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Continue to Rethink Applications JE=i=E==

.24 projects with about 10 people per team
| ° Rely heavily on hardware features and software teams

== « Several new to HPC, all with new capabilities 7
{ . We should have another 2 dozen in 10 years!! Ly

SRR eV E
Materials Fusion %3 Catalysi .



Scientific Computing Circa 2007

Exascale report from 2007 Town Halls
Entirely focused on modeling and
simulation

en used
ulation and HPC

Scientific
Synonymous

Simulation c Scientific Computing € HPC |

MOdeIing and
Simulation at the
Exascale for -
Energy and the
Environment

Co-Chairs:

Horst Simon
Lawrence Berkeley National Laborator;
April 17-18, 2007
Thomas Zacharia 4 o "%F
Oak Ridge NationalLaboratory i
May 17-18, 2007 A
Rick Stevens .




Runtime of “hero” calculations are too long

Number of Memory Wall-Clock
Nodes Footprint Time
2400 ~300-400 TB 6 months Iteratlve design
does not happen on
4990 600 TB | 3—4 months 6 month cycles

3250 104 TB 5.8 days




Subset of Application Challenges Beyond Exascale




Digital Twins

Simulations
Sensors / data
Multi-level
 Real-time




National Academies Study

Engineering

p

Finding: The demands for advanced  «

computing continue to grow and will :

exceed the capabilities of planned b

upgrades across the NNSA labs. ChartiE R e\
Shifting Technical and \
Geopolitical Landscape

Post-Exascale Computing for the
National Nuclear Security Administration

\ Consensus Study Report
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Prediction of Atlas computing +$1B
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Tara Oceans Microbial da’ta collected

F? Ocean om 2009-13

Yilager

i Terabytes' assembled on 9000
rontier nodes

- -



Machine Learning Drives Computational Demand

Training compute (FLOPs) of milestone Machine Learning systems over time
n=121
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Computing Requirements in Machine Learning
300,000x increase from 2011 (AlexNet) to 2018 (AlphaGoZero)

From 2011-2018
the fastest Top500
machine grew <
15x
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OpenAl estimates
3.4-month doubling!

2014 2015 2016 2017 2018 2019
Year

https://blog.openai.com/ai-and-compute/



Is there parallelism?



Always has been




Analytics vs. Simulation Kernels:

Particle methods Generalized N-Body
Unstructured meshes Graph-theory
Dense Linear Algebra Linear algebra
Sparse Linear Algebra Hashing

Spectral methods Sorting

Structured Meshes Alignment

Monte Carlo methods Basic Statistics
Phil Colella NRC Report + our paper

Yelick, et al. “The Parallelism Motifs of Genomic Data Analysis”, Philosophical Transactions A, 2020




Weak Scaling has Diminishing Returns

Courant:Numbers<iO/

Increase resolution by 10x in each dimension .
# Runtime increases ®
Increase cores by 1000x




Amdahl's Law meets Gustafson's Law

Strong and weak scaling

Accelerating a weak-scaled workload
with modern supercomputers yields:

g=1
for a parallelizable fraction p, with
p = »_ pi; for anode count N; and
m accerators with speedups of X;.

« Strong scaling Qi Speecup ==l
. .’!; ‘;l'.l’.. (1—-p)+N:-p
—Most desirable for users I ~H‘ =
x; {.. | II‘ 1 Py }\"

—Harder to find (Amdabhl)

*\Weak scaling
— Limited for super-linear algorithms

— Needs memory capacity to scale
— Data problems also need I/O
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See SIAM News, 9/22 Satoshi Matsuoka and Jens Domke



https://sinews.siam.org/About-the-Author/satoshi-matsuoka
https://sinews.siam.org/About-the-Author/jens-domke
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Post-Exascale Computing




Disruptions

Implied question: Do these make HPC obsolete?




Al for Science

Al for science

(Y

Observations Hypotheses

%7 ANL-22/91 ‘:
: % . Experiments «——
A ’ '
. Rare event selection
3 Weather forecasting . ¢ o
= in particle collisions
o

Al FOR
SCIENCE

RICK STEVENS
VALERIE TAYLOR

Anrgonne National Laboratory
July 22-23, 2019

ADVANCED RESEARCH o ’ b .
DIRECTIONS ON : F e o Battery design & L delling f
Al FORSCIENCE, ' /. . optimization s e e s N

