The End Game for Moore’s Law

Kathy Yelick
Lawrence Berkeley National Laboratory
and UG Berkeley

A Focus on Science
| =y

Moore’s Law End Game 2

The changing nature of scientific discovery

New methods for feature Automaﬁon, rgbotics and
identification and data discovery new input devices

Science at the boundary of More computing for more
simulation and observation complex science questions

Science at the Boundary of Simulation and Observation

Cosmology Environment Materials

In many areas, there are opportunities to combine
simulation and observation for new discoveries.

End of Transistor Density Scaling

ing to the year 2021

ink

istor shr

",
o C
()
p
)
| G
(@)
©
c
Q
+ O
h
)
72
)
Q
7)]
S
O
c
(V)]
(a'd
=

5

Moore’s Law End Game

Technology Scaling Trends
The many ends of “Moore’s” Law

10’

rrTeTY

10° |

10° |

10°

YT

Performance
—
o

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030
Year

Energy Optimization: Alternatives to Conventional MOS

(all require lower clock rate, and much more parallelism)

Energy-Performance Comparison
(30-stage fanout-4 inverter chains)

1.E-15
s MOSFET
5
¥ 1.E-16
LL]
=
LL]
fa - ahilitu=0 N1 _
Cap. per inverter=u: Tunneling FET
1.E-17 advantage only at
0.01 0.1 1 10 | low clock rates

J

PERFORMANCE [GHz]

More Parallelism at Lower Levels

More, slower
devices; new

1.E+18 z 7 levels of
Application Performance Growt etz e
1L.E+17 (Gordon Bell Prizes) , f &
1.E+16 S e VO,
slower
1.E+15 cores
1.E+14
1.E+13
Manycore
1.E+12 Parallelism Wy
1.E+11 -
Multicore
1.E+10 i ILP parallelism
ector y
1.B+09 2 parallelism TLP
1.E+08 I

1990 gl995 2000 2005 2010 2015 2020

Specialization: End Game for Moore’s Law

Likely relationship

Ops/Joule

NERSC-8
Cori Ph2 (

NERSC-8 Phl#iaswell)
NERSC-#£dison (lvy Bridge)

—>

General Purpose Reconfigurable Special Purpose

Not just for HPC

Specialization in Deep Learning

NVIDIA builds deep
learning appliance with .
P100 Tesla’s =

.-:L;‘ e
-w -
Fgie
TI EAARAAIAA %ﬁ’
e o, .- *e ¥ R
> . .'-& “ ‘ //,/

—

Intel buys deep learning
startup, Nervana

Can we used their special purpose systems? .
] > Google designs its own
Can we design our own? Tensor Processing Unit (TPU)

Open Hardware (Synthesis & Simulation)

Chisel

DSL for rapid prototyping
of circuits, systems, and
arch simulator components

e
N

Back-end to synthesize
HW with different devices
Or new logic families

RISC-V

Open Source Extensible ISA/
Cores

With different devices or
Extend w/accelerators

OpenSOC

Open Source fabric
To integrate accelerators
And logic into SOC

OpenSoC
Fabric

Platform for experimentation
with specialization
to extend Moore’s Law

11 Shalf, Donofrio, Asasnovic, et al, UCB and LBNL

Data Movement is Expensive

CPU cycle time vs memory access time

100,000,000.0 -
Disk
10,000,000.0
1,000,000.0
SSD
100,000.0 —_—
10,000.0
1,000.0
2 1000 — o DRAM
® 100 a—
e ' SRAM
= 1.0
- \'—I\.‘CPU
0.1 -
0.0 I I I I I T T T

1980 1985 1990 1995 2000 2003 2005 2010 2015
Year

Sources:
http://csapp.cs.cmu.edu/2e/figsures.html, http://csapp.cs.cmu.edu/3e/figures.html

Communication Avoidance for Algorithms with Sparse All-to-all 12

InteracrkhNnnc

Data Movement is Expensive

Hierarchical power costs.

6 pJ
P Cost to move data 1 mm on-chip
m Typical cost of a single floating point operation
m Cost to move data 20 mm on chip
250 p J Cost to move off-chip,
but stay within the package (SMP)
2000 pJ C(?st to move data off chip
into DRAM
~2500 pJ Cost to move data off chip
to a neighboring node

Source: http://slideplayer.com/slide/7541288/ 13

InteararcrBAanc

 Even more lower level parallelism
* Specialization
« Communication even more expensive (relatively)

The end of Relaxed Programming

THE CHAIRN THAT'S TEACHING AMENICA MOW TO

Barca\ownaer

* Moore: The Law that taught performance programmers to relax

Moore’s Law End Game 15

Don’t Fear the Compiler

Who needs compilers?

