

National Academies Study

Kathy Yelick (Chair)

John Bell

Bill Carlson

Fred Chong

Dona Crawford

Jack Dongarra

Mark Dean

Ian Foster

Charlie McMillan

Dan Meiron

Daniel Reed

Karen Willcox

NATIONAL Charting a Path in a Shifting Technical and Geopolitical Landscape Post-Exascale Computing for the **National Nuclear Security Administration** Consensus Study Report

(report at <u>www.cstb.org</u>)

DOE ASCR Report

Jack Dongarra (Chair)

Ewa Deelman (Vice Chair)

Tony Hey

Satoshi Matsuoka

Vivek Sarkar

Greg Bell

Ian Foster

David Keyes

Dieter Kranzlmeuller

Bob Lucas

Lynne Parker

John Shalf

Dan Satanzione

Rick Stevens

Katherine Yelick

(report at www.osti.gov/)

Can the United States Maintain Its Leadership in High-Performance Computing?

A report from the ASCAC Subcommittee on American Competitiveness and Innovation to the ASCR office

Jack Dongarra, University of Tennessee, Knoxville & Oak Ridge National Laboratory

Vice Chair Ewa Deelman, University of Southern California

Subcommittee Members
Tony Hey, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Satoshi Matsuoka, RIKEN & Tokyo Institute of Technology
Vivek Sarkar, Georgia Institute of Technology

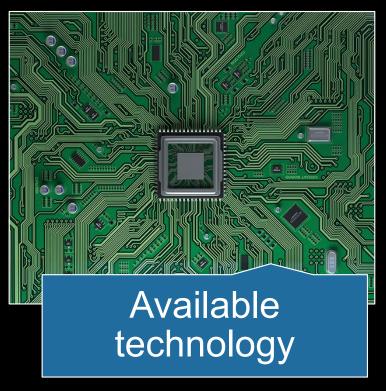
Greg Bell, Corelight
Ian Foster, Argonne National Laboratory & University of Chicago
David Keyes, King Abdulllah University of Science and Technology
Dieter Kranzimueller, Leibniz Supercomputing Centre & Ludwig Maximilian University of Munich

Bob Lucas, Ansys Lynne Parker, University of Tennessee, Knoxville John Shalf, Lawrence Berkeley National Laboratory

John Stan, Lawrence Berkeley Matorial Laboratory
Dan Stanzione, Texas Advanced Computing Center
Rick Stevens, Argonne National Laboratory & University of Chicago
Katherine Yelick, University of California, Berkeley & Lawrence Berkeley National Laboratory

Is this Exascale all over again?

Post-Exascale Computing



Continue to Rethink Applications

Nuclear

• We should have another 2 dozen in 10 years!!

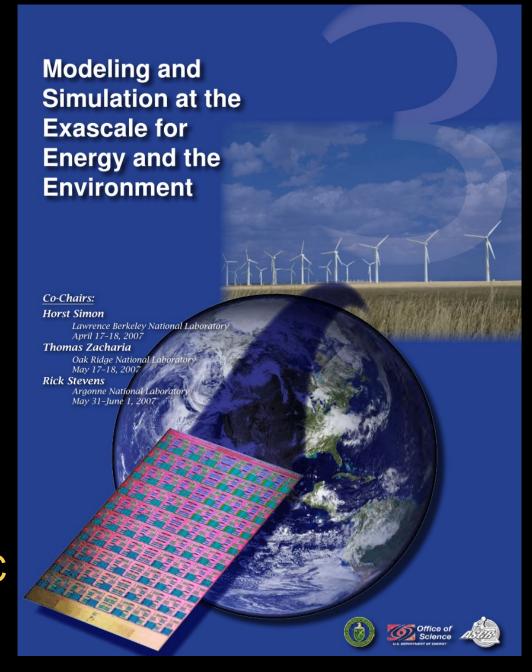
Several new to HPC, all with new capabilities

Scientific Computing Circa 2007

Exascale report from 2007 Town Halls Entirely focused on modeling and simulation

Scientific Computing is often used synonymously with Simulation and HPC

Simulation ⊂ Scientific Computing ⊂ HPC

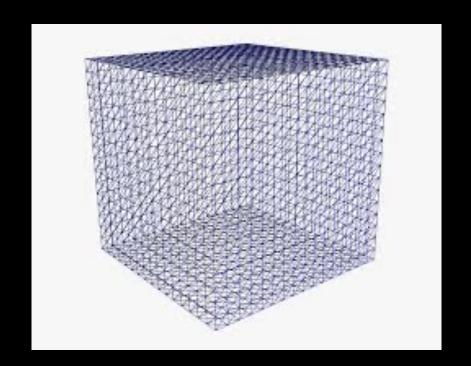


Runtime of "hero" calculations are too long

Number of Nodes	Memory Footprint	Wall-Clock Time
2400	~300–400 TB	6 months
4990	~600 TB	3–4 months
288	~20 TB	1 month
3250	104 TB	5.8 days
512	32.8 TB	2 months

Iterative design does not happen on 6 month cycles

Weak Scaling has Diminishing Returns

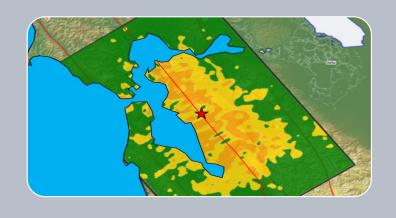




Increase resolution by 10x in each dimension Increase cores by 1000x

Runtime increases 🕾

New demands for HPC in Science



Simulation

From atoms to the universe

Data

Images, text, to genomes

Learning

Interpret, infer and automate

JGI User Science and ExaBiome's MetaHipMer Assembler

Peatland bog (0.6 TB)

Coastal mangroves (2.1 TB)

Mycorrhizal fungi (1.5 TB)

Mountainous watershed (2.7 TB)

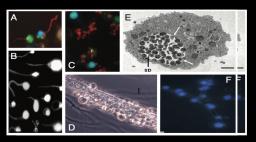
Prescribed fire (1.5 TB)

Soil carbon cycle (3.3 TB)

Subtropical soils (1.5 TB)

Great Redox Experiment (8TB)

