
PGAS Applications!
What, Where and Why?

Kathy Yelick

Professor of Electrical Engineering and Computer Sciences
University of California at Berkeley

Associate Laboratory Director for Computing Sciences
Lawrence Berkeley National Laboratory

What is PGAS? Partitioned Global Address Space

•  Global	Address	Space:	Directly	access	remote	memory		
•  Par66oned:	Programmer	controls	data	layout	for	scalability	

G
lo

ba
l a

dd
re

ss
 s

pa
ce

x: 1
y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0 p1 pn

 2 4 6 8 . . . 22 24

DEGAS Overview 2

•  Language	mechanisms	for	distributed	arrays	
–  (CoArray)	Fortran								REAL::	X(2,3)[*]				
																																												X(1,2)	….			X(1,3)[5]				

–  UPC																																shared	double	X	[100];			or			double	X[THREADS*6];			
																																												X[]	….						X[MYTHREAD]	
	
–  Chapel																											const	ProblemSpace=	{1..m}		

																																																			dmapped	Block(boundingBox={1..m});		
																																															var	X:	[ProblemSpace]	real;		
	

–  UPC++																												upcxx::shared_array<Type>	X;	
																																												X.init(128);					or				X.init(128,4)	
																																												X	[upcxx:ranks()]			...						X[6]	
Many	others...	

PGAS Languages and Libraries

3

Programming Data Analytics vs Simulation

Simula'on:	More	Regular	
	
	
	
	
	
	
	
	
Message	Passing	Programming		
Divide	up	domain	in	pieces	
Compute	one	piece		
Send/Receive	data	from	others	
	
MPI,	and	many	libraries	

Analy'cs:	More	Irregular	
	
	
	
	
	
	
	
Global	Address	Space	Programming	
Each	start	compubng	
Grab	whatever	/	whenever	
	
	
UPC,UPC++,	CAF,	X10,	Chapel,	Shmem,	GA	
	 DEGAS Overview 4

Distributed Arrays Directory Style

Many UPC programs avoid the UPC style arrays in
factor of directories of objects
 typedef shared [] double *sdblptr;
 shared sdblptr directory[THREADS];
 directory[i]=upc_alloc(local_size*sizeof(double));

directory	

Distributed Arrays Directory Style

physical and
conceptual
3D array
layout

•  These	are	also	more	general:	
• Mulbdimensional,	unevenly	distributed	
• Ghost	regions	around	blocks	

Example: Hash Table in PGAS

G

lo
ba

l a
dd

re
ss

 s
pa

ce

key: act
val: a

key: cga
val: g

key: gac
val: c

p0 p1 pn

 . . .

•  <key,	value>	pairs,	stored	in	some	bucket	based	on	hash(key)	
•  One-sided	communica6on;	never	having	to	say	“receive”	
•  Allows	for	Terabyte-Petabyte	size	data	sets	vs	~1	TB	in	shared	memory	

key: cca
val: t

key: gta
val: c

key: tac
val: c

DEGAS Overview 7

•  What	can	you	do	remotely?	
–  Read,	Write,	Lock	
–  Atomics	(compare-and-swap,	fetch-and-add)	
–  Invoke	funcbons	
–  Signal	processes	to	wake	up	(task	graphs)	

•  What	type	of	parallelism	is	there	
–  Data	parallel	(single	threaded	semanbcs,	e.g.,	A	=	B	+	C)	

•  Collecbve	communicabon		
–  Single	Program	Mulbple	Data	(SPDM):			if	(MYTHREAD	==	0)….	
–  Hierarchical	SPMD	(teams):	if	(MYTEAM….)...	
–  Fork-join:		fork	/	async		
–  Task	graph	(events)	

Other Programming Model Variations

8 Programing Models and Environments

Where is PGAS programming used?

