30% 40% 50%

Stencils are both the most important motifs and a gap in our tools

U.S. DEPARTMENT OF Ofﬁce of

i {HENERGY Sternes
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DSLs popular outside scientific computing
Developed for Image Processing Halide performance

.  Autogenerated schedule for CPU
A KA E

g+
s I * Hand created schedule for GPU
obe : N *  No change to the algorithm
— 10+ FTEs developing Halide

— 50+ FTEs use it; > 20 kLOC

HPGMG (Multigrid on Halide) 18
* Halide Algorithm by domain expert YT 113
1.4 213
012 | 413
€ — A
= 2
2 | 1673
So8 || 1
g i W 3213
. Hallde Schedule elther 06 [ eas
— Auto-generated by autotuning with opentuner ] W128%3
W 25613

— Or hand created by an optimization expert

Original Halide CPU Halide GPU

U.S. DEPARTMENT OF Oﬁ-‘lce Of
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Approach: Small Compiler for Small Language

* Snowflake: A DSL for Science Stencils
— Domain calculus inspired by Titanium, UPC++, and AMR in general

(a) Red-Black tiling (b) 4-color tiling (c) Asymmetric stencil used (d) 5-point Jacobi stencil
near mesh boundary

* Complex stencils: red/black, asymmetric
* Update-in-place while preserving provable parallelism
 Complex boundary conditions

.f'f’ U.S. DEPARTMENT OF Oﬁ-’ice Of

NERGY Science



Snowflake Performance

X Runtimes for (2°9)"3 6.0 Performance for 256”3
10 1 T
— HPGMG OHPGMG
—  Snowflake 5.0 +|HSnowflake ©
—  Optimal <¢Roofline Bound
240
S
B % 3.0 <
S 10 %
’ & 2.0 O
1.0 =
0.0
. CC7pt CC VC CC7pt CC VC
105 o1 3 >3 Stencil Jacobi GSRB Stencil Jacobi GSRB
Num Threads Core i7-4765T K20c GPU
* Performance on the HPGMG application benchmark using all

BERKELEY LAB

the features of Snowflake
Competitive with hand-optimized performance
Within 2x of optimal roofline

oY EnEm ey Ofice of Nathan Zhang, C. Markley, S. Williams, A. Fox
%%,f ENERGY Science 2 v
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Algorithms for the Hardware




Data Movement is Expensive
CPU cycle time vs memory access time

100,000,000 -
Disk
10,000,000
1,000,000
SSD
100,000 [y
10,000
1,000
g 100 DRAM
(<)) 10
§ 1 SRAM
- \-—.\.‘ CPU
0 —
0 I I I I I I I I

1980 1985 1990 1995 2000 2003 2005 2010 2015
Year

Source: http://csapp.cs.cmu.edu/2e/figures.html, http://csapp.cs.cmu.edu/3e/figures.html

U.S. DEPARTMENT OF Ofﬁce of
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Data Movement is Expensive
Hierarchical energy costs.

6 pJ
P Cost to move data 1 mm on-chip

m Typical cost of a single floating point operation

m Cost to move data 20 mm on chip

250 pJ Cost to move off-chip,

but stay within the package (SMP)
2000 pJ C(?st to move data off chip
into DRAM
~2500 pJ Cost to move dfata off chip
to a neighboring node

rrr: llllll / r"P U - DEPARTMENT OF Ofﬂce Of Ima e: htt Sllde Ia er.com Sllde 7541288
asammu N NERGY Science & p:// play /slide/ /



Beyond Domain Decomposition

2.50D Matrix Multiply on BG/P, 16K nodes / 64K cores

Surprises:

 Even Matrix Multiply had room for improvement

e |dea: make copies of C matrix (as in prior 3D
algorithm, but not as many)

e Result is provably optimal in communication

Can we generalize for compiler writers?

=%, U.S.DEPARTMENTOF ()ffice of EuroPar’11 (Solomonik, Demmel)

' ' ENERGY Science SC’11 paper (Solomonik, Bhatele, Demmel)



Deconstructing 2.5D Matrix Multiply

Solomonick & Demmel

«X
"y

1z

Tiling the iteration space

2D algorithm: never chop k dim
2.5 or 3D: Assume + is
associative; chop k, which is 2>
replication of C matrix

e_
| Matrix Multiplication code has a 3D iteration space
Each point in the space is a constant computation (*/+)

fori
for j

for k
Cli,jl1 ... A[i,K] ...

f'f’ U.S. DEPARTMENT OF Oﬁ-‘ice Of

NERGY Science

B[k,j] ...