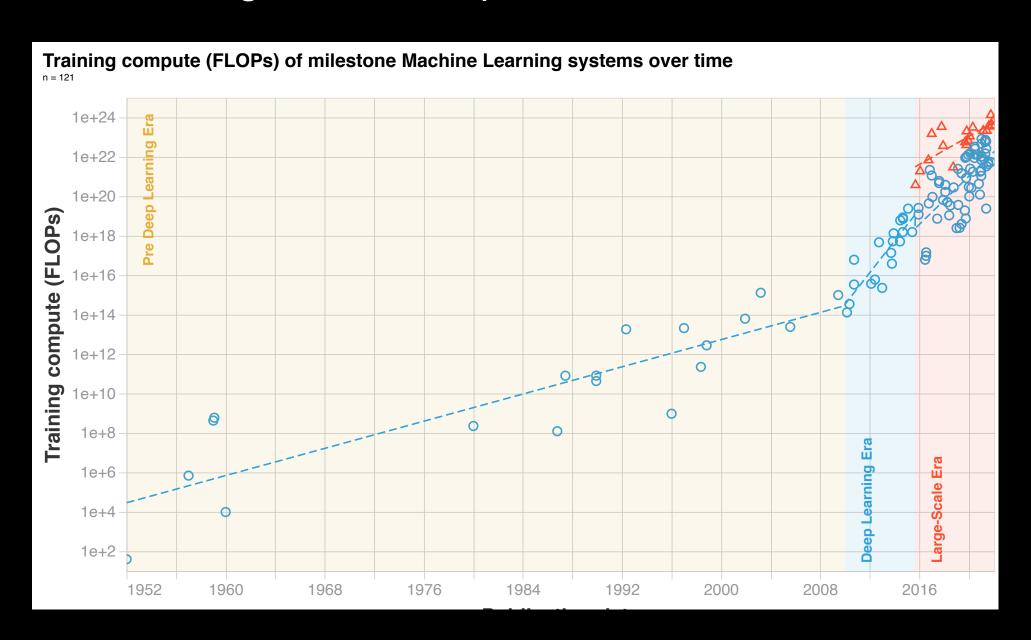
Dark matter fungi (1.7 TB)



Lake Mendota Time Series (25 TB)

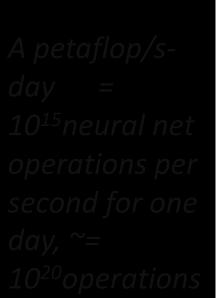
Analyzing huge data sets with exascale tools lead to discovery of new species and protein families ... new science!

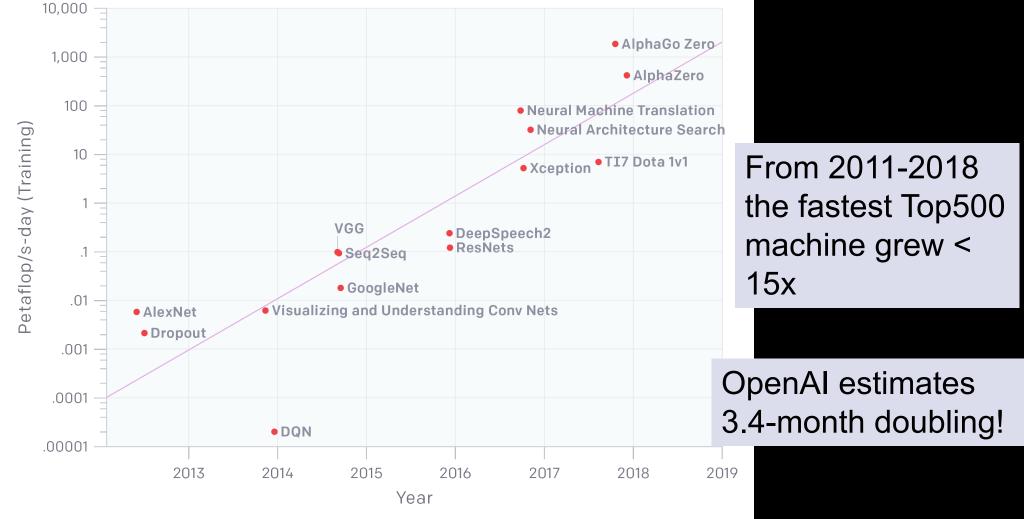
Machine Learning Drives Computational Demand



Computing Requirements in Machine Learning

300,000x increase from 2011 (AlexNet) to 2018 (AlphaGoZero)





https://blog.openai.com/ai-and-compute/

Reproducibility and Efficiency in Science through Cloud Labs

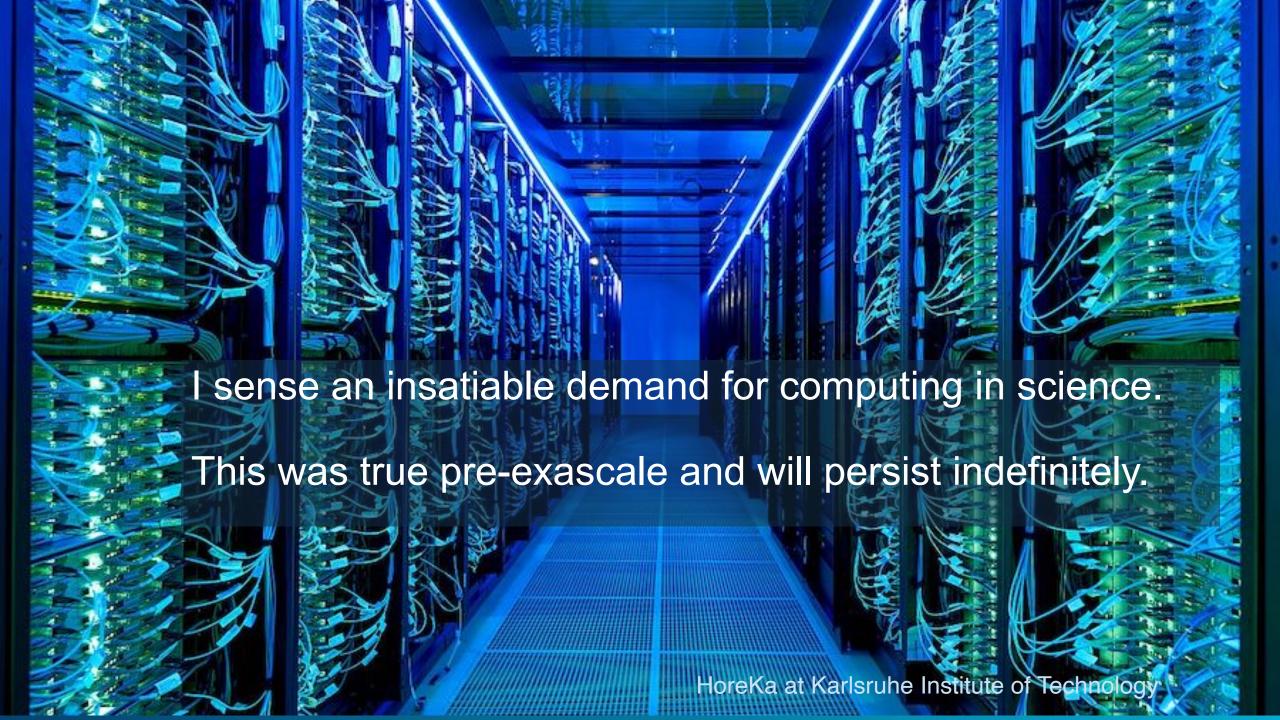
"Plugging an experiment into a browser forces researchers to translate the exact details of every step into unambiguous code"