9

1.  Asynchronous	fine-grained	reads/write/atomics	

De novo Genome Assembly

•  DNA	sequence	consists	of	4	bases:	A/C/G/T	
•  Read:	short	fragment	of	DNA		
•  De	novo	assembly:	Construct	a	genome	
(chromosomes)	from	a	collec6on	of	reads	

DEGAS Overview 10

Metagenome Assembly: Grand Challenge

For	complex	metagenomes	(soil)	most	of	the	reads	cannot	be	assembled	

DEGAS Overview 11

De novo Genome Assembly a la Meraculous

reads

contigs

k-mers

1

2

Input:	Reads	that	may	contain	errors	

Chop	reads	into	k-mers,	process		
k-mers	to	exclude	errors		

Construct	&	traverse	de	Bruijn	graph	
of	k-mers,	generate	conbgs	

3

scaffolds

Leverage	read	informabon	to	link	
conbgs	and	generate	scaffolds.	

•  Bloom	filter	(sta6s6cal)	
•  Intensive	I/O	
•  High	memory	footprint	

•  Huge	graph	as	a	hash	table	
•  Irregular	accesses	
•  Injec6on	limited	

•  Mul6ple	hash	tables	
•  High	memory	requirements	
•  Intensive	computa6on	
•  Intensive	I/O	

12 Georganas,	Buluc,	Chapman,	Oliker,	Rokhsar,	Yelick,	[Aluru,Egan,Hofmeyr]	in	SC14,	IPDPS15,	SC15	

•  Parallel	DFS	(from	randomly	selected	K-mers)	to	compute	con6gs	
•  Some	tricky	synchroniza6on	to	deal	with	conflicts	

	

•  Hash	tables	used	in	all	phases	
–  Different	use	cases,	different	implementabons	

•  No	a	priori	locality:	that	is	the	problem	you’re	trying	to	solve	

Application Challenge: Random Access to Large Data

13 DEGAS Overview

GAT ATC TCT CTG TGA

AAC

ACC

CCG

AAT

ATG

TGC

Conbg	1:	GATCTGA	

Conbg	2:	AACCG	

Conbg	3:	AATGC	

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 960 1920 3840 7680 15360

Se
co

nd
s

Number of Cores

overall time
kmer analysis

contig generation
scaffolding

ideal overall time

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 480 960 1920 3840 7680 15360

Se
co

nd
s

Number of Cores

overall time
kmer analysis

contig generation
scaffolding

ideal overall time

HUMAN	 WHEAT	

Evangelos	Georganas,	Aydın	Buluç,	Jarrod	Chapman,	Steven	Hofmeyr,	Chaitanya	Aluru,	Rob	Egan,	Lenny	Oliker,	Dan	
Rokhsar,	and	Kathy	Yelick.	HipMer:	An	Extreme-Scale	De	Novo	Genome	Assembler,	SC’15	
	
.		

 HipMer (High Performance Meraculous) Assembly Pipeline

Distributed	Hash	Tables	in	PGAS	
•  Remote	Atomics,	Dynamic	Aggregabon,	Sotware	Caching	
•  13x	Faster	than	another	HPC/MPI	code	(Ray)	on	960	cores	

Comparison to other Assemblers

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

Meraculous	 SGA	 ABySS	960	 Ray	960	 HipMer	960	 HipMer	20K	

Ru
n6

m
e	
in
	H
ou

rs
	

Run6me	on	Assemblers	

140	hours	

Equal	core	counts	(960	Edison)	

Conbg	only	

4	min	

Science Impact: HipMer is transformative

•  Human	genome	(3Gbp)	“de	novo”	assembled	:	

–  Meraculous:	48	hours	
–  HipMer:	4	minutes	(720x	speedup																									relabve	to	
Meraculous)	

•  Wheat	genome	(17	Gbp)	“de	novo”	assembled	(2014):	
–  Meraculous	(did	not	run):		
–  HipMer:	39	minutes;	15K	cores	(first	all-in-one	assembly)	