« Scientific computing relies heavily on libraries
— E.g., LAPACK and FFTW are widely used

 Languages and compilers are still useful
— Higher level syntax is needed for productivity
 We need a language

— Static analysis is helps with correctness
* We need a compiler (front-end)

— Optimizations are needed to get performance
* We need a compiler (back-end)

Moore’s Law End Game 17

Autotuning: Write Code Generators

* Two “unsolved” compiler problems:
— dependence analysis and

— accurate performance models

e Autotuners are code generators plus search

1024
512
256

Peak compute

v 128

Q
O 64

Uy g Vg Wy Uy 1 2 4 8 16 32
Algorithmic intensity: Flops/Word

Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier, Moore’s Law End Game 18

What we have and what we need

NERSC survey: what motifs do they use? What code generators do we have?
i | | |
Structured
ructure | Dense Linear Algebra Atlas
Sparse LA SRR Spectral Algorithms FFTW,
i Spiral
Spectral [
i Sparse Linear Algebra OSKiI
Particles M ;
| [Structured Grids TBD]
I '
Monte Carlo _ Unstructured Grids
Dense LA [N Particle Methods
Adaptive H Monte Carlo
Unstructured |

0% 10% 20% 30% 40% 50%

Stencils are both the most important motifs and a gap in our tools

Moore’s Law End Game 19

Approaches to Autotuning

Approximate

How do we produce all of these (correct) versions? e
categorization!

* Using scripts (Python, perl, ML, C,..)
 Compiling annotated general-purpose language (X-Tune,...)

» Use preprocessor to generator code (Raja, Kokkos,TiDA)
 Compile a domain-specific language (D-TEC, Halide)
 Domain-specific compiler for domain-specific language (SEJITS)

Several Projects and PIs: Sam Williams, Mary Hall, Dan Quinlan, Armando Fox, Saman Amarsinghe,
Armando Solar-Lezama, Jack Dongarra, Moore’s Law End Game

Approach #1: Compiler-Directed Autotuning

 Two hard compiler problems
* Analyzing the code to determine legal transformations
« Selecting the best (or close) optimized version

« Approach #1: General-purpose compilers (+ annotations)
« Use communication-avoiding optimizations to reduce memory bandwidth
* Apply CHILL compiler technology with general polyhedral optimizations
« Use autotuning to select optimized version

5.0x

Smooth B All Optimizations 45x | OCHILL
5000 O+Fusion & Wavefront 4.0x | BManualTuning
. .] HE Baseline
4500 @ +Fusion & Partial Sums 3.5x
kel

= 3500 - , 9 25x -
) M Baseline g
%3000 T (7] 20X n
&5 2500 ORoofline Memory Bound Lo -
= 2000 -

1.0x -
0.5x
0.0x -

1500 -
1000 -
500 -

Hopper Edison Hopper Edison
7pt 27pt 13pt 125pt 7pt 27pt 13pt 125pt

MGSolve smooth() on 643

Edison Hopper
Results on Geometric Multigrid (miniGMG Smoother)

Moore’s Law End Game 21

Approach #2: DSLs with General Purpose Compiler

* Generation of Complex Code for 10 Levels
of Memory Hierarchy with SW managed
cache

— 4th order stencil computation from
CNS Co-Design Proxy-App

— Same DSL code can generate to
2,3,4, ... levels too

— Code size of autogenerated code |

10

DSL Code
Auto Generated Code 446 500 553 819

Use of Rose/PolyOpt to apply DSLs to large applications and collaboration on AMR

Moore’s Law End Game 22

Approach #3: Domain-Specific (but not too specific)

Developed for Image Processing Halide performance
. » Autogenerated schedule for CPU
FAN

g+
m E « Hand created schedule for GPU
Adobe Enfiance .