' By " ; S i
ENERGY, AND \ XN Magnetic control of

SECURITY XYz

nuclear fusion reactors

JEFF NICHOLS )
ARTHUR BARNEY MACCABE

Oak Ridge National Laboratory

High-throughput
virtual screening

©

/4 v
Report on Summer 2022 Workshops ~ ~ ’! AN/
s

L

August 21-23, 2019 " Jonathan Carter A Plannmg chemical
- Lawrence Berkeley National Laboratory i 7 New, synthesis pathway o
7, Navigation in the
KATHERINE YELICK % John Feddema s ‘/{ 3 Z o hypothesis space
DAVID BROWN Sandia National Laboratories &Y Neural solvers of
Lawrence Berkeley NS ¥ differential equations
National Laboratory < Doug Kothe g fe AN
September 11-12, 2019 Oak Ridge National Laborator. \SANESL .
e Y y A A @ Super-resolution 3D
! \ 3 - :
Rob Neely £ ALY Hydropower station live-cell imaging
Lawrence Livermore National Laboratory -‘7 L) /\», A location planning
X 0\
Jason Pruet \ "" AV~ 7
Los Alamos National Laborat P \ . _ b ‘ .
0s Alamos National Laboratory e Y ‘ Synthetic electronic Symbolic regression

health record generation
¢ Scientific discovery in the age of
artificial intelligence, 2023

Rick Stevens
Argonne National Laboratory ¥

. ‘:.5;..- '
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ERGY [ NS May 2023
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Analyze Simulations to Find Hurricanes

Classification

Localization
Detection

Segmentation

Extending image-based methods to complex, 3D, scientific data sets is non-trivial!

Source: Prabhat




Deep Learning: like adding 4 OOO extra
tons of detectors!

Based on 8/12/2016 slide by Joe Lykken at Fermilab .



Deep Learning with Physical Laws

Physics-aware learning
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A network with 3D translation- and 3D
rotation-equivariance

Slides from Tess Smidt and Risi Condor; E.g., 2018 paper by Thomas, Smidt, Kearnes, Yang, Li, Kohlhoff, Riley




Automation in Self-Driving Laboratories

E.g., Strateos Cloud Lab
14K square feed
200+ instruments




Five Stages of Al

Acceptance

Denial

Anger
Depression

Bargaining

And this includes Al researchers!



Al in Science

Learning
across
scales

Control of
experiments

Physics- o
aware

I— i

e Learning
e | Inverse
& .M — (DY=Y{Tala

The Computatlonal Science and Englneerlng communlty
(including NNSA) should have a leadership role in
addressing uQ, safety, alignment, and explainability in
Al for science and engineering

Federated
learning on
sensors

Uncertainty
Quantifi-
cation




Types of Quantum Bits Diversity & Progress

High-fidelity parallel entangling gates on aneutral-
atom quantum computer

Dopants in
Silicon / Diamond
www.sciencedaily.com

Superconducting

Circuits
www.qnl.berkeley.edu

Photonic

Circuits
www.phys.org

- A
s

Trapped
lons
www.quantumoptics.at

Topological
Wires
www.microsoft.com

A sseries of fast-paced advances in Quantum Error

Correction
L J




National Academies Study

BATIONAlgtthe,
ACADEMIES wuedicine

Finding: Quantum technology has the |
potential to improve the fundamental \' A

understanding of material properties.

However, breakthroughs in quantum

algorithms and systems are needed to N
make quantum computing practical for . ‘
: : : : arting a Path in a
multiphysics stockpile modeling. Shifting W I \
_ _ _ Geopolitical Landscape '
Quantum computing is more likely to serve e .

National Nuclear Security Administration

as a special-purpose accelerator than to ‘
replace leading-edge computing. R ————
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Lessons Learned from Clouds

* Availability

* Cost vs price

* Higher level programming

Lorenz Differential Equations X

In [12]:

A

y & CellToolbar

Exploring the Lorenz System of Differential Equations

In this Notebook we explore the Lorenz system of differential equations:
x=o0(y—x)
—fz+ x)
This is one of the classic systems in non-linear differential equations. It exhibits a range of different behaviors as

the parameters (g, f3, p) are varied, including what are known as chaotic solutions. This system was originally
developed as a simplified mathematical model for atmospheric convection in 1963.