•  Pine	genome	(20	Gbp)	“de	novo”	assembled	(2014)	:	
–  Masurca	:	3	months;	1	TB	RAM	

•  Wetland	metagenome	(1.25	Tbp)	analysis	(2015):	
–  Meraculous	(projected):	15	TB	of	memory	
–  HipMER:	Strong	scaling	to	over	100K	cores			
			(conbg	gen	only)	

16
Georganas,	Buluc,	Chapman,	Oliker,	Rokhsar,	Yelick,	[Aluru,Egan,Hofmeyr]	in	
SC14,	IPDPS15,	SC15	

Makes	unsolvable	
problems	solvable!	

DEGAS

p0 p1 p2

UPC++: PGAS with “Mixins” (Teams and Asyncs)

•  Default	execu6on	model	is	SPMD,	but	

•  UPC++	uses	templates	(no	compiler	needed)	
	shared_var<int>	s;		
	global_ptr<LLNode> g;
	shared_array<int>	sa(8);	

s: 16

g:

x: 5
y:

x: 7
y: 0

sa:

 18 63 27

•  Remote	methods,	async	
		async(place)	(Function	f,	T1	arg1,…);	
		wait();					//	other	side	does	poll();	

•  Use	these	for	“domain-specific”	run6me	systems		

•  Research	in	teams	for	hierarchical	
algorithms	and	machines	

				teamsplit	(team)	{	...	}	
	

17

Where is PGAS programming used?

18

1.  Asynchronous	fine-grained	reads/write/atomics	
(aggregabon	and	sotware	caching	when	possible)	

2.  Strided	irregular	updates	(adds)	to	distributed	matrix	

Application Challenge: Data Fusion

19

•  “Fusing”	observabonal	data	into	simulabon	
•  Interoperates	with	MPI/Fortran/ScaLAPACK		

Distributed	Matrix	Construc6on	
•  Remote	asyncs	with	user-controlled	

resource	management	
•  Divide	threads	into	injectors	/	updaters	
•  6x	faster	than	MPI	3.0	on	1K	XE6	nodes	

Sco{	French,	Yili	Zheng,	Barbara	Romanowicz,	Katherine	Yelick;	"Parallel	Hessian	Assembly	for	Seismic	Waveform	Inversion	
Using	Global	Updates",	IPDPS	2015	 DEGAS Overview\

Application Challenge: Data Fusion

20
Sco{	French,	Yili	Zheng,	Barbara	Romanowicz,	Katherine	Yelick;	"Parallel	Hessian	Assembly	for	Seismic	Waveform	Inversion	
Using	Global	Updates",	IPDPS	2015	 DEGAS Overview\

•  First-ever	whole-mantle	seismic	model	from	numerical	waveform	tomography	
•  Finding:	Most	volcanic	hotspots	are	linked	to	two	spots	on	the	boundary	
between	the	metal	core	and	rocky	mantle	1,800	miles	below	Earth's	surface.	
	

Science Impact: Whole-Mantle Seismic Model

Sco{	French,	Barbara	Romanowicz,	"Broad	plumes	rooted	at	the	base	of	the	Earth’s	mantle	
beneath	major	hotspots",	Nature,	2015	

Makes	unsolvable	
problems	solvable!	

DEGAS Overview 21

Multidimensional Arrays in UPC++

•  UPC++	arrays	have	a	rich	set	of	opera6ons	

•  Create	new	views	of	the	data	in	original	array	
•  Example:	ghost	cell	exchange	in	AMR	

translate	 restrict			 slice	(n	dim	to	n-1)	
transpose	

22

ndarray<double, 3, global> gridB =
 bArrays[i, j, k];
…
gridA.async_copy(gridB.shrink(1));

gridB

gridA

interior

ghost cells

intersection
(copied area)

DEGAS Overview

Where is PGAS programming used?

