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Is this Exascale all over again? 
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Post-Exascale Computing

Computing 
demand

Available 
technology 

Disruptions
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Photon ScienceGenomics

Climate

Cancer

Earthquakes

Subsurface

Continue to Rethink Applications

Materials

Chemistry

Carbon CaptureAccelerators Astrophysics

CosmologyNuclear Energy

Additive 
Manufacturing

Wind Energy

Power Grid Combustion Fusion

QCD

Fusion

Catalysis

• 24 projects with about 10 people per team
• Rely heavily on hardware features and software teams
• Several new to HPC, all with new capabilities
• We should have another 2 dozen in 10 years!!
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Scientific Computing Circa 2007

Exascale report from 2007 Town Halls 
Entirely focused on modeling and 
simulation

Scientific Computing is often used 
synonymously with Simulation and HPC

Simulation ⊂ Scientific Computing ⊂ HPC
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Runtime of “hero” calculations are too long

Number of 
Nodes

Memory 
Footprint

Wall-Clock 
Time

2400 ~300–400 TB 6 months

4990 ~600 TB 3–4 months

288 ~20 TB 1 month

3250 104 TB 5.8 days

512 32.8 TB 2 months

Iterative design 
does not happen on 
6 month cycles
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Weak Scaling has Diminishing Returns

Increase resolution by 10x in each dimension
Increase cores by 1000x

Runtime increases L
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New demands for HPC in Science

Simulation
From atoms to the 

universe

Data
Images, text, to 

genomes

Learning
Interpret, infer and 

automate
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JGI User Science and ExaBiome’s MetaHipMer Assembler

Great Redox 
Experiment 
(8TB)

Prescribed fire 
(1.5 TB)

Soil carbon 
cycle (3.3 TB)

Mycorrhizal 
fungi (1.5 TB)

Mountainous 
watershed  (2.7 
TB)

Dark matter 
fungi (1.7 TB)

Peatland bog 
(0.6 TB)

Subtropical 
soils (1.5 TB)

Lake Mendota 
Time Series (25 
TB)

Coastal 
mangroves 
(2.1 TB)

Dark matter 
fungi (1.7 TB)

Extensively used by JGI (only available terabase-scale metagenome assembler)
Analyzing huge data sets with exascale tools lead to discovery of new species and protein families … new science!
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Machine Learning Drives Computational Demand

3 Trends
We explain the data we curated in terms of three distinct eras and three distinct trends. In short, there was an era of slow
growth before Deep Learning took off. Around 2010, the trend sped up and has not slowed down since then. Separately,
in 2015 to 2016 a new trend of large-scale models emerged, growing at a similar rate, but exceeding the previous one by
two orders of magnitude (OOMs hereafter). See Figure 1 and Table 2 for a summary.
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Training compute (FLOPs) of milestone Machine Learning systems over time
n = 121

Figure 1: Trends in n = 121 milestone ML models between 1952 and 2022. We distinguish three eras. Notice the change of slope
circa 2010, matching the advent of Deep Learning; and the emergence of a new large-scale trend in late 2015.

Period Data Scale (start to end) Slope Doubling time

1952 to 2010

Pre Deep Learning Trend

All models

(n = 19)
3e+04 to 2e+14 FLOPs

0.2 OOMs/year

[0.1; 0.2; 0.2]

21.3 months

[17.0; 21.2; 29.3]

2010 to 2022

Deep Learning Trend

Regular-scale models

(n = 72)
7e+14 to 2e+18 FLOPs

0.6 OOMs/year

[0.4; 0.7; 0.9]

5.7 months

[4.3; 5.6; 9.0]

September 2015 to 2022

Large-Scale Trend

Large-scale models

(n = 16)
4e+21 to 8e+23 FLOPs

0.4 OOMs/year

[0.2; 0.4; 0.5]

9.9 months

[7.7; 10.1; 17.1]

Table 2: Summary of our main results. In 2010 the trend accelerated along the with the popularity of Deep Learning, and in late 2015
a new trend of large-scale models emerged.

First we will discuss the transition to Deep Learning circa 2010-2012. Then we will discuss the emergence of
large-scale models circa 2015-2016.

We performed some alternative analyses to examine our conclusions from additional perspectives. In Appendix B we
discuss trends in record-setting models. In Appendix C we discuss trends in different ML domains.

3
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Computing Requirements in Machine Learning

https://blog.openai.com/ai-and-compute/

A petaflop/s-
day      = 
1015neural net 
operations per 
second for one 
day, ~= 
1020operations

300,000x increase from 2011 (AlexNet) to 2018 (AlphaGoZero)

From 2011-2018 
the fastest Top500 
machine grew < 
15x

OpenAI estimates 
3.4-month doubling!
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Reproducibility and Efficiency in Science through Cloud Labs

“Plugging an experiment 
into a browser forces 
researchers to translate 
the exact details of every 
step into unambiguous 
code”

https://www.theguardian.com/
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Automation in Self-Driving Laboratories

E.g., Strateos Cloud Lab
14K square feed
200+ instruments
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I sense an insatiable demand for computing in science.

This was true pre-exascale and will persist indefinitely.