https://www.theguardian.com/

Automation in Self-Driving Laboratories

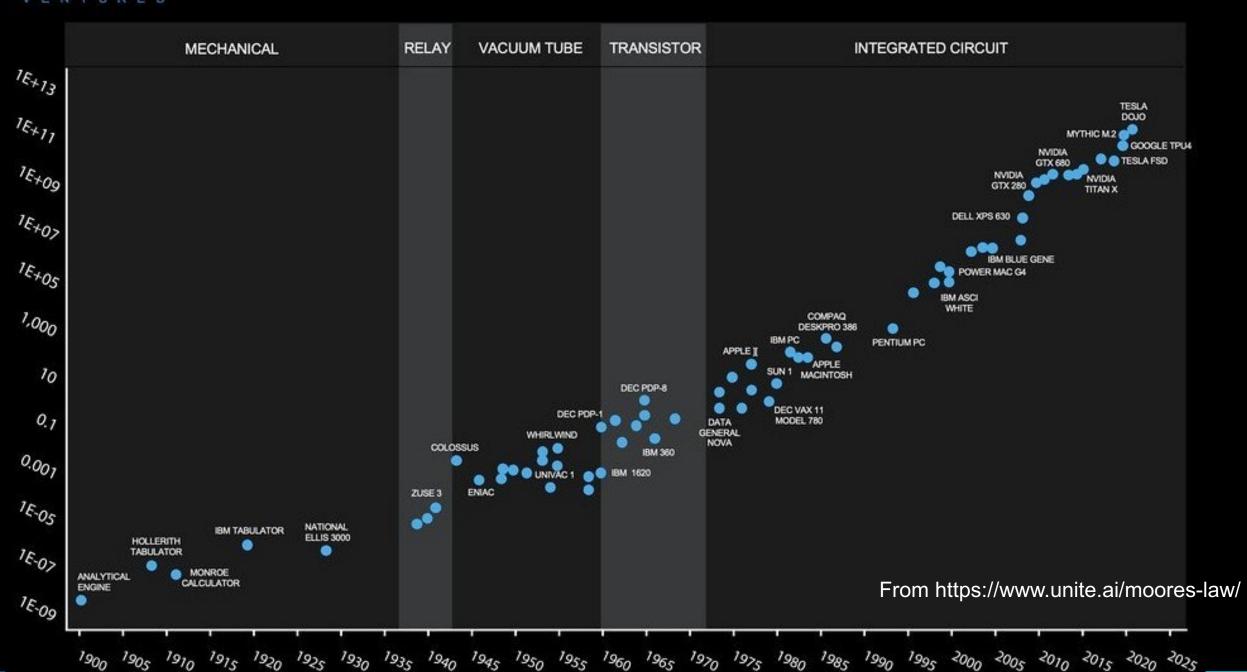


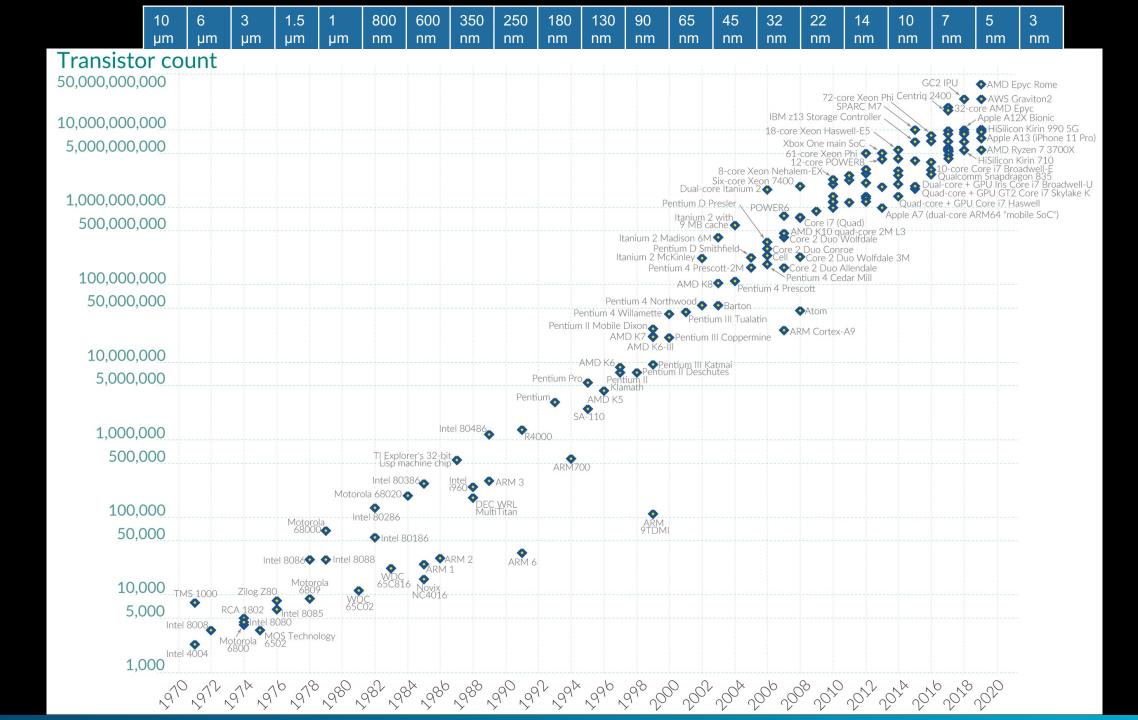
E.g., Strateos Cloud Lab 14K square feed 200+ instruments