No change to the algorithm
— 10+ FTEs developing Halide
— 50+ FTEs use it; > 20 kLOC

HPGMG (Multigrid on Halide) -8
1.6 173
14 - 273
g 12 B — 43
Eo ol L 813
g - 1673
sos | |
0 w3213
c2*Lambda (4,3,k)* (28 (4,360 A% n(1,3.K)); Lﬁ 1 | |
0.6 6413
e Halide Schedule either 04 = “128"3
— Auto-generated by autotuning with opentuner 0.2 H 25673
— Or hand created by an optimization expert 0 - ‘

Original Halide CPU

Moore’s Law End Game 23

Approach #4: Small Compiler for Small Language

* Snowflake: A DSL for Science Stencils
— Domain calculus inspired by Titanium, UPC++, and AMR in general

(a) Red-Black tiling (b) 4-color tiling (c) Asymmetric stencil used (d) 5-point Jacobi stencil
near mesh boundary

* Complex stencils: red/black, asymmetric
* Update-in-place while preserving provable parallelism
 Complex boundary conditions

Moore’s Law End Game
24

Snowflake Performance

107 Runtimes for (2°9)"3 6.0 Performance for 25673
» — npGMG |1 BHPGMG
] || OSnowflake O
— Snowflake [5.0
o Optimal - < Roofline Bound
240
S
3 % 3.0 <&
5 5
O c
& 220 O
n
1.0 =g -
0.0
. CC7pt CC VC CC7pt CC VC
10 50 2‘1 2‘2 3 Stencil Jacobi GSRB Stencil Jacobi GSRB
Num Threads Core i7-4765T K20c GPU

* Performance on the HPGMG application benchmark using all
the features of Snowflake

 Competitive with hand-optimized performance
* Within 2x of optimal roofline

Moore’s Law End Game 25

Algorithms for the Hardware

Beyond Domain Decomposmon

UVl XelV) 0/186/u-d 0831006 g

J - o

L I

Lesson: Never waste fast memory
And don’t get hung up on the owner computes rule

Deconstructing 2.5D Matrix Multiply

Solomonick & Demmel

— Pk : :
"y * Tiling the iteration space

« 2D algorithm: never chop k dim
« 2.50r3D: Assume +is
T }Z associative; chop k, which is >
” y replication of C matrix
>)

| <—
Matrix Multiplication code has a 3D iteration space
Each point in the space is a constant computation (*/+)

fori
for j
for k
C[i,j] ... Ali,k] ... B[k,j] ...

28

eneralizing GCommunication Lower Bounds and

Optimal Algorithms

* For serial matmul, we know #words_moved = Q (n3/M*/2),
attained by tile sizes M*/2x M'/2

 Thm (Christ,Demmel,Knight,Scanlon,Yelick): For any program
that “smells like” nested loops, accessing arrays with subscripts that
are linear functions of the loop indices

#words_moved = Q (#iterations/MF)

for some e we can determine

Thm (C/D/K/S/Y): Under some assumptions, we can determine
the optimal tiles sizes

— E.g., index expressions are just subsets of indices

Long term goal: All compilers should generate communication
optimal code from nested loops

Communication Lower Bounds

* For loop nests with arrays
— M words of data in fast memory, i.e., n/p.

#flops each processor has to do (Z£)

#msgs = :
max #useful flops with M words (F)

N\

#words = #msgs *+ M M2for M32 for
N-body matmul

qFHF Z

1 message 1 message 1 message
M words M words M words

Communication Avoidance for Algorithms with Sparse All-to-all 30

InteracrkhNnnc

Implications for Compilers

* Much of the work on compilers is based on
owner-computes
— For MM: Divide C into chunks, schedule movement of A/B
— Data-driven domain decomposition partitions data; but
we can partition work instead
 Ways to compute C “pencil”
1. Serially
2. Parallel reduction
3. Parallel asynchronous (atomic) updates

4. Orany hybrid of these tandard vectorization trick

* For what types / operators does this work?
— “+” is associative for 1,2 rest of RHS is “simple”
— and commutative for 3

31

Communication Avoiding Version

2epeegesspee -!QDIIIOIIIOI -!'llllllll'l ‘!'llllilllil 2008 FEXYEN N S $228222 -!'llllilllil -!’Dlll'lll.l
": """"" -!Q.D_lll'lllil -!'.l_lllllll'l ‘!'.l_lllilllil -":'! """ ‘-":'! """ ‘!'.l_lllilllil -!’.l_lll'lll.l

C
""""""" -!QDIIIOIIIOI -!'llllllll'l ‘!'llllilllil -""'!"""‘"""!""" -!'llllilllil -!’Dlll'lll.l
""""""""" peeeeeepee eeRRR%2202020 eepeeeReepee o222 28222 222228228222 eeRR2222020 020 eepeeepeepee l

* Divide p into c groups. Replicate particles within group.
— First row responsible for updating all by orange, second all by green,...