23

1.  Asynchronous	fine-grained	reads/write/atomics	
(aggregabon	and	sotware	caching	when	possible)	

2.  Strided	irregular	updates	(adds)	to	distributed	matrix	
3.  Dynamic	work	stealing	

•  Hartree	Fock	example	(e.g.,	in	NWChem	which	is	already	PGAS)	
-  Inherent	load	imbalance	

•  UPC++	version	
-  Dynamic	work	stealing	and	fast	atomic																																													

operabons	enhanced	load	balance	
-  Transpose	an	irregularly	blocked	matrix	

Application Challenge: Dynamic Load Balancing

Local Array

0

4

1
 2

5
 6

8

12

3

7

13
 14
 15

9
 10
 11

David	Ozog	(CSGF	Fellow),	A.	Kamil,	Y.	Zheng,	P.	Hargrove,	J.	Hammond,	A.	Malony,	
W.	de	Jong,	K.	Yelick	 DEGAS Overview 24

Hartree Fock Code

Strong	Scaling	of	UPC++	HF	on	NERSC	Edison	
Compared	to	(highly	op6mized)	GTFock	with	Global	Arrays	

Improved	Scalability	

David	Ozog	(CSGF	Fellow),	A.	Kamil,	Y.	Zheng,	P.	Hargrove,	J.	Hammond,	A.	Malony,	
W.	de	Jong,	K.	Yelick	 DEGAS Overview 25

•  New	Global	Arrays	Toolkit	over	GASNet	
•  Over	20%	faster	on	Infiniband		

• More	scalable	aggregate	FFTs	than	FFTW	

•  Goal	of	making	this	ready	for	produc6on	use	(Bert	de	Jong)	

Towards NWChem in UPC++

500	

1000	

1500	

2000	

2500	

3000	

0	 512	 1024	 1536	 2048	

W
al
l	c
lo
ck
	6
m
e	
(S
ec
)	

	

Number	of	processor	cores	(Using	16	cores	per	node)	

GA	over	GASNET	
GA	base	version	

Increase	scalability!	

4.6 TFLOPS

8.6 TFLOPS

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

G
FL

OP
S

(5
*N

*l
og

 N
 /

 T
)

MPI Ranks (16 / node ; 8 / socket) on Edison

XY + Z (256^3) X+Y+Z (64X256^3;√pX√p)/64 X+Y+Z (64X256^3; _X16)/64
FFTW (256^3) X+Y+ Z (64X256^3; _X 32)/64 X+Y+ Z (64X256^3; _X 64)/64
X+Y+ Z (64X256^3; _X128)/64 X + Y + Z (256^3;√pX√p)

E.	Hoffman	(GAGA),	H.	Simhadri	(FFTs)	 DEGAS Overview 26

Where is PGAS programming used?

27

1.  Asynchronous	fine-grained	reads/write/atomics	
(aggregabon	and	sotware	caching	when	possible)	

2.  Strided	irregular	updates	(adds)	to	distributed	matrix	
3.  Dynamic	work	stealing	
4.  Hierarchical	algorithms	/	one	programming	model	

UPC++ Communication Speeds up AMR

•  Adaptive Mesh Refinement on
Block-Structured Meshes
–  Used in ice sheet modeling, climate,

subsurface (fracking), astrophysics,
accelerator modeling and many
more

MPI
MPI/OMP

H. MPI
UPC++

UPC++/OMP
H. UPC++

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
en

or
m

al
iz

ed
Ti

m
e

1.00

1.13

0.68
0.61

0.65

0.52

Better

FillBoundary Test on 2048 Cori Cores

Hierarchical	UPC++	(distributed	/	shared	
style)	
•  UPC++	plus	UPC++	is	2x	faster	than	MPI	

plus	OpenMP	
•  MPI	+	MPI	also	does	well	

Reducing Metadata Overhead in AMR

Slide source: Mike Norman UCSD (Enzo code) 29

Scaling AMR grid hierarchy 
•  Reducing the metadata size 

•  Distribute the grid hierarchy data structure

 using UPC 

Where is PGAS programming used?

