PGAS Applications
What, Where and Why?

Kathy Yelick

Professor of Electrical Engineering and Computer Sciences
University of California at Berkeley
Associate Laboratory Director for Computing Sciences
Lawrence Berkeley National Laboratory

What is PGAS? Partitioned Global Address Space

8 2 |4 |6]s 22 | 24
© |
o
7
"
7]
)
P S
<
© I: 7 1: /‘ o000 1:
©
- S aexaliexe 7
O
PO p1 pn

* Global Address Space: Directly access remote memory
* Partitioned: Programmer controls data layout for scalability

DEGAS Overview 2

PGAS Languages and Libraries

* Language mechanisms for distributed arrays
— (CoArray) Fortran REAL:: X(2,3)[*]
X(1,2) ... X(1,3)[5]

— UPC shared double X [100]; or double X[THREADS*6];
X[]... X[MYTHREAD]
— Chapel const ProblemSpace= {1..m}

dmapped Block(boundingBox={1..m});
var X: [ProblemSpace] real;

— UPC++ upcxx::shared_array<Type> X;
X.init(128); or X.init(128,4)
X [upcxx:ranks()] ... X[6]
Many others...

Programming Data Analytics vs Simulation

Analytics: More Irreqular
-\r / ;
Message Passing Programming Global Address Space Programming
Divide up domain in pieces Each start computing
Compute one piece Grab whatever / whenever
Send/Receive data from others
MPI, and many libraries UPC,UPC++, CAF, X10, Chapel, Shmem, GA

DEGAS Overview 4

Distributed Arrays Directory Style

Many UPC programs avoid the UPC style arrays in
factor of directories of objects

typedef shared [] double *sdblptr;
shared sdblptr directory[THREADS];
directory[i]=upc alloc(local size*sizeof (double));

directory

/ / /]]
/RN Ry

fii= uunonlinononooong}

A\

Distributed Arrays Directory Style

* These are also more general:
e Multidimensional, unevenly distributed
e Ghost regions around blocks

+7

physical and
conceptual
3D array
layout

Example: Hash Table in PGAS

Q
o L T I]
% key.: act key.: cga key.: gac key: tac
N val: a val: g val: ¢ val: ¢
(7)) ® ®
e | ¥ Z ¥
S | key: cca | key: gta
© |val: t | val: ¢
m 1 1
©
0
o
O
PO p1 pn

* <key, value> pairs, stored in some bucket based on hash(key)
 One-sided communication; never having to say “receive”
* Allows for Terabyte-Petabyte size data sets vs ~1 TB in shared memory

DEGAS Overview 7

Other Programming Model Variations

 What can you do remotely?
— Read, Write, Lock
— Atomics (compare-and-swap, fetch-and-add)
— Invoke functions
— Signal processes to wake up (task graphs)
 What type of parallelism is there
— Data parallel (single threaded semantics, e.g., A=B + C)

e Collective communication
— Single Program Multiple Data (SPDM): if (MYTHREAD == 0)....

— Hierarchical SPMD (teams): if (MYTEAM....)...
— Fork-join: fork / async
— Task graph (events)

Programing Models and Environments 8

Where is PGAS programming used?

1. Asynchronous fine-grained reads/write/atomics

De novo Genome Assembly

* DNA sequence consists of 4 bases: A/C/G/T
* Read: short fragment of DNA

* De novo assembly: Construct a genome
(chromosomes) from a collection of reads

DT B)T o T,
g RavensburgerszPuzzle
& | xr

511

DEGAS Overview 10

Metagenome Assembly: Grand Challenge

All metagenomes
100 o
90 o © ¢ Soil
80 B Marine

70 - Groundwater
60 =

50 ®

40

N JGIS

© Bioreactor

% reads assembled

¢
10 | o ol 01;—"'. L >
O i ‘ |

0 10 20 30

Gbp sequenced

For complex metagenomes (soil) most of the reads cannot be assembled

DEGAS Overview 11

De novo Genome Assembly a /a Meraculous

Input: Reads that may contain errors
reads — T B s S Chop reads into k-mers, process

I S D S S S I B
e e e e e s s mmm - EFS 1O eXclude errors

I S S S s S S S S —— « Bloom filter (StaﬁSﬁcaI)

‘ * Intensive /O
* High memory footprint
k-mers == T o = _=_===_=.= Construct & traverse de Bruijn graph