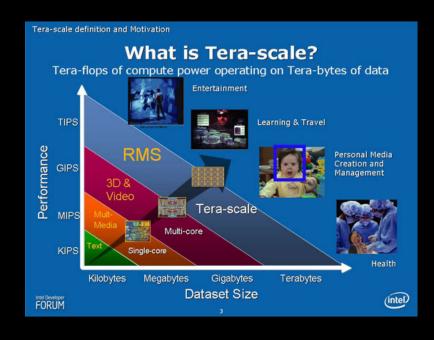
Post-Exascale Computing

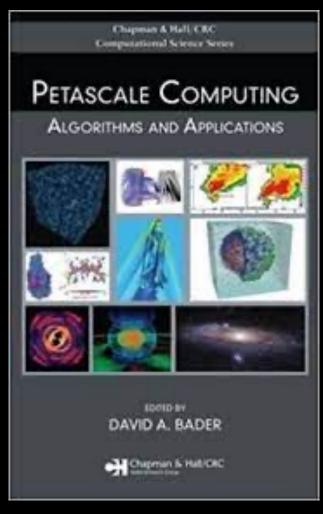
122 YEARS OF MOORE'S LAW

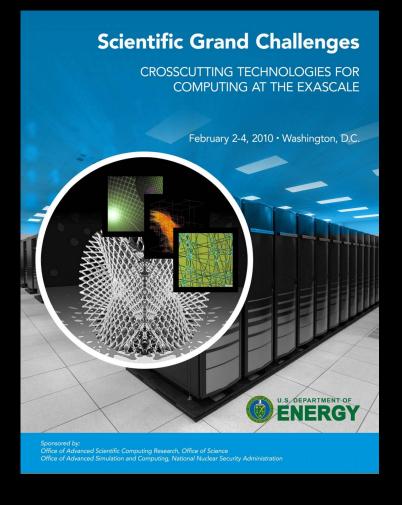




It's hard to think exponentially

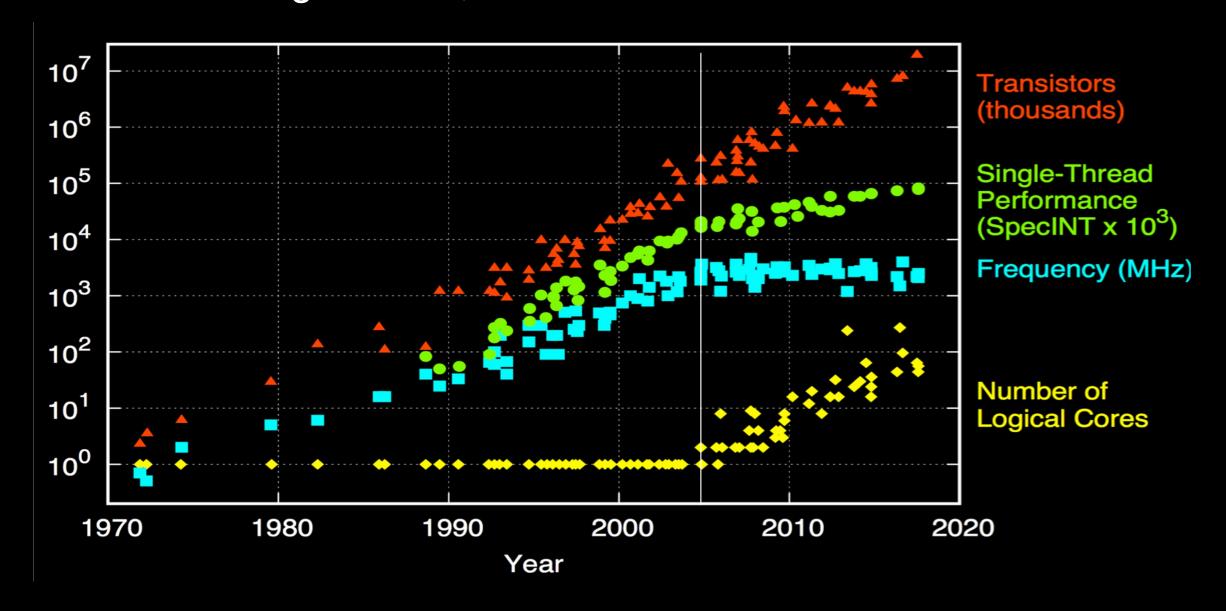






But it's also hard to stop

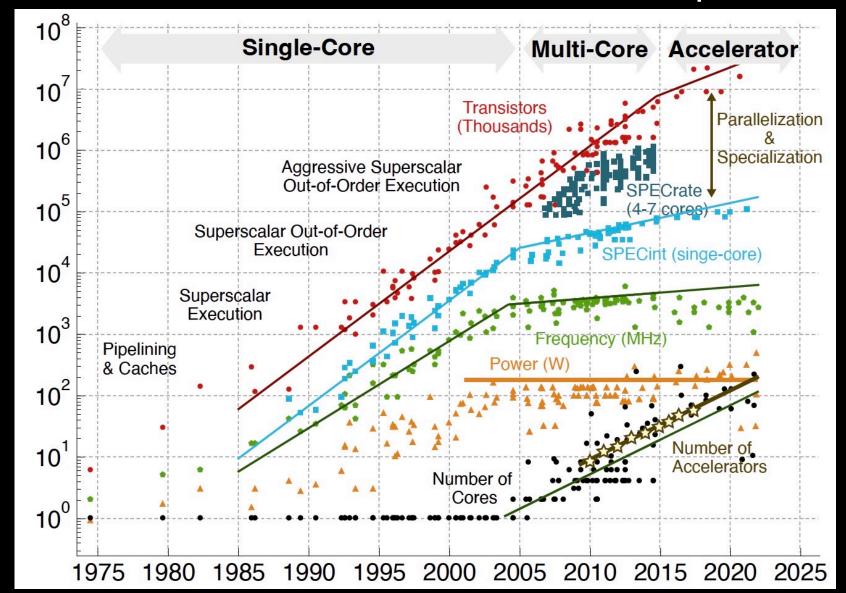
Dennard Scaling is Dead; Moore's Law Will Follow