Using .5D ideas on N-body

* n particles, k-way interaction.
— Molecules, stars in galaxies, etc.

* Most common: 2-way N-body

for t timesteps

forall i, ..., i,
forcel[i,] += interact(particlel[i,], ..., particle[i.])

forall i \

move(particle]i], forceli]) O(nk).

* Best algorithm is to divide n particles into p groups??
reatatecensaeyees aathcechace TRRCCO R ST SR PO RRL COT O R CYL TR COIY PERETE) IER XY Nol

Py Us-D Office of

& .S. DEPARTMENT OF
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Communication Avoiding 2-way N-body

using a “1.5D” decomposition

Divide p into c groups

l

* Replicate particles across groups

* Repeat: shift copy of n/(p*c) particles to the left within a group
* Reduce across c to produce final value for each particle

Total Communication: O(log(p/c) + log c) messages,
O(n*(c/p+1/c)) words

%% U.S. DE

: Office of
D Il, K kool, Sol ik, Yelick
%%' i ENERGY Science riscoll, Georganas, Koanantakool, Solomoni elic



Less Communication..

Cray XE6; n=24K particles, p=6K cores

Execution Time vs. Replication Factor

shift time (red)

0.01
0.005 I I
0
c=1 =2 c=4 =8 =16 c=32
Replication Factor

S 0.045 , . , — ,

L2 0.04 mm Communication (Reduce) i

Q sl | == Communication (Shift)

% 0.035 m= Computation - -
£ 003 o)
~ S
E 0.025 S
o 0.02 s et
E 0.015 96% reduction in @
c o
O o
£ Q.
O

)

x

n

U.S. DEPARTMENT OF Ofﬁce Of
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Strong Scaling

Relative Efficiency vs. One Core

BERKELEY LAB
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Parallel Efficiency on BlueGene/P (n=262,144)

U.S. DEPARTMENT OF Ofﬁce of

Y. EN ERGY Science
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r4.4x

8192 16384 32768

Machine size (# cores)
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Challenge: Symmetry & Load Balance

* Force symmetry (f; = -f;;) saves computation
e 2-body force matrix vs 3-body force cube

i
0 5 10 15 20

oT .‘!‘i!
5T 20
i 10 B 15

k

15 10
5

| 2X save
“T of O(n?)

* How to divide work equally?

Py Us-D Office of

7 2 .S. DEPARTMENT OF
%%f ENERGY Science Koanantakool & Yelick



Communication-Avoiding 3-body

* p=5 (in colors)
* 6 particles per processor

15 Kk

e 5x5 subcubes

Equivalent triplets in
the big tetrahedron

Communication optimal.
Replication by c decreases
20 #messages by c2and

j #words by c2

30 0 Actual triplets

15

U.S. DEPARTMENT OF Office of [Koanantakool and Yelick 49
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Down is good
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Perfect Strong Scaling

BlueGene/Q 16k particles, Strong Scaling

| | |
‘ A

o
©

o
o

o
N

Relative Efficiency vs. One Core

&
\V)

O | | |
1024 2048 4096 8192 16384

Machine size (# cores)

ENERCY Jficeof Koanantakool & Yelick

{2/ENERGY science
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Sparse-Dense Matrix Multiply Too!

Execution Time vs. Replication Factor
(Edison, n=65536, nonzeroes per row=655, 12288 cores)

Gather C
Reduce C
Broadcast B
Broadcast A
Shift A
Replicate B
Replicate A
Idle
Computation
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Algorithm - Replication Factor (c)

* Variety of algorithms that divide in or 2 dimensions
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100x Improvement

o AB66kx172k B172kx66k (0 0038% nnz, Cray XC30

400 I I I
—+— 1.5D Col A
350 | * —t—1 5D Inner ABC al
1.5D Col ABC
- —+— 2.5D SUMMA ABC /\

250

Mflops per core
N
o
o

150
100 -
50
H v
0 - —_—
384 768 1536 3072 6144

Machine size (# cores)

U.S. DEPARTMI:NT CF (]n‘i‘:e ':f

’\”..1 2 ENERGY' Science



Linear Algebra is important to Machine Learning too!
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e Exascale computing will deliver science breakthroughs
— In simulation and data analytics

— But requires advances in models, algorithms and software

e Exascale will impact a broad set of applications

— Science, health, manufacturing, environment, infrastructure

* There are still many computer science challenges
— Architectures, code generation, algorithms, integration
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The end of relaxed programming

THE CHAIR THAT'S TEACHING AMENICA HOW TO

RELAX
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