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What is PGAS? Partitioned Global Address Space
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* Global Address Space: Directly access remote memory
* Partitioned: Programmer controls data layout for scalability
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PGAS Languages and Libraries

* Language mechanisms for distributed arrays
— (CoArray) Fortran REAL:: X(2,3)[*]
X(1,2) ... X(1,3)[5]

— UPC shared double X [100]; or double X[THREADS*6];
X[]... X[MYTHREAD]
— Chapel const ProblemSpace= {1..m}

dmapped Block(boundingBox={1..m});
var X: [ProblemSpace] real;

— UPC++ upcxx::shared_array<Type> X;
X.init(128); or X.init(128,4)
X [upcxx:ranks()] ... X[6]
Many others...



Programming Data Analytics vs Simulation

Analytics: More Irreqular
-\r / ;
Message Passing Programming Global Address Space Programming
Divide up domain in pieces Each start computing
Compute one piece Grab whatever / whenever
Send/Receive data from others
MPI, and many libraries UPC,UPC++, CAF, X10, Chapel, Shmem, GA

DEGAS Overview 4



Distributed Arrays Directory Style

Many UPC programs avoid the UPC style arrays in
factor of directories of objects

typedef shared [] double *sdblptr;
shared sdblptr directory[THREADS];
directory[i]=upc alloc(local size*sizeof (double));

directory
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Distributed Arrays Directory Style

* These are also more general:
e Multidimensional, unevenly distributed
e Ghost regions around blocks
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Example: Hash Table in PGAS
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* <key, value> pairs, stored in some bucket based on hash(key)
 One-sided communication; never having to say “receive”
* Allows for Terabyte-Petabyte size data sets vs ~1 TB in shared memory
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Other Programming Model Variations

 What can you do remotely?
— Read, Write, Lock
— Atomics (compare-and-swap, fetch-and-add)
— Invoke functions
— Signal processes to wake up (task graphs)
 What type of parallelism is there
— Data parallel (single threaded semantics, e.g., A=B + C)

e Collective communication
— Single Program Multiple Data (SPDM): if (MYTHREAD == 0)....

— Hierarchical SPMD (teams): if (MYTEAM....)...
— Fork-join: fork / async
— Task graph (events)

Programing Models and Environments 8



Where is PGAS programming used?

1. Asynchronous fine-grained reads/write/atomics




De novo Genome Assembly

* DNA sequence consists of 4 bases: A/C/G/T
* Read: short fragment of DNA

* De novo assembly: Construct a genome
(chromosomes) from a collection of reads
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Metagenome Assembly: Grand Challenge

All metagenomes
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For complex metagenomes (soil) most of the reads cannot be assembled
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De novo Genome Assembly a /a Meraculous

Input: Reads that may contain errors
reads — T B s S Chop reads into k-mers, process

I S D S S S I B
e e e e e s s mmm - EFS 1O eXclude errors

I S S S s S S S S —— « Bloom filter (StaﬁSﬁcaI)

‘ * Intensive /O
* High memory footprint
k-mers == T o = _=_===_=.= Construct & traverse de Bruijn graph

T = m = e e = = o .= = .= Oofk-mers, generate contigs

* Huge graph as a hash table

@ * Irregular accesses

* Injection limited

contigs TN TR T AR Leverage read information to link
@ contigs and generate scaffolds.
* Multiple hash tables
| | . o
— — - * High memory requirements
scaffolds — - * Intensive computation

Intensive 1/O

Georganas, Buluc, Chapman, Oliker, Rokhsar, Yelick, [Aluru,Egan,Hofmeyr] in SC14, IPDPS15, SC15 12



Application Challenge: Random Access to Large Data

e Parallel DFS (from randomly selected K-mers) to compute contigs
 Some tricky synchronization to deal with conflicts

(CcQ Contig 2: AACCG
Contig 1: GATCTGA
(AAC)

| er—@re—~qer—~cro—aon | <

&1
7ccy Contig 3: AATGC

* Hash tables used in all phases

— Different use cases, different implementations

* No a priori locality: that is the problem you’re trying to solve
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Seconds

HipMer (High Performance Meraculous) Assembly Pipeline

Distributed Hash Tables in PGAS
 Remote Atomics, Dynamic Aggregation, Software Caching

* 13x Faster than another HPC/MPI code (Ray) on 960 cores
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Evangelos Georganas, Aydin Bulug, Jarrod Chapman, Steven Hofmeyr, Chaitanya Aluru, Rob Egan, Lenny Oliker, Dan
Rokhsar, and Kathy Yelick. HipMer: An Extreme-Scale De Novo Genome Assembler, SC'15




Comparison to other Assemblers

140 hours

Runtime on Assemblers

Equal core counts (960 Edison)
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Contig only