Prediction of Atlas computing +\$1B

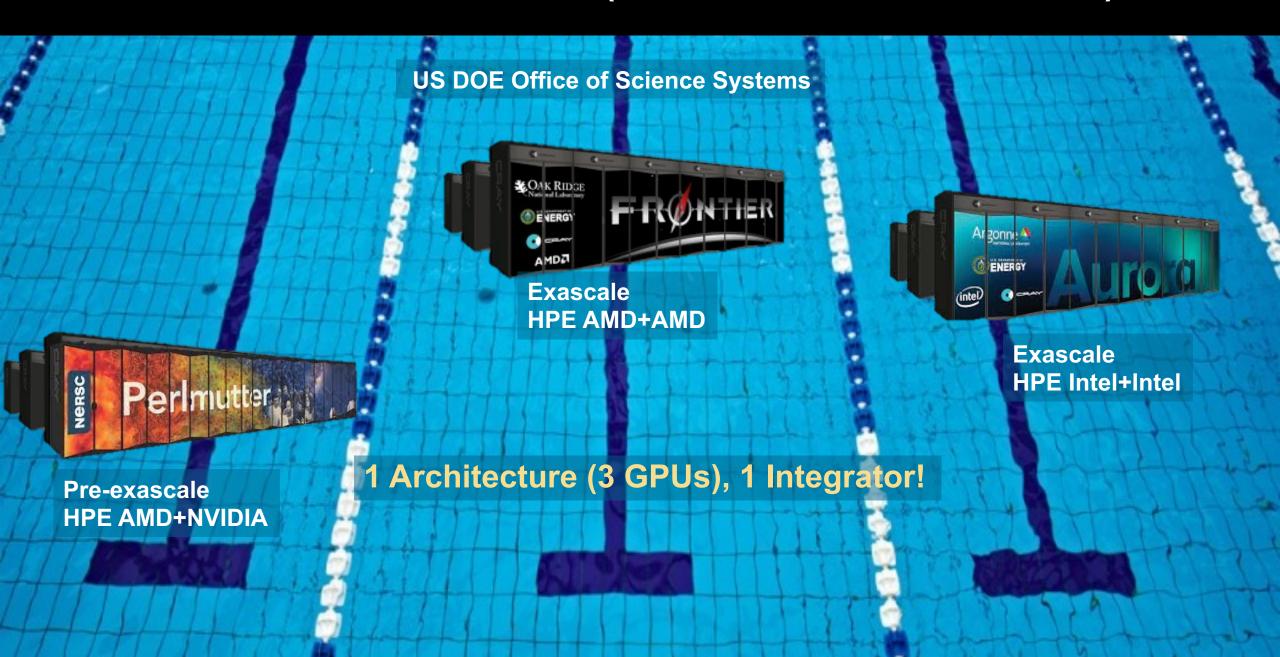


End Game for Moore's Law: Parallelization and Specialization

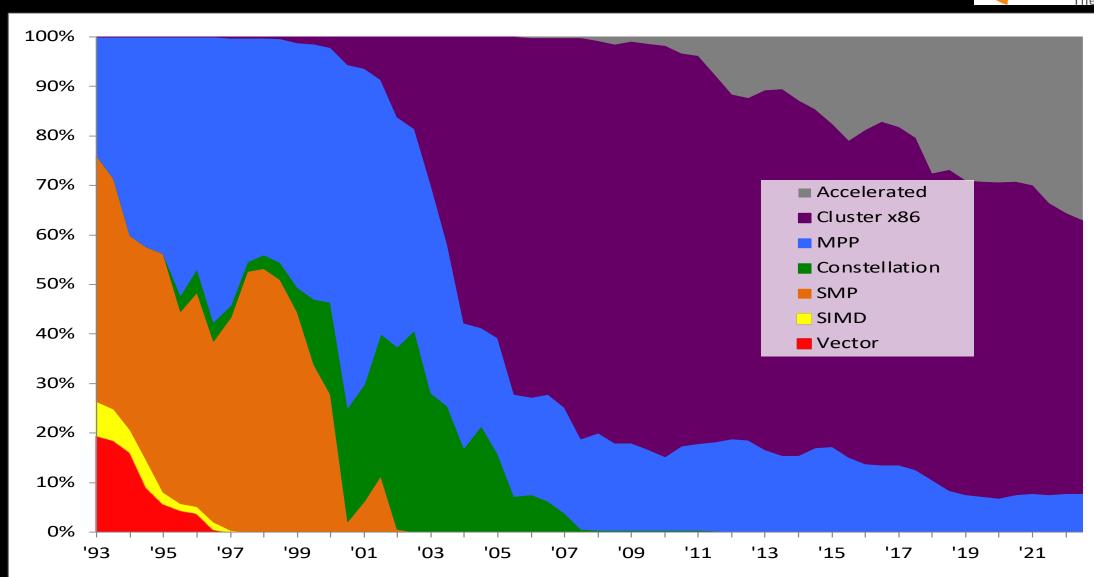


Exascale Architecture Plans (2008)

Exascale Era Architectures (US DOE Office of Science)



Growth of Accelerators in HPC

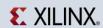


Al Chip Landscape

Tech Giants/Systems

IC Vender/Fabless

SAMSUNG



IP/Design Service

arm

SYNOPSYS°

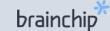
cādence

CEVA

ARTERISI

Startup in China

Startup Worldwide





扫码访问AI芯片文章

Compiler

GLOW Stvm NVIDIA TensorRT

nGraph Compiler stack (Beta) Poloid NL

Benchmarks

AI - Benchmark

ΔI Matrix.

Everyone is Making Al Chips

NVIDIA
AMD
Intel

Traditional chip makers

"Software" companies

Facebook + Intel

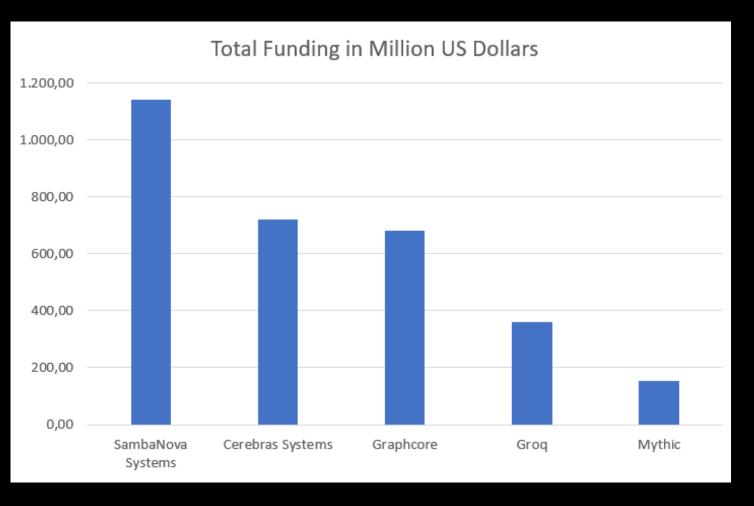
IBM

Amazon (Echo, Oculus)

Google (TPU, Pixel)

Apple (SoCs)

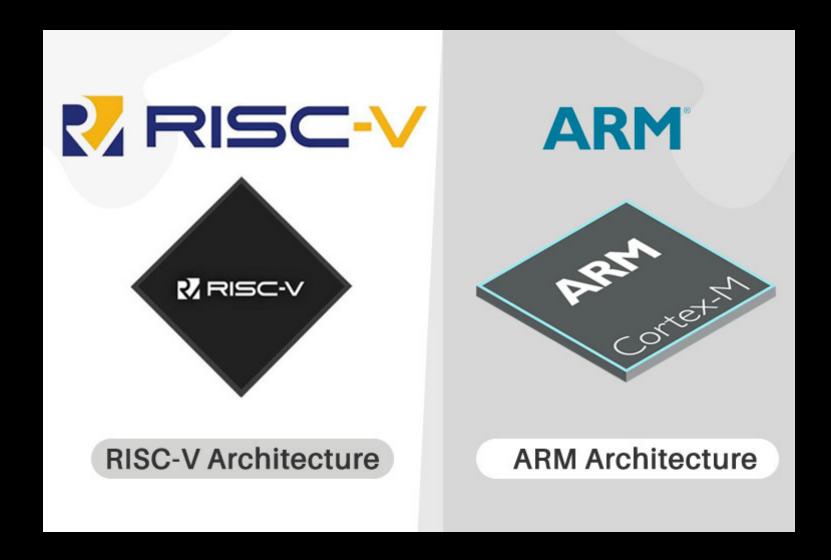
Microsoft ("Al chip")