30

1.  Asynchronous	fine-grained	reads/write/atomics	
(aggregabon	and	sotware	caching	when	possible)	

2.  Strided	irregular	updates	(adds)	to	distributed	matrix	
3.  Dynamic	work	stealing		
4.  Hierarchical	algorithms	/	one	programming	model	
5.  Task	Graph	Scheduling	(UPC++)	

•  Sparse	matrix	factoriza6on	(Cholesky)	
•  Novel	fan	in/out	algorithm	programmed	in	UPC++	

Sparse Cholesky as a Parallel Task Graph

2) Column j of L is used to update the remaining columns
of A.

If A is a dense matrix, then every column k, k > j, is
updated.

Once the factorization is computed, the solution to the
original linear system can be obtained by solving two
triangular linear systems using the Cholesky factor L.

B. Cholesky factorization of sparse matrices
For large-scale applications, A is often sparse, meaning

that most of the elements of A are zero. When the Cholesky
factorization of A is computed, some of the zero entries
will turn into nonzero (due to the subtraction operations in
the column updates; see Alg. 1). The extra nonzero entries
are referred to as fill-in. For in-depth discussion of sparse
Cholesky factorization, the reader is referred to [1].

Following is an important observation in sparse Cholesky
factorization. It is expected that the columns of L will
become denser and denser as one moves from the left to the
right. This is due to the fact that the fill-in in one column will
result in additional fill-in in subsequent columns. Thus, it is
not uncommon to find groups of consecutive columns that
eventually share essentially the same zero-nonzero structure.
Such a group of columns is referred to as a supernode. To be
specific, if columns i, i+1, · · ·, j form a supernode, then the
diagonal block of these columns will be completely dense,
and row k, j + 1  k  n, within the supernode is either
entirely zero or entirely nonzero.

Fill-in entries and supernodes of a sample symmetric
matrix are depicted in Figure 1a. In this example, 10
supernodes are found. Fill-in entries are created in supernode
8 because of the nonzero entries in supernode 6.

Processor list:
p0 p1 p2 p3

1
2

3

4

5

6
7

8

9

10

(a) Structure of Cholesky factor L

10

9

8 5

6 7 2 4

1 3

(b) Supernodal elimination tree of
matrix A

Figure 1: Sparse matrix A partitioned into supernodes, i
denotes the i-th supernode. represents original nonzero
elements in A, while + denotes fill-in entries. Colors
correspond to the 4 distributed memory nodes on which
supernodes are mapped in a 1D-cyclic way.

The elimination tree of A (or L) is a very important
and useful tool in sparse Cholesky factorization. It is an

acyclic graph that has n vertices {v1, v2, · · · , vn}, with v
i

corresponding to column i of A. Suppose i > j. There is an
edge between v

i

and v
j

in the elimination tree if and only
if `

ij

is the first off-diagonal nonzero entry in column j of
L. Thus, v

i

is called the parent of v
j

and v
j

is a child of v
i

.
The elimination tree contains a lot of information regarding
the sparsity structure of L and the dependency among the
columns of L. See [2] for details.

An elimination tree can be expressed in terms of supern-
odes rather than column. In such a case, it is referred to as
a supernodal elimination tree. An example of such tree is
depicted in Figure 1b.

C. Scheduling in parallel sparse Cholesky factorization

In the following, we discuss scheduling of the computa-
tion in the numerical factorization. The only constraints that
have to be respected are the numerical dependencies among
the columns: column k of A has to be updated by column j
of L, for any j < k such that `

k,j

6= 0, but the order in which
the updates occur is mathematically irrelevant, as long as the
updates are performed before column k of A is factored.
There is therefore significant freedom in the scheduling of
computational tasks that factorization algorithms can exploit.