T = m = e e = = o .= = .= Oofk-mers, generate contigs

* Huge graph as a hash table

@ * Irregular accesses

* Injection limited

contigs TN TR T AR Leverage read information to link
@ contigs and generate scaffolds.
* Multiple hash tables
| | . o
— — - * High memory requirements
scaffolds — - * Intensive computation

Intensive 1/O

Georganas, Buluc, Chapman, Oliker, Rokhsar, Yelick, [Aluru,Egan,Hofmeyr] in SC14, IPDPS15, SC15 12

Application Challenge: Random Access to Large Data

e Parallel DFS (from randomly selected K-mers) to compute contigs
 Some tricky synchronization to deal with conflicts

(CcQ Contig 2: AACCG
Contig 1: GATCTGA
(AAC)

| er—@re—~qer—~cro—aon | <

&1
7ccy Contig 3: AATGC

* Hash tables used in all phases

— Different use cases, different implementations

* No a priori locality: that is the problem you’re trying to solve

DEGAS Overview 13

Seconds

HipMer (High Performance Meraculous) Assembly Pipeline

Distributed Hash Tables in PGAS
 Remote Atomics, Dynamic Aggregation, Software Caching

* 13x Faster than another HPC/MPI code (Ray) on 960 cores

6102 HUMAN | | WHEAT _
" overall time tese4 g overall time
Uy, kmer analysis == | A T, kmer analysis ==«
4096 g, contig generation ===se===] 8192 | ey, May i contig generation =s=sas:=
T, scaffolding ==t | | e, _ scaffolding
D048 g e " ...ideal overall time LALLLI 4096 F ,,,"",:,.,,,,,'“".',,, ideal overall time s
llllll ."l' ’l:,"un,,",
1024 | e, 2048 [M S
ey gy, ..',. :::::::::
1o S 1024 | L bl
512 | o, ; , S
........ .I""':, B12 """..'"-.'.'...'.'.' Ty
DB [o N (N ...,
T, —, y 256“".’.’.’...'.'.'.”' R """..'.'.'....'l'.'.'.
128 e '..","'~A, an.!-..,._,.,.,.., T e e
............ n 128 | e
- e, A _— nu,....
64 64 [."".."]
..l‘ ‘
32 k-))) BabiLl) ST — 32) ! PR b h
480 960 1920 3840 7680 15360 960 1920 3840 7680 15360
Number of Cores Number of Cores

Evangelos Georganas, Aydin Bulug, Jarrod Chapman, Steven Hofmeyr, Chaitanya Aluru, Rob Egan, Lenny Oliker, Dan
Rokhsar, and Kathy Yelick. HipMer: An Extreme-Scale De Novo Genome Assembler, SC'15

Comparison to other Assemblers

140 hours

Runtime on Assemblers

Equal core counts (960 Edison)

A

Runtime in Hours
N
(Oa]
|

20 -
|
15 -
10 -
5 -
4 min
0 -
Meraculous SGA ABySS 960 Ray 960 HipMer 960 HipMer 20K

Contig only

Science Impact: HipMer is transformative

Human genome (3Gbp) “de novo” assembled :

— Meraculous: 48 hours
Makes unsolvable

— HipMer: 4 minutes (720x speedup problems solvable!
Meraculous)

Wheat genome (17 Gbp) “de novo” assembled (2014):

— Meraculous (did not run):

— HipMer: 39 minutes; 15K cores (first all-in-one assembly)

Pine genome (20 Gbp) “de novo” assembled (2014) :
— Masurca : 3 months; 1 TB RAM
Wetland metagenome (1.25 Tbp) analysis (2015):

— Meraculous (projected): 15 TB of memory

— HipMER: Strong scaling to over 100K cores
(contig gen only)

Georganas, Buluc, Chapman, Oliker, Rokhsar, Yelick, [Aluru,Egan,Hofmeyr] in
SC14, IPDPS15, SC15 16

UPC++: PGAS with “Mixins” (Teams and Asyncs)

« UPC++ uses templates (no compiler needed) | [s: 16 [4 x 5// x: 7
shared_var<int> s; / y: y: 0
global__ptr<LLNode> g 18 /.5 63 .E 27
shared_array<int> sa(8); 7 : = '

/ A\
. . g sa:
 Default execution model is SPMD, but
PO p1 p2

* Remote methods, async

async(place) (Function f, T1 argl,..);
wait(); // other side does poll();

* Research in teams for hierarchical
algorithms and machines

teamsplit (team) { ... }
* Use these for “domain-specific” runtime systems

17

Where is PGAS programming used?