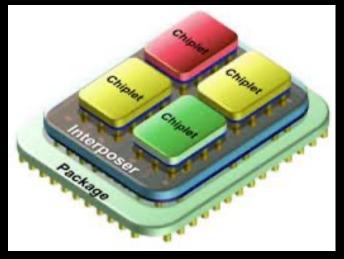


Graphcore, Nervana Cerebras, Wave Computing, Horizon Robotics, Cambricon, DeePhi, Esperanto, SambaNova, Eyeriss, Tenstorrent, Mythic, ThinkForce, Groq, Lightmatter

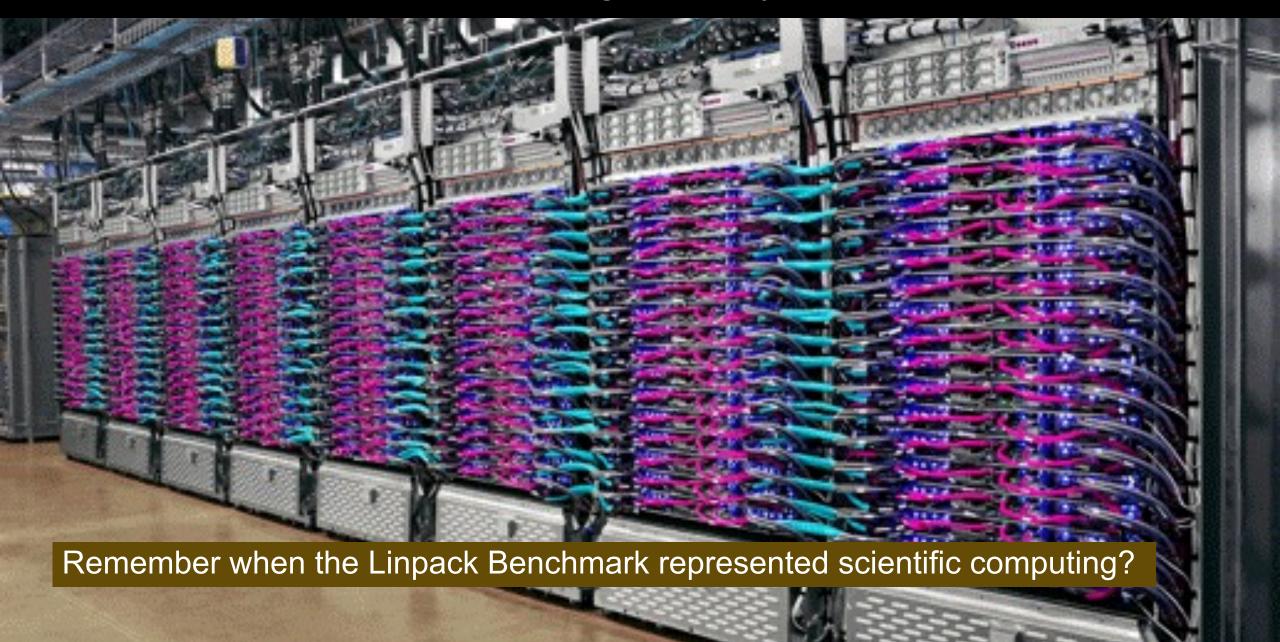
Not everyone is selling those chips!

Specialization for the masses?

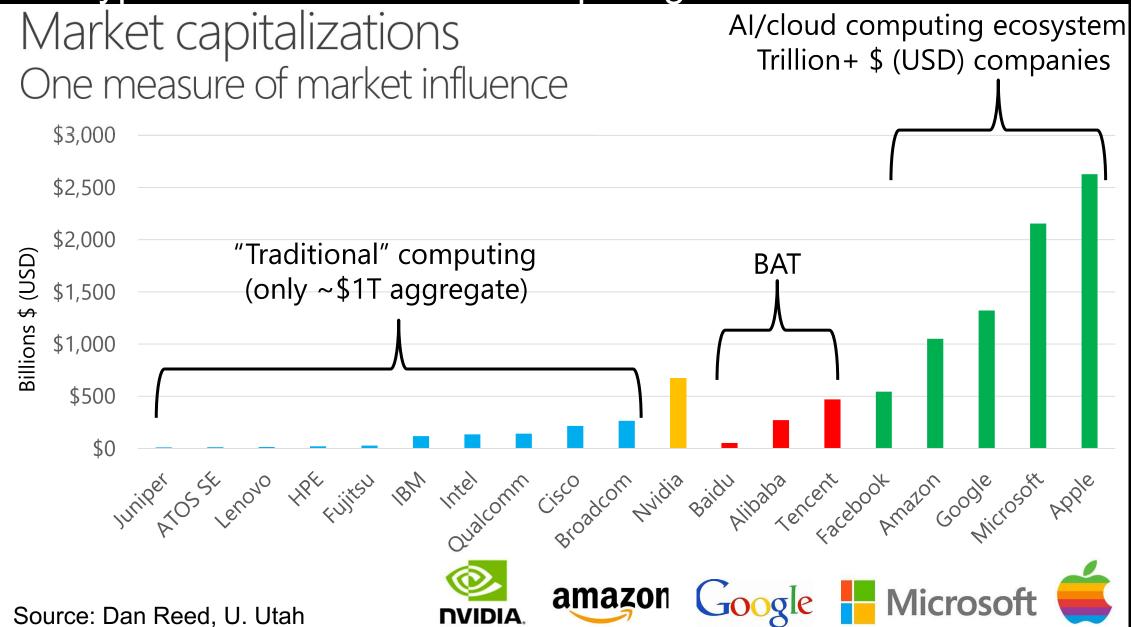




Specialization: Is deep learning the only application?



Cloud "Hyperscalars" dominate computing



Technology and Marketplace: Radically Different!

What's a post-Exascale strategy for the science community?

Beat them

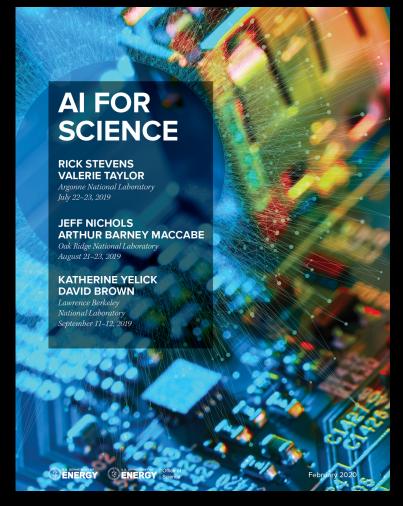
Design processors for science
 More Co-Design and
 don't forget the math and software

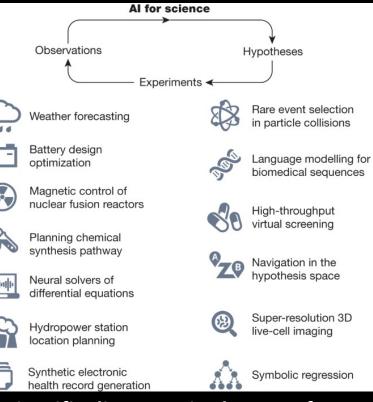
Join them

– Leverage Al Hardware for Al in Science andSimulation?