Science Impact: HipMer is transformative

Human genome (3Gbp) “de novo” assembled :

— Meraculous: 48 hours
Makes unsolvable

— HipMer: 4 minutes (720x speedup problems solvable!
Meraculous)

Wheat genome (17 Gbp) “de novo” assembled (2014):

— Meraculous (did not run):

— HipMer: 39 minutes; 15K cores (first all-in-one assembly)

Pine genome (20 Gbp) “de novo” assembled (2014) :
— Masurca : 3 months; 1 TB RAM
Wetland metagenome (1.25 Tbp) analysis (2015):

— Meraculous (projected): 15 TB of memory

— HipMER: Strong scaling to over 100K cores
(contig gen only)

Georganas, Buluc, Chapman, Oliker, Rokhsar, Yelick, [Aluru,Egan,Hofmeyr] in
SC14, IPDPS15, SC15 16



UPC++: PGAS with “Mixins” (Teams and Asyncs)

« UPC++ uses templates (no compiler needed) | [s: 16 [ 4 x 5// x: 7
shared_var<int> s; / y: y: 0
global__ptr<LLNode> g 18 /.5 63 .E 27
shared_array<int> sa(8); 7 : = '

/ A\
. . g sa:
 Default execution model is SPMD, but
PO p1 p2

* Remote methods, async

async(place) (Function f, T1 argl,..);
wait(); // other side does poll();

* Research in teams for hierarchical
algorithms and machines

teamsplit (team) { ... }
* Use these for “domain-specific” runtime systems
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Where is PGAS programming used?

1. Asynchronous fine-grained reads/write/atomics
(aggregation and software caching when possible)

2. Strided irregular updates (adds) to distributed matrix




Application Challenge: Data Fusion

5
2

Distributed Matrix Construction

* Remote asyncs with user-controlled
resource management

* Divide threads into injectors / updaters

* 6x faster than MPI 3.0 on 1K XE6 nodes

. * “Fusing” observational data into simulation
+ :
up( * Interoperates with MPI/Fortran/ScaLAPACK

Scott French, Yili Zheng, Barbara Romanowicz, Katherine Yelick; "Parallel Hessian Assembly for Seismic Waveform Inversion
Using Global Updates", IPDPS 2015 DEGAS Overview\ 19



Application Challenge: Data Fusion

Strong Scaling (NERSC Edison)
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Science Impact: Whole-Mantle Seismic Model

* First-ever whole-mantle seismic model from numerical waveform tomography
* Finding: Most volcanic hotspots are linked to two spots on the boundary
between the metal core and rocky mantle 1,800 miles below Earth's surface.

SEMUCB-WM1 at 2800 km depth Makes unsolvable
“ . problems solvable!
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@ “Primary” plumes () Somewhat resolved

@ Clearly resolved © Not associated with any hotspot up Q+

Scott French, Barbara Romanowicz, "Broad plumes rooted at the base of the Earth’s mantle
beneath major hotspots”, Nature, 2015 DEGAS Overvis
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Multidimensional Arrays in UPC++

* UPC++ arrays have a rich set of operations
/

translate restrict slice (n dim to n-1)

transpose
* Create new views of the data in original array

 Example: ghost cell exchange in AMR

intersection
interior (copied area
A ndarray<double, 3, global> gridB =
\ """" \ bArrays[i, j, k];

gridA.async copy(gridB.shrink (1)) ;

ghost cells™ a5

DEGAS Overvi®



Where is PGAS programming used?

Asynchronous fine-grained reads/write/atomics
(aggregation and software caching when possible)

Strided irregular updates (adds) to distributed matrix
Dynamic work stealing




Application Challenge: Dynamic Load Balancing

* Hartree Fock example (e.g., in NWChem which is already PGAS)

— Inherent load imbalance

 UPC++ version
— Dynamic work stealing and fast atomic
operations enhanced load balance
— Transpose an irregularly blocked matrix

0 1 2 3

Local Arra A . . .

12 13 14 15

David Ozog (CSGF Fellow), A. Kamil, Y. Zheng, P. Hargrove, J. Hammond, A. Malony, oy
W. de Jong, K. Yelick DEGAS Overvig ;E'R'K:;L‘Ai




Hartree Fock Code

Improved Scalability

4.0

208 __ ldeal

1.0l ™ GTFock - alkane
—® UPC++ - alkane

0.5 A—a GTFock - DNA 5mer
—¢ UPC++ - DNA 5mer

Seconds per Fock build (ave.)
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Strong Scaling of UPC++ HF on NERSC Edison
Compared to (highly optimized) GTFock with Global Arrays
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Wall clock time (Sec)

Towards NWChem in UPC++

New Global Arrays Toolkit over GASNet
e Over 20% faster on Infiniband

* More scalable aggregate FFTs than FFTW
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Where is PGAS programming used?