For instance, on sequential platforms, this has led to two
well-known variants of the Cholesky factorization algorithm:
left-looking and right-looking schemes, which have been
introduced in the context of dense linear algebra [3]. In the
left-looking algorithm, before column k of A is factored,
all updates coming from columns i of L such that i < k
and `

k,i

6= 0 are first applied. In that sense, the algorithm is
“looking to the left” of column k. In right-looking, after a
column k has been factored, every column i such that k < i
and `

i,k

6= 0 is updated by column k. The algorithm thus
“looks to the right” of column k.

Distributed memory platforms add the question of where
the computations are going to be performed. Various par-
allel algorithms have been proposed in the literature for
Cholesky factorization, such as MUMPS [4], which is based
on the multifrontal approach (a variant of right-looking), and
PASTIX [5], which is left-looking.

In [6], the author classifies parallel Cholesky algorithms
into three families: fan-in, fan-out and fan-both.

The fan-in family includes all algorithms such that all
updates from a column k to other columns i, for k < i such
that `

i,k

6= 0, are computed on the processor owning column
k. When one of these columns, say i, will be factored, the
processor owning i will have to “fan-in” (or collect) updates
from previous columns.

The fan-out family includes algorithms that compute
updates from column k to columns i, for k < i such that
`
k,i

6= 0, on processors owning columns i. This means
that the processor owning column k has to “fan-out” (or
broadcast) column k of the Cholesky factor.

The fan-both family generalizes these two families to
allow these updates to be performed on any processors. This
family relies on computation maps to map computations to
processors.

In the rest of the paper, we will use the term fan-both
algorithm as a shorthand to refer to an algorithm belonging
to the fan-both family (and similarly for fan-in and fan-out).

III. A VERSATILE PARALLEL SPARSE CHOLESKY
ALGORITHM

As mentioned in the previous section, there are many
ways to schedule the computations as long as the prece-
dence constraints are satisfied. The Cholesky factorization
in symPACK is inspired by the fan-both algorithm. This
leads to a high level of versatility and modularity, which
allows symPACK to adapt to various platforms and network
topologies.

A. Task-based formulation

Both fan-both and symPACK involve three types of op-
erations: factorization, update, aggregation. We let A be an
n-by-n matrix, and denote these tasks using the following
notation1:

• Factorization F
i,i

: compute column i of the Cholesky
factor.

• Update U
i,j

: compute the update from `
j:n,i to column

j, with i < j such that `
j,i

6= 0, and put it to an
aggregate vector ti

j

.
• Aggregation A

j,j

: apply all aggregate vectors ti
j

from
columns i < j, with `

j,i

6= 0, to column j.
An example of dependencies among these tasks for three

columns j, i and h, with j < i and j < h, is depicted
in Figure 2. After column j has been factored, its updates
to dependent columns i and h can be computed. This
corresponds to tasks U

j,i

and U
j,h

. Note that both these
tasks require `

j:n,j , which has to be fanned-out to these two
tasks. After these two tasks have been processed, tj

i

and
tj
h

have been computed. A
i,i

can now be updated using tj
i

,
after which F

i,i

is ready to be executed. After that, the task
U
i,h

, which produces ti
h

, can be executed. The two aggregate
vectors tj

h

and ti
h

are then applied on column h during the
execution of task A

h,h

, requiring aggregate vectors to be
fanned-in. Finally, task F

h,h

can be processed. As can be
observed, fan-both indeed involves data exchanges that can
be observed in either fan-in or fan-out.

B. Parallel algorithm and computation maps

We now describe fan-both in a parallel setting. We assume
a parallel distributed memory platform with P processors
ranging from p1 to p

P

. We assume that A and L are
cyclically distributed by supernodes of various sizes in a
1D way, as depicted in Figure 1a. This has the benefit

1We use MATLAB notation in this paper.