1. Asynchronous fine-grained reads/write/atomics
(aggregation and software caching when possible)

2. Strided irregular updates (adds) to distributed matrix

Application Challenge: Data Fusion

5
2

Distributed Matrix Construction

* Remote asyncs with user-controlled
resource management

* Divide threads into injectors / updaters

* 6x faster than MPI 3.0 on 1K XE6 nodes

. * “Fusing” observational data into simulation
+ :
up(* Interoperates with MPI/Fortran/ScaLAPACK

Scott French, Yili Zheng, Barbara Romanowicz, Katherine Yelick; "Parallel Hessian Assembly for Seismic Waveform Inversion
Using Global Updates", IPDPS 2015 DEGAS Overview\ 19

Application Challenge: Data Fusion

Strong Scaling (NERSC Edison)

1007~ ®

:\'5 :

O 8Ol

c

9

Y

8 GOl

LL

[

g AOL

w . . .

.E >0l B8].le5x1.1e5(45GB) |

% B—l 2.2e5 x 2.2e5 (180 GB)

ec B—8 8.2e5 x 8.2e5 (2.5 TB) : :

+ | | | | |
leQ 08 192 768 3072 12288
Cores

Scott French, Yili Zheng, Barbara Romanowicz, Katherine Yelick; "Parallel Hessian Assembly for Seismic Waveform Inversion
Using Global Updates", IPDPS 2015 DEGAS Overview\ 20

Science Impact: Whole-Mantle Seismic Model

* First-ever whole-mantle seismic model from numerical waveform tomography
* Finding: Most volcanic hotspots are linked to two spots on the boundary
between the metal core and rocky mantle 1,800 miles below Earth's surface.

SEMUCB-WM1 at 2800 km depth Makes unsolvable
“ . problems solvable!

4+2.0%

=

3

<

(%]

4 -2.0 %

Min: -3.4 %

Max: +3.9 %

@ “Primary” plumes () Somewhat resolved

@ Clearly resolved © Not associated with any hotspot up Q+

Scott French, Barbara Romanowicz, "Broad plumes rooted at the base of the Earth’s mantle
beneath major hotspots”, Nature, 2015 DEGAS Overvis

~
/—\I A
rrrrrrr] |'"|

Multidimensional Arrays in UPC++

* UPC++ arrays have a rich set of operations
/

translate restrict slice (n dim to n-1)

transpose
* Create new views of the data in original array

 Example: ghost cell exchange in AMR

intersection
interior (copied area
A ndarray<double, 3, global> gridB =
\ """" \ bArrays[i, j, k];

gridA.async copy(gridB.shrink (1)) ;

ghost cells™ a5

DEGAS Overvi®

Where is PGAS programming used?

Asynchronous fine-grained reads/write/atomics
(aggregation and software caching when possible)

Strided irregular updates (adds) to distributed matrix
Dynamic work stealing

Application Challenge: Dynamic Load Balancing

* Hartree Fock example (e.g., in NWChem which is already PGAS)

— Inherent load imbalance

 UPC++ version
— Dynamic work stealing and fast atomic
operations enhanced load balance
— Transpose an irregularly blocked matrix

0 1 2 3

Local Arra A . . .

12 13 14 15

David Ozog (CSGF Fellow), A. Kamil, Y. Zheng, P. Hargrove, J. Hammond, A. Malony, oy
W. de Jong, K. Yelick DEGAS Overvig ;E'R'K:;L‘Ai

Hartree Fock Code

Improved Scalability

4.0

208 __ ldeal

1.0l ™ GTFock - alkane
—® UPC++ - alkane

0.5 A—a GTFock - DNA 5mer
—¢ UPC++ - DNA 5mer

Seconds per Fock build (ave.)

© AN > H A0 A X
% QA B AT D0
97 N0 N A L Y D
SOOI LS SR

+
Cores up Q

Strong Scaling of UPC++ HF on NERSC Edison
Compared to (highly optimized) GTFock with Global Arrays

® © 4%] ®
™ RN oy A0

David Ozog (CSGF Fellow), A. Kamil, Y. Zheng, P. Hargrove, J. Hammond, A. Malony, =

I\
coeec

W. de Jong, K. Yelick DEGAS Overvidiiliisti

Wall clock time (Sec)

Towards NWChem in UPC++

New Global Arrays Toolkit over GASNet
e Over 20% faster on Infiniband

* More scalable aggregate FFTs than FFTW

XY + Z (256"3)
S<FFTW (256"3)

3000

2500 -

2000 -

1500 -

1000 -

500

=$=GA over GASNET
=@~GA base version

-

0

512 1024 1536 2048

Number of processor cores (Using 16 cores per node)

Increase scalability!