Asynchronous fine-grained reads/write/atomics
(aggregation and software caching when possible)

Strided irregular updates (adds) to distributed matrix
Dynamic work stealing

Hierarchical algorithms / one programming model




UPC++ Communication Speeds up AMR

 Adaptive Mesh Refinement on
Block-Structured Meshes

— Used in ice sheet modeling, climate,
subsurface (fracking), astrophysics,
accelerator modeling and many

FillBoundary Test on 2048 Cori Cores
T T T T

1.00
1.0
Better
0.68 0.65 7
0.61
i 052 | Hierarchical UPC++ (distributed / shared
H style)
Ar 1 o UPC++ plus UPC++ is 2x faster than MPI

=
o0

Renormalized Time
o
D

o
=~

plus OpenMP
e MPI + MPI also does well

o
o

e
o

O g W gpo O



Reducing Metadata Overhead in AMR

 Reducing the metadata size

phase I: Reduce the size of the grid class

phase II: Split the grid class into grid-local and grid_remote

* Distribute the grid hierarchy data structure

using UPC

,,-_.:” Phi\:e)I
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1

Slide source: Mike Norman UCSD (Enzo code) 29
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Where is PGAS programming used?

1.

Asynchronous fine-grained reads/write/atomics
(aggregation and software caching when possible)

Strided irregular updates (adds) to distributed matrix
Dynamic work stealing

Hierarchical algorithms / one programming model
Task Graph Scheduling (UPC++)




Sparse Cholesky as a Parallel Task Graph

.
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e Sparse matrix factorization (Cholesky)
* Novel fan in/out algorithm programmed in UPC++

Mathias Jacqueline, Esmond Ng, Yili Zheng, Kathy Yelick



Sparse Cholesky Comparisons

Run times for boneSlO comm

Run times for af shell7
8 symPACK_ Push — 0% @@ SuperLU DIST 4.3[]
¥=¥ symPACK - Pull V=¥ PASTIX 5.2.2
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Dynamic scheduling outperforms other

 The combination of algorithm and implementation (in UPC++)
outperforms the competition

Mathias Jacqueline, Esmond Ng, Yili Zheng, Kathy Yelick 32



Where is PGAS programming used?

1.

Asynchronous fine-grained reads/write/atomics
(aggregation and software caching when possible)

Dynamic work stealing

Strided irregular updates (adds) to distributed matrix
Hierarchical algorithms / one programming model
Task Graph Scheduling (UPC++)

Dynamic runtimes (CHARM++, Legion, HPX)




HPX Asynchronous Runtime Performs on Manycore

LibGeoDecomp - Weak Scaling - 300 Matrix Transpose (12kx12k doubles) on the Xeon Phi
Distributed — OpenMP :
700000 (Host Cores) — MPI ‘Babbage ‘
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Credit: Harmut Kaiser, LSU and HPX team
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Legion Programming Model & Runtime
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Legion team from Stanford, ExaCT Co-Design Center



Why is PGAS used? (Besides Application

Characteristics)




One-Sided Communication is Closer to Hardware

one-sided message host
CPU
address data payload ———
ded network
two-sided put message TR
message ID data payload —>
memory

* One-sided communication (put/get) is what hardware does
— Even underneath send/receive
— Information on where to put the date is in the message
— Decouples synchronization from transfer

* Two-sided message passing (e.g., send/receive in MPI)
— Requires matching with remote side to “find” the address to write data
— Couples data transfer with synchronization (often, but not always what you want)

Exascale should offer programmers / vendors a lightweight option

37 DEGAS Overview



One-Sided Communication Between Nodes is Faster
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* For communication-intensive problems, the gap is substantial
— Problems with small messages
— Bisection bandwidth problems (global FFTs)

Hargrove, Ibrahim

38



Overhead for Messaging

 Overhead (processor busy time) gets worse on “exascale” cores

* Having a low overhead option is increasingly important

Avg cycles per call Off Node
(to do nothing)
On Intel Ivybridge

m 3,692 cycles 1,262 cycles
m 1,154 cycles 1,924 cycles
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Computer Architecture Group (CAL) 39



* Successful PGAS applications are mostly asynchronous

1. Asynchronous fine-grained reads/write/atomics (aggregation
and software caching when possible)

Dynamic work stealing

Strided irregular updates (adds) to distributed matrix
Hierarchical algorithms / one programming model
Task Graph Scheduling (UPC++)

Dynamic runtimes (CHARM++, Legion, HPX)

o N & W N

 Exascale architecture trends
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