HoreKa at Karlsruhe Institute of Technology
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Post-Exascale Computing

Computing 
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From https://www.unite.ai/moores-law/



19

10 
µm 

6 
µm 

3 
µm 

1.5 
µm 

1 
µm 

800 
nm 

600 
nm

350 
nm

250 
nm

180 
nm

130 
nm

90 
nm

65 
nm

45 
nm

32 
nm

22 
nm

14 
nm

10 
nm

7 
nm

5 
nm

3 
nm



20

It’s hard to think exponentially



But it’s also hard to stop
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Dennard Scaling is Dead; Moore’s Law Will Follow

M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten, and K. Rupp
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Prediction of Atlas computing +$1B



24

End Game for Moore’s Law: Parallelization and Specialization

From Chris Batten, Cornell ENGRI 1210 citing
C. Batten, M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, K. Rupp & [Y. Shao, IEEE Micro'15] & [C. Leiserson, Science'20]
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Exascale Architecture Plans (2008)

Faster 
clocks + 
SIMD

100x 
more  
cores

Accelerators 
(GPUs)

Petascale X 10x more energy X 100x more Performance per Joule = Exascale
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Exascale Era Architectures (US DOE Office of Science)

Pre-exascale
HPE AMD+NVIDIA

Exascale
HPE AMD+AMD

Exascale
HPE Intel+Intel

US DOE Office of Science Systems

1 Architecture (3 GPUs), 1 Integrator!
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Growth of Accelerators in HPC
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Everyone is Making AI Chips

Facebook + Intel
Amazon (Echo, Oculus)
Google (TPU, Pixel)
Apple (SoCs)
Microsoft (“AI chip”)

Graphcore, Nervana Cerebras, Wave Computing, Horizon 
Robotics, Cambricon, DeePhi, Esperanto, SambaNova, Eyeriss, 
Tenstorrent, Mythic, ThinkForce, Groq, Lightmatter

NVIDIA
AMD
Intel
IBM

Traditional 
chip makers

“Software” 
companies

Not everyone is selling those chips!
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Specialization for the masses? 
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Specialization: Is deep learning the only application?

Remember when the Linpack Benchmark represented scientific computing?
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Cloud ”Hyperscalars” dominate computing
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Source: Dan Reed, U. Utah
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Technology and Marketplace: Radically Different!

Beat them
– Design processors for science
    More Co-Design and 
     don’t forget the math and software

Join them
– Leverage AI Hardware
   for AI in Science 
  andSimulation ?

What’s a post-Exascale strategy for the science community?
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Post-Exascale Computing
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demand
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AI for Science

Scientific discovery in the age of 
artificial intelligence, 2023
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Analyze Images to Find Cats

Classification
Localization

Detection
Segmentation

Source: Prabhat
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Analyze Simulations to Find Hurricanes

Classification
Localization

Detection
Segmentation

Extending image-based methods to complex, 3D, scientific data sets is non-trivial!
Source: Prabhat



387 Based on 8/12/2016 slide by Joe Lykken at Fermilab

Deep Learning: like adding 4,000 extra 
tons of detectors!
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A network with 3D translation- and 3D 
rotation-equivariance

CNNs for Materials with Physical Laws 

TR
A

IN
TE

ST
Slides from Tess Smidt and Risi Condor; E.g., 2018 paper by Thomas, Smidt, Kearnes, Yang, Li, Kohlhoff, Riley

Physics-aware learning
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Using NLP on scientific publications

Word2vec’s representation of the 
elements, projected onto two 
dimensions

Analyze 3.3 million abstracts from materials science papers

Vahe Tshitoyan, Leigh Weston, John Dagdelen, Anubhav Jain



41

Filtering, De-Noise and Curating Data

Arno Penzias and Robert Wilson discover 
Cosmic Microwave Background in 1965

AmeriFlux & FLUXNET: 750 users access 
carbon sensor data from 960 carbon flux 
data years; Developing ML to denoise 
data.

Gilberto Z. Pastorello, Dario Papale, Housen Chu, Carlo Trotta, Deb 
A. Agarwal, Eleonora Canfora, Dennis D. Baldocchi, M. S. Torn
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Generate Videos

Caroline Chan, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros, UC Berkeley



Everybody Dance Now, Caroline Chan, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros
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Generate Data from Expensive Experiments

CosmoGAN: Mustafa Mustafa, Deborah Bard, Wahid Bhimji, Zarija Lukić, Rami Al-Rfou, Jan M. Kratochvil

Generate convergence maps of weak gravitational lensing, to help in 
understanding the physical laws governing the universe.
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Automated experiments

Source: CAMERA Project, PI James Sethian
Slide input: Lavanya Ramakrishna

Utilization and robustness
• AI-based autonomous discovery 
• Decisions based on small datasets
• Uncertainty estimates
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Digital Twins

• Simulations
• Sensors / data
• Multi-level
• Real-time
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AI in Science

Interpret-
ability

Inverse 
Design

Physics-
aware 

Learning

Uncertainty 
Quantifi-
cation

Learning 
across 
scales 

Complex, 
3D+, sparse 

data

Transfer 
learning Fairness

Control of 
experiments

Federated 
learning on 

sensors 

Draft NAIRR report is out
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The economic model is key
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Cloud vs HPC

Cloud HPC
Focus on storage Focus on computing (flop/s)

Cheap(est) commodity component High end components (some specialization)

Commodity networks High performance networks

Pay as you go Purchased for mission; pay in non-fungible “hours”

< 50% utilization > 90% utilization

On-demand access Large jobs wait in queues 

Multiple jobs per node Dedicated set of  nodes

On-node disks (air cooled) Separate storage (compute liquid cooled)

Policy and 
business 

model

: It’s all about the Business Model in ‘35
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Rethink software

•Higher level

•Different interaction

Transform publishing, research, teaching!

Old programming models never die, 
they just get buried under layers!
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How did we get here?

We need a new strategy for post-exascale computing

Computing demands continue to grow

The benefits of more weak scaling are limited

Computing technology has hit several “walls”

The computing industry has changed dramatically

AI methods are having huge impacts elsewhere

Quantum computing potential for science still unknown

Cloud computing is dominating the computing industry

Global supply chain issues present uncertainties