 Algorithm: shift copy of n/(p*c) particles to the left

— Combine with previous data before passing further level (log steps)

* Reduce across c to produce final value for each particle

* Total Computation: O(n?/p); Limit: ¢ < p1/2

* Total Communication: O(log(p/c) + log c) messages,
O(n*(c/p+1/c)) words

Driscoll, Georganas, Koanantakool, Solomonik, Yelick

Challenge: Symmetry & Load Balance

* Force symmetry (f; = -f;;) saves computation
e 2-body force matrix vs 3-body force cube

j
0 5 10 15 20

or .‘!‘it
51 20
i 10t 15

k

10
5

°l 2X save
"I of O(n?)

* How to divide work equally?

Koanantakool & Yelick

All-triplets 3-body: Challenges

[Sumanth et al. 2007]

Symmetry
Load balance
Communication?

[Li et al. 2006]
[Li et al. 2008] ,

10

5

Symmetry
Load balance J
Communication? * Colors have no special meaning --
for illustration purpose only.
Communication Avoidance for Algorithms with Sparse All-to-all 34

InteracrkhNnnc

CA 3-body

e p=5(in colors)
6 particles per processor

30
25
20
15 k

e 5x5 subcubes

Equivalent triplets in
the big tetrahedron

0 0 Actual triplets
35

Communication Avoidance for Algorithms with Sparse All-to-all

IntaracrHnnc

CA 3-body

p=5 (in colors)
6 particles per processor

5x5 subcubes

Equivalent triplets in
the big tetrahedron

0 0 Actual triplets
36

Communication Avoidance for Algorithms with Sparse All-to-all

IntaracrHnnc

CA 3-body

e p=5(in colors)
* 6 particles per processor

e 5x5 subcubes

Equivalent triplets in
the big tetrahedron

20

15
j

30 0 Actual triplets

Communication Avoidance for Algorithms with Sparse All-to-all 37

IntaracrHnnc

CA 3-body

e p=5(in colors)

e 6 particles per processor
e 5x5 subcubes

Equivalent triplets in
K the big tetrahedron

30 0 Actual triplets

Communication Avoidance for Algorithms with Sparse All-to-all 38

IntaracrHnnc

CA 3-body

e p=5(in colors)

e 6 particles per processor
e 5x5 subcubes

CCC(S

Equivalent triplets in
the big tetrahedron

15 K
10
5
0 0
0 0 Actual triplets
Communication Avoidance for Algorithms with Sparse All-to-all 39

IntaracrHnnc

CA 3-body

e p=5(in colors)

e 6 particles per processor
e 5x5 subcubes

Equivalent triplets in
K the big tetrahedron

30 0 Actual triplets

Communication Avoidance for Algorithms with Sparse All-to-all 40

IntaracrHnnc

p=5 (in colors)

6 particles per processor

5x5 subcubes

30

0

CA 3-body

25
20
15

10

20
15
j

Actual triplets

Equivalent triplets in
the big tetrahedron

Communication optimal.
Replication decreases
#msgs and #words by
factors of ¢ and c2.

41

Q.
-
L=
(«b)
(<b)
(=1
(7p)
=
L=
(=
Bm
_—
—
=
1
(ap)

ticles

24k par

, 24k cores,

Cray XC30

B Allreduce

Idle
mm Shifting
B Setup

mm Computation

600

200 -
100 - -

[[[
] |]
o o o
o O o
o

LN =T

(29s) daisawi] 134 swi) UOIINI3XT

256

128

32

16

O

o

= N

5.0

5%

S o
O —

2 3
X
©
-
C
©
C
©
o
\'d

Perfect Strong Scaling

BlueGene/Q 16k particles, Strong Scaling

15 . ——'-....lll.I-I——j—*‘——___:zz-- "

o
o]

o
o)

o
~

Relative Efficiency vs. One Core
o
N

O]] I

1024 2048 4096 8192 16384
Machine size (# cores)
Communication Avoidance for Algorithms with Sparse All-to-all 43

IntaracrHnnc

Perfect Strong Scaling

BlueGene/Q 16k particles, Strong Scaling

O
o
|

o
o)

Perfect | C
Strong Scaling |8

Relative Efficiency vs. One Core
o
~

1 e @@ s s ,r -
—e— Bestofallc's
— |deal |
0]] |
1024 2048 4096 8192 16384
Machine size (# cores)
Communication Avoidance for Algorithms with Sparse All-to-all 44

IntaracrHnnc

Analytics vs. Simulation Kernels:

Basic statistics Monte Carlo methods
Generalized N-Body Particle methods
Unstructured meshes
Linear algebra Dense Linear Algebra
Optimizations {Sparse Linear Algebra

Integrations Spectral methods
Alignment Structured Meshes

Machine Learning Mapping to Linear Algebra

Logistic , : : : Graphical
: Dimensionality Clustering :
Regression, . Model Deep Learning
Reduction (e.g., (e.g., MCL, :
Support Structure (Convolutional
NMF, CX/CUR, Spectral .
Vector PCA) Clustering) Learning (e.g., Neural Nets)
Machines & CONCORD)
' .'