Post-Exascale Computing

Al for Science





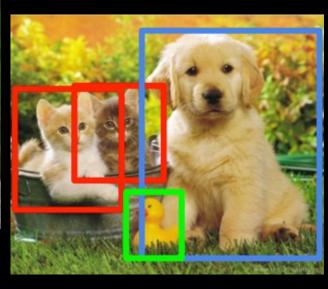
Scientific discovery in the age of artificial intelligence, 2023

Analyze Images to Find Cats

Classification

Localization

Detection

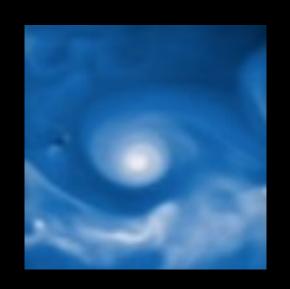


Segmentation

Source: Prabhat

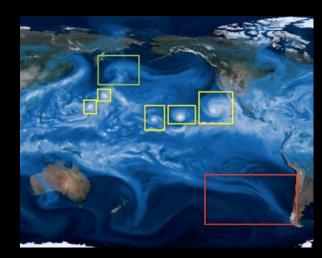
Analyze Simulations to Find Hurricanes

Classification

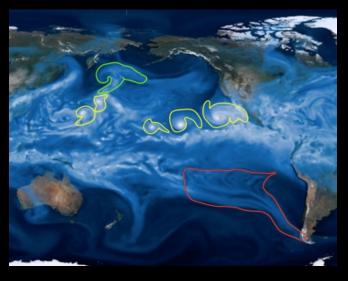


Localization

Detection



Segmentation



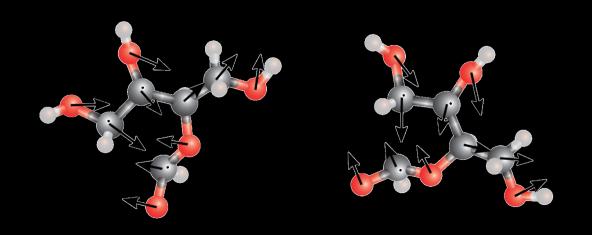
Extending image-based methods to complex, 3D, scientific data sets is non-trivial!

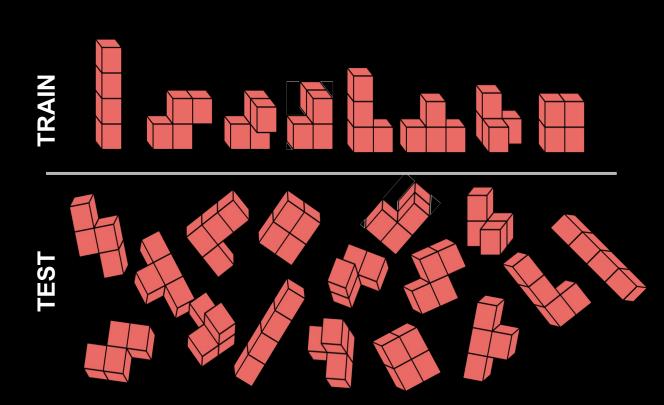
Source: Prabhat

Deep Learning: like adding 4,000 extra tons of detectors! Based on 8/12/2016 slide by Joe Lykken at Fermilab

CNNs for Materials with Physical Laws

Physics-aware learning

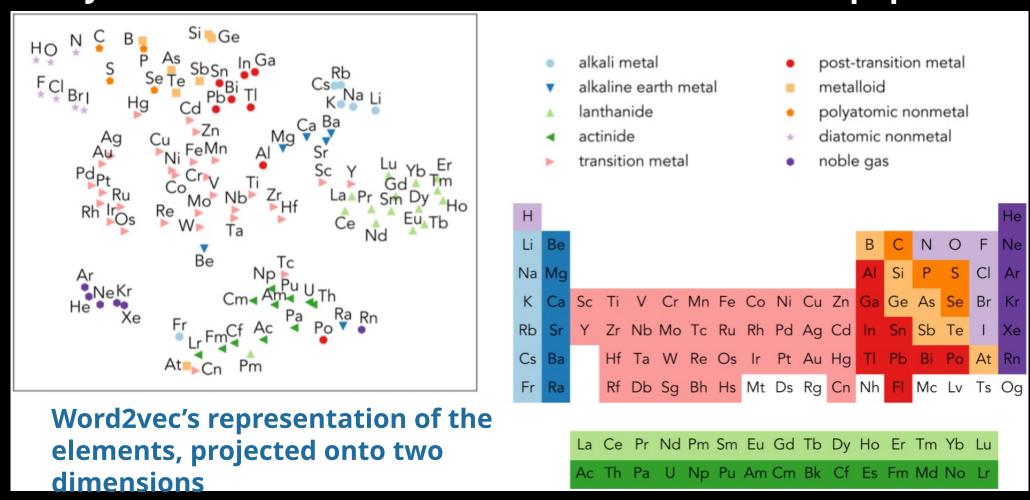




A network with 3D translation- and 3D rotation-equivariance

Using NLP on scientific publications

Analyze 3.3 million abstracts from materials science papers



Filtering, De-Noise and Curating Data

AmeriFlux & FLUXNET: 750 users access carbon sensor data from 960 carbon flux data years; Developing ML to denoise data.

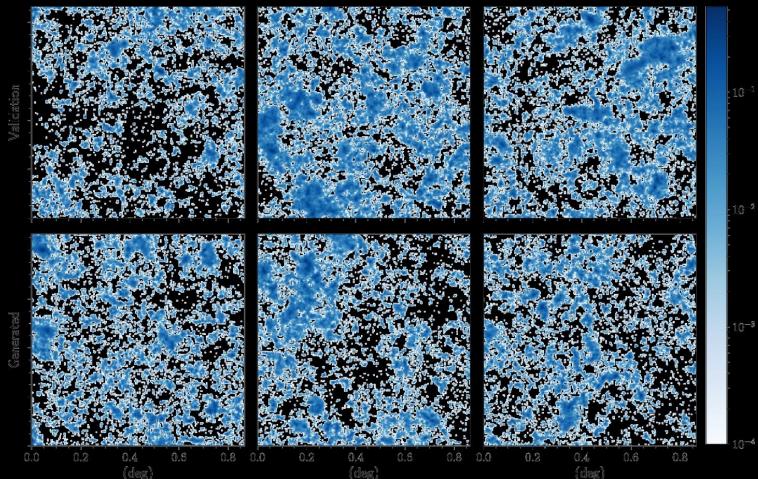
Arno Penzias and Robert Wilson discover Cosmic Microwave Background in 1965