Fj,j

Uj,i

Uj,h

`j..n,j

Ai,i

tji

Fi,i

Ui,h

`i..n,i

Ah,h

tih

tjh

Fh,h

Figure 2: fan-both task dependencies for three columns j, i
and h

of allowing a good load balancing of nonzero entries and
computation per processor, although communication might
not achieve optimal load balance. An example of such a
distribution using 4 distributed memory nodes, or processors,
is depicted in Figure 1a.

Ashcraft [6] introduces the concept of computation maps
to guide the mapping of tasks onto processors. A mapping
M is a two-dimensional grid that “extends” to the matrix
size (i.e., n-by-n). Values represent node ranks computed
using a closed-form generator expression. Therefore, the n-
by-n grid is not explicitly stored. A mapping is said to be
1-by-P when 1 rank is found in each column of M, P -by-1
when P distinct values are found in every column and

p
P -

by-
p
P when

p
P distinct ranks are found on each row and

column.
A computation map M is used to map the tasks as

follows:
• Tasks A

i,i

and F
i,i

are mapped onto node pMi,i

• Tasks U
i,j

is mapped onto node pMj,i

In a parallel setting, aggregate vectors can be further
accumulated on each node to reflect the updates of all local
columns residing on a given node p

i

to a given column j.
We let a(pi)

j

be such an aggregate vector. We have:

a(pi)
j

=
X

8i < n on p
i

i updates j

ti
j

.

Given a task mapping strategy M, it is important to note
that the factor columns `

i:n,i, 8i, 1  i  n need to be sent
to at most the number of distinct node ranks present in the
lower triangular part of column i of M. Aggregate vectors
need to be sent to the number of distinct ranks in the lower
triangular part of row i of M.

In [6], the author discusses the worst case communication
volume depending on which computation map is used. Thep
P -by-

p
P maps involve at most

p
P nodes in each com-

munication step, while each step involves at most P nodes
for either P -by-1 or 1-by-P computation maps. The volume
is directly impacted by the number of nodes participating to
each communication step. However, the

p
P -by-

p
P maps

Mathias	Jacqueline,	Esmond	Ng,	Yili	Zheng,	Kathy	Yelick	

•  Dynamic	scheduling	outperforms	other		
•  The	combina6on	of	algorithm	and	implementa6on	(in	UPC++)	

outperforms	the	compe66on		

Sparse Cholesky Comparisons

32 Mathias	Jacqueline,	Esmond	Ng,	Yili	Zheng,	Kathy	Yelick	

Where is PGAS programming used?

33

1.  Asynchronous	fine-grained	reads/write/atomics	
(aggregabon	and	sotware	caching	when	possible)	

2.  Dynamic	work	stealing		
3.  Strided	irregular	updates	(adds)	to	distributed	matrix	
4.  Hierarchical	algorithms	/	one	programming	model	
5.  Task	Graph	Scheduling	(UPC++)	
6.  Dynamic	runbmes	(CHARM++,	Legion,	HPX)	

34

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

0	 500	 1000	

GF
LO

PS
	

Number	of	Localibes	(16	Cores	each)	

LibGeoDecomp	-	Weak	Scaling	-	
Distributed	
(Host	Cores)	

HPX	
MPI	
Theorebcal	Peak	

HPX Asynchronous Runtime Performs on Manycore

Credit:	Harmut	Kaiser,	LSU	and	HPX	team	

Cores			0											3K														6K												9K									13K									16K	

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 29

Example 1: Matrix Transpose

Higher	is	Be{er	

Babbage	

Legion Programming Model & Runtime

•  Dynamic	task-based		

–  Data-centric	–	tasks	specify	what	data	
they	access	and	how	they	use	them	
(read-only,	read-write,	exclusive,	etc.)	