—-X+Y+ Z (64X256°3; _X128)/64 ==X +Y +Z (256"3;VpX\p)

33333

GFLOPS (5*N*logN/T)

- X+Y+Z (64X256"3VpXp)/64 ~-X+Y+Z (64X256°3; _X16)/64
—S-X+Y+ Z (B4X25673; _X 32)/64 —-X+Y+ Z (64X256"3; _X 64)/64

ad

7

N (\Q\

MPI Ranks (16 / node ; 8 / socket) on Edison

* Goal of making this ready for production use (Bert de Jong)

E. Hoffman (GAGA), H. Simhadri (FFTs)

~

/—\' A

rrrrrrr,!”'l
B

DEGAS Overvis

BERKELEY LAB

Where is PGAS programming used?

Asynchronous fine-grained reads/write/atomics
(aggregation and software caching when possible)

Strided irregular updates (adds) to distributed matrix
Dynamic work stealing

Hierarchical algorithms / one programming model

UPC++ Communication Speeds up AMR

 Adaptive Mesh Refinement on
Block-Structured Meshes

— Used in ice sheet modeling, climate,
subsurface (fracking), astrophysics,
accelerator modeling and many

FillBoundary Test on 2048 Cori Cores
T T T T

1.00
1.0
Better
0.68 0.65 7
0.61
i 052 | Hierarchical UPC++ (distributed / shared
H style)
Ar 1 o UPC++ plus UPC++ is 2x faster than MPI

=
o0

Renormalized Time
o
D

o
=~

plus OpenMP
e MPI + MPI also does well

o
o

e
o

O g W gpo O

Reducing Metadata Overhead in AMR

 Reducing the metadata size

phase I: Reduce the size of the grid class

phase II: Split the grid class into grid-local and grid_remote

* Distribute the grid hierarchy data structure

using UPC

,,-_.:” Phi\:e)I

[N

1

Slide source: Mike Norman UCSD (Enzo code) 29

Phase 11
S

Where is PGAS programming used?

1.

Asynchronous fine-grained reads/write/atomics
(aggregation and software caching when possible)

Strided irregular updates (adds) to distributed matrix
Dynamic work stealing

Hierarchical algorithms / one programming model
Task Graph Scheduling (UPC++)

Sparse Cholesky as a Parallel Task Graph

.

Processor list:
°
ee Po|P1|P2| P3
.....
2
o000
00000
.OOO::.
(X) o000
00000
(X] 000000 @
(X] 0000000
(X):.
]
00000 @
000000
0000000
000000 o000
000000 00000
(] +++ 000
o0 +++ 0000
00000
(X] +++ 000000

e Sparse matrix factorization (Cholesky)
* Novel fan in/out algorithm programmed in UPC++

Mathias Jacqueline, Esmond Ng, Yili Zheng, Kathy Yelick

Sparse Cholesky Comparisons

Run times for boneSlO comm

Run times for af shell7
8 symPACK_ Push — 0% @@ SuperLU DIST 4.3[]
¥=¥ symPACK - Pull V=¥ PASTIX 5.2.2
A=A symPACK - Pull dynamic scheduling A=A MUMPS 5.0
<=4 symPACK
10t}
v
0]
£
|_
10°}
> > >V ¥ooP VO o> ~ > 6 D > O 6 o> Ao D
v e o NIV NO AX] SR I IR G
Processor count
Processor count
°

Dynamic scheduling outperforms other

 The combination of algorithm and implementation (in UPC++)
outperforms the competition

Mathias Jacqueline, Esmond Ng, Yili Zheng, Kathy Yelick 32

Where is PGAS programming used?

1.