interact(solve_lorenz, N=fixed(10), angle=(0.,360.),
0=(0.0,50.0), 0=(0.0,50.0));

angle 308.90

max_time 12.00
4 10.00
B 2.63
o 28.00




Follow the money, understand the implications
Hyperscalers

Market capitalizations HPC+AI
$3,500
$3,000 lI
$2,500
3 $2,000
2
- $1,500
2 BAT
S $1.000 (~1.7T$ (USD) aggregate)
o ’ | \
$500 I
(0 I e N l
C & O KN @ N QORQ QN @R 0 R e AR
% .QQ) 04 Q \'9 (’\\. @ 6\ .%0 @ Q) b \6 A\S) %) %) /1/0 Q Q %O
) N \ ‘2\ \)\\ N N Q) @) e 60 B > .so’b O @ > 9) Q o
?'SO W2 < O\\,&O % & AR % N «Q)(\ & v @\0\

Source: Reed, Gannon, Dongarra



National Academies Study

NATIONAL sences

ACADEMIES e
Finding: Cloud providers are \,, L
engaged in hardware and software
innovations and will have more .

market influence in technology and
talent but are not aligned with

NNSA requirements. Charting a Path in a

Shifting Technical and \
Geopolitical Landscape

Post-Exascale Computing for the
National Nuclear Security Administration

\ Consensus Study Report



HPC community has always punched above its weight
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Faith no Moore
Selected predictions for the end of Moore’s law

1995 2000 2005 2010 2025 2030
G. Moore, Intel
D. Hutcheson,
VLSI Research
I. Chuang, IBM Research

https://www.economist.co

m/technology-

quarterly/2016/03/10/hors P. Gargani, Intel

es-for-courses L. Krauss, Case Western, approx. 2600
% 6. Starkman CERN &7===m====m=mmmmmtmmmm el oo

G. Moore, Intel 2015-25

Cited reason: M. Kaku, City College of NY - 2021-22

Economic limits R. Colwell, DARPA; (formally Intel) 2020-22
Technical limits

G. Moore, Intel

Sources: Intel; press reports; The Economist




Dennard Scaling is Long Dead; Moore’s Law Will Follow

M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten, and K. Rupp

T T T T "
7 L T N O S _
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6 § s 5 L 4 (thousands)
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Exascale Architecture Plans (2008)




Exascale Era Architectures (US DOE Office of Science)
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First-in-Class HPC Systems (Top500)

First TF First PF First EF
ASCI Red Roadrunner Frontier

Month-Year

Best Tech (nm)

Peak (PF/s) 0.001453
Sustained (PF/s) 0.001068
Power (MW) 0.85

Efficienty (GF/W) 0.00125647
Memory (PB) 0.001212
FPUs (K) 9
Cabinets 104
Foorspace (m”2) 150

Kogge and Dally: Frontier vs the Exascale Report: Why so long? and Are We Really There Yet?
+Wikipedia for ASCI Red



Energy efficiency didn’t track technology scaling

~Gate Length (nm) | 65 [ 32 | 16 | 6
Mietal T pitch (am) | 180 [ 100 | 64 | 40 _

Energy T | 1 [ 18 [ 28] 45
AtaT | 1 [ 3279203

Rumors of 2nm fabs, but how much will it help?

Kogge and Dally: Frontier vs the Exascale Report: Why so long? and Are We Really There Yet?



The "Aggressive” Strawman was a bit early, but close to Summit

[ Stawman [ Summit |

Yew | 2015 | 112018
BestTech | 32m | 16om |
Sustained (PFR) | 1,000 | 148 [N
“Efficiency (GEW) | 149 | 147

Memory ®B) | 35 | 28 |
Bandwidih/flop (B/F) | 0.08 | 0.13
“Mem BW (PBR) | 158 | 27
“Bisection(TB) | 210 | 105 |
FPUSM) | 664 | 144
“Cabinets | 583 | 256 |
Floorspace (m?) | 1195 | 520 |

Kogge and Dally: Frontier vs the Exascale Report: Why so long? and Are We Really There Yet?



Post-Exascale Architecture Plans 2024 (Strawperson-v0)

’3 ab 3“.”




Another Exponential?

1000X Al Compute in 8 Years

Blackwell
20,000 TFLOPS
FP4

Hopper
4,000 TFLOPS
FP8
Ampere
Pascal Volta 620 TFLOPS
19 TFLOPS 130 TFLOPS BF16/FP16

FP16 FP16

Jensen Huang's Nvidia GTC Keynote 3
2016 2017 2020 2022 2024




SpeC|aI|zat|on Is deep Iearnlng the only application?

o

~" '.' £

Remember when the Llnpack Benchmark represented scientific computmg’P N
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Everyone is Making Al Chips

Total Funding in Million US Dollars

NVIDIA Traditional
AMD

chip makers

Intel

IBM “Software”
companies

Facebook + Intel
Amazon (Echo, Oculus)
Google (TPU, Pixel)

SambaNova Cerebras Systems Graphcore Groq ythic
Systems

Apple (SoCs)

: » e Graphcore, Nervana Cerebras, Wave Computing, Horizon
Microsoft ( Al Chlp ) Robotics, Cambricon, DeePhi, Esperanto, SambaNova, Eyeriss,
Tenstorrent, Mythic, ThinkForce, Groq, Lightmatter

Not everyone is selling those chips!