–  Separates	task	implementabon	
from	hardware	mapping	decisions	

–  Latency	tolerant	

•  Declara6ve	specifica6on	of	
task	graph	in	Legion		
–  Serial	program	
–  Read/Write	effects	on	regions	of	

data	structures	
–  Determine	maximum	parallelism	

•  Port	of	S3D	complete	

1 4 16 64 256 1024 4096 13824
Nodes

0

10000

20000

30000

40000

50000

60000

Th
ro

ug
hp

ut
Pe

rN
od

e
(P

oi
nt

s/
s)

Legion S3D
MPI Fortran S3D

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Nodes

0

10000

20000

30000

40000

50000

60000

70000

Th
ro

ug
hp

ut
Pe

rN
od

e
(P

oi
nt

s/
s)

Legion S3D
MPI Fortran S3D

Weak	scaling	on	Titan	(throughput)	

Weak	scaling	on	Piz	Daint	(throughput)	

Legion	team	from	Stanford,	ExaCT	Co-Design	Center	

Why is PGAS used? (Besides Application
Characteristics)

36

One-Sided Communication is Closer to Hardware

•  One-sided	communica6on	(put/get)	is	what	hardware	does	
–  Even	underneath	send/receive	
–  Informabon	on	where	to	put	the	date	is	in	the	message	
–  Decouples	synchronizabon	from	transfer	

•  Two-sided	message	passing	(e.g.,	send/receive	in	MPI)	
–  Requires	matching	with	remote	side	to	“find”	the	address	to	write	data	
–  Couples	data	transfer	with	synchronizabon	(oten,	but	not	always	what	you	want)	

message	ID	

address	

data	payload	

data	payload	

two-sided	put	message	

one-sided	message	

network	
	interface	

memory	

host	
CPU	

37

Exascale	should	offer	programmers	/	vendors	a	lightweight	op6on	

DEGAS Overview

One-Sided Communication Between Nodes is Faster

38

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

18000	

8	 32	 128	 512	 2048	 8192	 32768	 131072	 524288	 2097152	

Ba
nd

w
id
th
	(M

B/
s)
	

Msg.	size	

Berkeley	UPC	
Cray	UPC	
Cray	MPI	

•  For	communica6on-intensive	problems,	the	gap	is	substan6al	
–  Problems	with	small	messages	
–  Bisecbon	bandwidth	problems	(global	FFTs)	

Cray	XE6:	Hopper	

Hargrove,	Ibrahim	

•  Overhead	(processor	busy	6me)	gets	worse	on	“exascale”	cores	
•  Having	a	low	overhead	op6on	is	increasingly	important	

Overhead for Messaging

39

Avg	cycles	per	call	
(to	do	nothing)	
On	Intel	Ivybridge	

Off	Node	 On-Node	

iSend()	 3,692	cycles	 1,262	cycles	

iRecv()	 1,154	cycles	 1,924	cycles	

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

isend	(off)	 irecv	(off)	 isend	(on)	 irecv	(on)	

N
an
os
ec
on

ds
	

So
tw

ar
e	
O
ve
rh
ea
d	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

isend	(off)	 irecv	(off)	 isend	(on)	 irecv	(on)	
0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

isend	(off)	 irecv	(off)	 isend	(on)	 irecv	(on)	
0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

isend	(off)	 irecv	(off)	 isend	(on)	 irecv	(on)	
0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

isend	(off)	 irecv	(off)	 isend	(on)	 irecv	(on)	

2.9	GHz	x86	
1	GHz	x86	(model)	
1	GHz	3-SIMT		(model)	

	Computer	Architecture	Group	(CAL)	

•  Successful	PGAS	applica6ons	are	mostly	asynchronous	

1.   Asynchronous	fine-grained	reads/write/atomics	(aggrega6on	
and	sopware	caching	when	possible)	

2.   Dynamic	work	stealing		

3.   Strided	irregular	updates	(adds)	to	distributed	matrix	

4.   Hierarchical	algorithms	/	one	programming	model	

5.   Task	Graph	Scheduling	(UPC++)	
6.   Dynamic	run6mes	(CHARM++,	Legion,	HPX)	

•  Exascale	architecture	trends	

Summary

40