Asynchronous fine-grained reads/write/atomics
(aggregation and software caching when possible)

Dynamic work stealing

Strided irregular updates (adds) to distributed matrix
Hierarchical algorithms / one programming model
Task Graph Scheduling (UPC++)

Dynamic runtimes (CHARM++, Legion, HPX)

HPX Asynchronous Runtime Performs on Manycore

LibGeoDecomp - Weak Scaling - 300 Matrix Transpose (12kx12k doubles) on the Xeon Phi
Distributed — OpenMP :
700000 (Host Cores) — MPI ‘Babbage ‘
250F — HPX parallel loop |~ P P RS
600000 | —m— HpX — HPX blocked 1 1 1
500000 | —* MPI L 200p . e e T ——
Theoretical Peak -g : : : : :
tD,.') 400000 Z 3 3 3 3 3
Cé SRR LTy SR e e T A e e
© 300000 2
,E? : : : : 1
200000 100[g A e e e
100000 | | ‘ ; 5
50L A e T ST b |
0 r < Higher is
Cores 0 3K 6K 9K 13K 16K o : : :
1 10 20 30 40 50 60

Number of Cores

Credit: Harmut Kaiser, LSU and HPX team
34

Legion Programming Model & Runtime

1 - 60000 -
* Dynamlc taSk baSEd Weak 3cal|ng on Titan: (throughput)
— Data-centric — tasks specify what data @ 50°°°:<>"<>'<><><> ,,,,, — S — T
they access and how they use them £ | * - ® o
(read-only, read-write, exclusive, etc.) & A A PSR <> """"" ;
.) ks | 00
— Separates task implementation Z s S S S ;9 ,,,,,,,
from hardware mapping decisions = |
220000 TR ST PR ST rrrrrrrrrrrrrr rrrrrrrrrrrr
— Latency tolerant g FV-9¥-v.9 .o 5 "
10000 Fl s 1 o aal L e
. o g . oL S3D | Vv
* Declarative specification of v ¥ A, =2
1 1 0 s 16 64 256 1024 4096 13824
task graph in Legion o
— Serial program 70000{ rrrrrrr i————Weak scalmg on P|z Dalnt (throughput)
— Read/Write effects on regions of @ TG S 4 <><>--<><><><><>©<> rrrrrr
data structures Sl TR R R g
— Determine maximum parallelism 3 o} oo S
&
* Port of S3D complete L e e
%’20000~i rrrrrrrrrrrrrrr RIS IR R e rrrrrrrr SR SR
£ f—-V—-V--V -v—-V--V- J'";"';"’:"“:“-vfl
10000 H{© € LegionS3D | SSITESr SO ERRE SO
¥V ¥V MPI Fortran S3D I
0 11 é 4;- é 116 312 614 1é8 2%6 5112 10124 20148 40196
Nodes

Legion team from Stanford, ExaCT Co-Design Center

Why is PGAS used? (Besides Application

Characteristics)

One-Sided Communication is Closer to Hardware

one-sided message host
CPU
address data payload ———
ded network
two-sided put message TR
message ID data payload —>
memory

* One-sided communication (put/get) is what hardware does
— Even underneath send/receive
— Information on where to put the date is in the message
— Decouples synchronization from transfer

* Two-sided message passing (e.g., send/receive in MPI)
— Requires matching with remote side to “find” the address to write data
— Couples data transfer with synchronization (often, but not always what you want)

Exascale should offer programmers / vendors a lightweight option

37 DEGAS Overview

One-Sided Communication Between Nodes is Faster

18000

16000 -

14000

[y
N
[=]
o
o

10000

8000

6000

Bandwidth (MB/s)

4000

2000

~ =%Berkeley UPC Cray XE6: Hopper

«@~Cray UPC
=#=Cray MPI

8 32 128 512 2048 8192 32768 131072 524288 2097152
Msg. size

* For communication-intensive problems, the gap is substantial
— Problems with small messages
— Bisection bandwidth problems (global FFTs)

Hargrove, Ibrahim

38

Overhead for Messaging

 Overhead (processor busy time) gets worse on “exascale” cores

* Having a low overhead option is increasingly important

Avg cycles per call Off Node
(to do nothing)
On Intel Ivybridge

m 3,692 cycles 1,262 cycles
m 1,154 cycles 1,924 cycles

35000 —
B 2.9GHzx86

S 30000 —

8 B 1 GHz x86 (model)
G £ 29000 W 1GHz3-SIMT (model) [
C
o 2 20000
o O
8 &) 15000
% g 10000

o 5000

- —

O — T T
isend (off) irecv (off) isend (on) irecv (on)

Computer Architecture Group (CAL) 39

* Successful PGAS applications are mostly asynchronous

1. Asynchronous fine-grained reads/write/atomics (aggregation
and software caching when possible)

Dynamic work stealing

Strided irregular updates (adds) to distributed matrix
Hierarchical algorithms / one programming model
Task Graph Scheduling (UPC++)

Dynamic runtimes (CHARM++, Legion, HPX)

o N & W N

 Exascale architecture trends

40