Specialization for the masses?

Chiplets

RISC-V Architecture ARM Architecture




Technology and Marketplace: Radically Different!

What's a post-Exascale strategy for the science community?

Beat them
— Design processors for science
More Co-Design and
don’t forget the math and software

Join them
— Leverage Al Hardware
for Al in Science
andSimulation ?




Workforce




NATIONAL e

Finding: The NNSA laboratories face P
significant challenges in recruiting and =
retaining the highly creative workforce that ~ e
NNSA needs, owing to competition from
industry, a shrinking talent pipeline, and
challenges in hiring diverse and
international talent.

Charting a Path in a
Shifting Technical and \

: : : Geopolitical Landscape
* The U.S. national security enterprise e pl - -

haS benefited enormOUS|y from National Nuclear Security Administration
inclusion of global talent.

Consensus Study Report



Where are the US Computer Science PhDs student doing?

PhDs by Specialty

Artificial Intelligence

—) Networks
Software Engineering
Databases/Information Retrieval
Theory and Algorithms
Graphics/Visualization

—) Hardware/Architecture
Information Assurance/Security
Informatics: Biomedica/Other Science
Robotics/Vision

Human-Computer Interaction
Programming Languages/Compilers
Operating Sysyems

mmmm) High-Performance Computing
Information Systems

mmmm) Scientific/Numerical Computing
Information Science

Social Computing/Social Informatics
Computer-Supported Cooperative Work

0 100 200 K10[0 400 500 600 700 800

®Male ®Female Taulbee Survey 2022




STEM Graduates Around the World

THE COUNTRIES WITH THE MOST STEM GRADUATES

Recent graduates in Science, Technology, Engineering & Mathematics (2016)

China 4,7M

India 2.6M

United States 568,000

Russia 561,000

Iran 335,000

?

Indonesia 206,000

o=
O~

NENRED 185,000

Source: World Economic Forum




Top 10 Countries by Population

windia 1.38B

1US 325m

#4 Indonesia 258M

45 Pakistan 21am
o6 Brazil 212M
17 Nigeria 206M

& Bangladesh 157m
49 Russia 146M

Japan128M

Ethiopis 103M
SeM

¢ nm
£ Tamzania S4M

24em DRC ¢

229% Indonesia #7
223m Ethiopia
199M Egypt <~
186 Tanzania #)
165m Brazil #73

106M Russsia + ©

BIM Bangladesh 175
GOM Japan




Reasons are Systemic

ose in STEM jobs who are US.

_ White © Asian e épa nic ®Black  adults
Less likely to have accessto
quality education to prepare them 0% e ® 73% 42%
for these fields

Wide racial and ethnic gaps among STEM employees

E.a.ce INSCINTSISEORIREGrORmIonE. o . - on why so few blacks and Hispanics work in the field
iringand promotions _

SNAINLLT)?Y ¢ 7 1"I0DS1N00 S eqach of
£ Jolly eudit o

~hn
c Y

3 T
f NN/} | f
y LCUILIVIIVY U, Sy Lic FLrey wic rILL LUV O Wil

11 J

Not encouraged to pursue these b _ najor reason why bl
subjects from an early age underrepresented

Less likely to think they would
succeed in these fields

Lack of black and Hispanic
role models in these fields
. . . PEW RESEARCH CENTER
More are being trained in these
fields, but the process is slow

Just less interested in STEM
fields than others




Using Scientific Computing (Broadly) to Attract and Retain Talent

CS10
The Beauty and Joy of
Computing
Lecture #23 : Limits of Computing
UC Berkeley 2011-11-23
EECS
Lecturer SOE
Dan Garcia ° .0. 0 °°o.o

4.74 DEGREES OF SEPARATIO‘I" g ' :° ::

Researchers at Facebook and the : ‘ ’ = 9"

University of Milan found that the ° ¢
avg # of “friends” separating any ~ °°

.
;,< °.
0.0 &)
Oo'o

Often over 50% women with (relatively) high representation of other historically underserved groups




Post Exascale Computing: Not Business at Usual