Generate Videos

Caroline Chan, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros, UC Berkeley

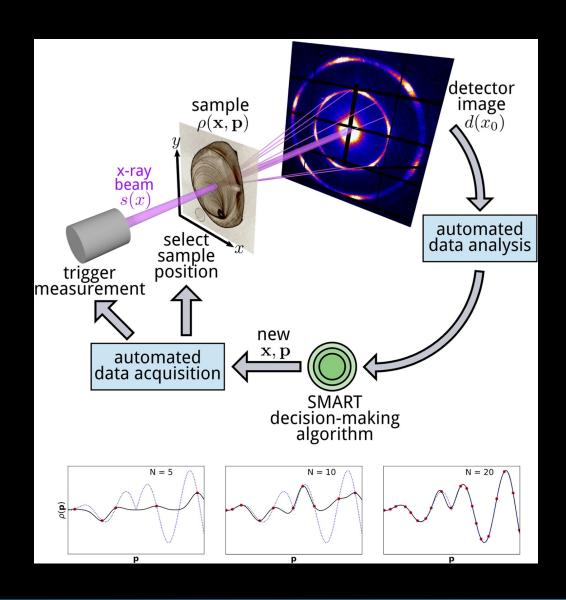
Generate Data from Expensive Experiments

Generate convergence maps of weak gravitational lensing, to help in understanding the physical laws governing the universe.



CosmoGAN: Mustafa Mustafa, Deborah Bard, Wahid Bhimji, Zarija Lukić, Rami Al-Rfou, Jan M. Kratochvil

Automated experiments

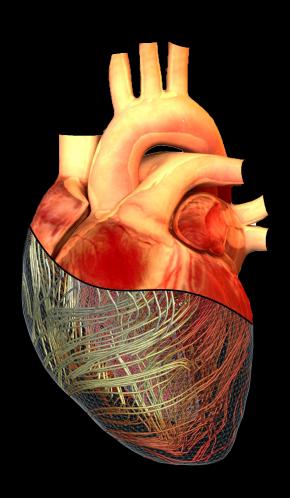


Utilization and robustness

- Al-based autonomous discovery
- Decisions based on small datasets
- Uncertainty estimates

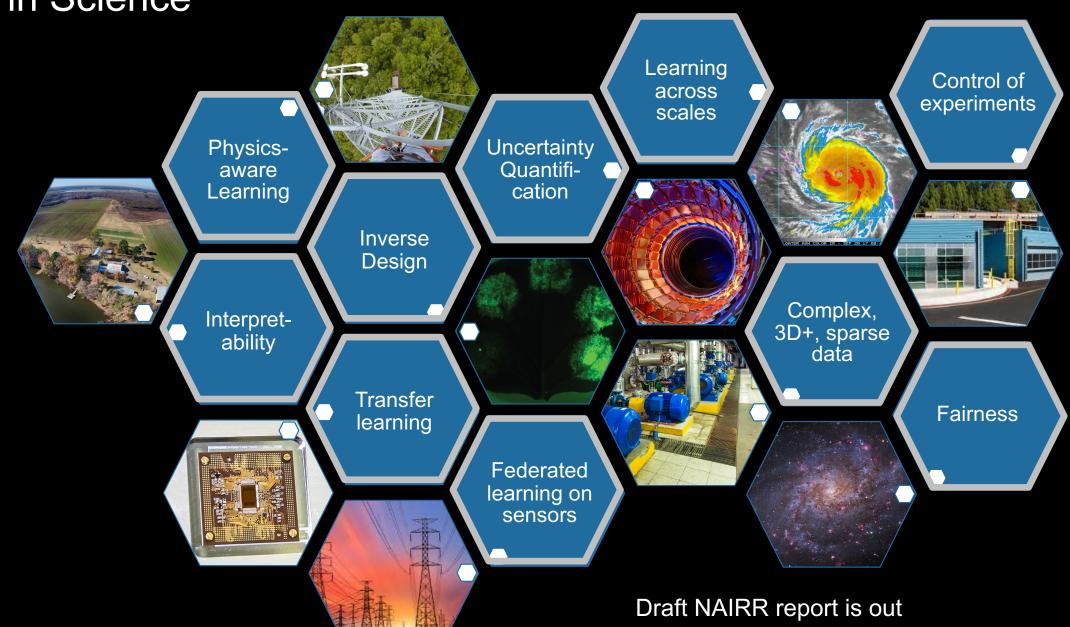
Source: CAMERA Project, PI James Sethian Slide input: Lavanya Ramakrishna

Digital Twins



- Simulations
- Sensors / data
- Multi-level
- Real-time

Al in Science



The economic model is key

Cloud vs HPC: It's all about the Business Model in '35

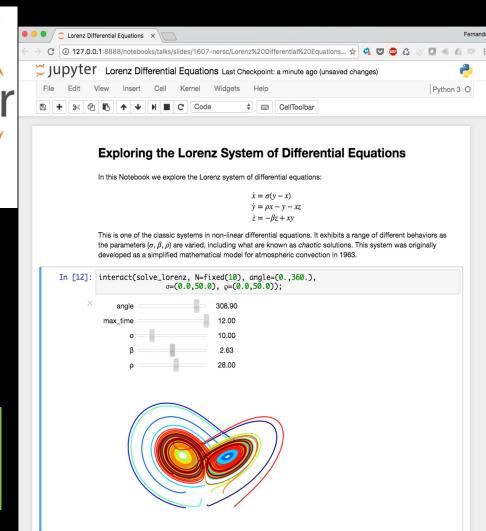
Cloud	HPC
Focus on storage	Focus on computing (flop/s)
Cheap(est) commodity component	High end components (some specialization)
Commodity networks	High performance networks
Pay as you go	Purchased for mission; pay in non-fungible "hours" Policy and
< 50% utilization	> 90% utilization business
On-demand access	Large jobs wait in queues model
Multiple jobs per node	Dedicated set of nodes
On-node disks (air cooled)	Separate storage (compute liquid cooled)

Rethink software

Transform publishing, research, teaching!

- Higher level
- Different interaction

Old programming models never die, they just get buried under layers!



How did we get here?

- Computing demands continue to grow
- The benefits of more weak scaling are limited
- Computing technology has hit several "walls"
- The computing industry has changed dramatically
- Al methods are having huge impacts elsewhere
- Quantum computing potential for science still unknown
- Cloud computing is dominating the computing industry
- Global supply chain issues present uncertainties

We need a new strategy for post-exascale computing