Sparse Sparse Sparse Matrix Sparse - Sparse -

Matrix- Matrix- Times Sparse Dens-e Dense
Matrix

Sparse Dense Multiple Matrix Matrix

Vector Vector Dense Vectors Product sl Product

soMspV) | (spmv) (SOMM) spcemm) | B2 | (sppm3)

Aydin Buluc
Increasing arithmetic intensity

Dense

Matrix
Matrix
(BLAS3)

Sparse-Dense Matrix Multiply Too!

Execution Time vs. Replication Factor
(Edison, n=65536, nonzeroes per row=655, 12288 cores)

Gather C
Reduce C
Broadcast B
Broadcast A
Shift A
Replicate B
Replicate A
Idle
Computation

Execution Time (sec)

SupSunCoy,Coy,Coy,Coy,Coy,Coy,Coy,Coy,Coy,Coy,Cor,Cor,CopCoy
/h’b,;b ”)e'q‘l 459997 614 3 éq ‘644 ‘Jéj?‘? 52:5 Jgs’cis’cieci@

C‘é{,qco [q) A,) /7@//) /7@//7 h 7 /) 7 0
%ﬁ%

898 °Crq'Crq Srq Srq Srq 'S
S C PO 64646464646
Q@ " 7 CC Cq \6’0\16‘039

Algorithm - Replication Factor (c)

* Variety of algorithms that divide in or 2 dimensions

Koanantakool & Yelick
47

100x Improvement

« AS6kx172k B172kx66k (0 0038% nnz, Cray XC30

400 1 | 1

—t+—1.5D Col A

350 N~ ——t— 1 5D Inner ABC |
1.5D Col ABC

—+— 2.5D SUMMA ABC

300

L S e i

Mflops per core
N
o
o

$

O 1= i - 4
384 768 1536 3072 6144
Machine size (# cores)
Communication Avoidance for Algorithms with Sparse All-to-all 48

InteracrkhNnnc

Communication-Avoiding Algorithm Sample Speedups

* Up to 11.8x faster for direct N-body on 32K core IBM BG/P

« Up to 100x faster for sparse-dense matmul on Cray XC30

* Up to 12x faster for 2.5D matmul on 64K core IBM BG/P

« Up to 3x faster for tensor contractions on 2K core Cray XE/6

« Up to 6.2x faster for APSP on 24K core Cray CEG6

 Up to 2.1x faster for 2.5D LU on 64K core IBM BG/P

 Up to 13x faster for TSQR on Tesla C2050 Fermi NVIDIA GPU
 Up to 6.7x faster for symeig (band A) on 10 core Intel Westmere
« Up to 2x faster for 2.5D Strassen on 38K core Cray XT4

 Up to 4.2x faster for MiniGMG benchmark bottom solver,
using CA-BiCGStab (2.5x for overall solve)

Dense Linear algebra results by Demmel et al

Overhead Gan’t be Tolerated

Modified LogGP Model

* LogGP: no overlap Observed: overheads can
overlap: L can be negative

Osend
- Osend
L
Orecv

Orecv
EEL: end to end latency (instead of transport latency L)
g: minimum time between small message sends
G: additional gap per byte for larger messages

Moore’s Law End Game 51

Communication and Manycore: the problem is the “+”

(core) (core) (core) (core) (core) (core) (core) (core) (COI’E) Ccore) (core) (core) Ccore) (core) (core) (COI’é)
Node 0 | _ | Node 1 Node 0 | - | Node 1
Process 0 = Process 1 rocess 0 - Process
2 ’ ’ @ X
A/J R
E g 1 Thread 2 re
. : !
\’§»§_ MSGs, // . o ‘\@2 | —*

\
!

Thread 0 Thread 1 hread 2 ead 3
// o —
—fae——fF— | T A
A

Ideal hybrid programming Default hybrid programming
« MPI + X today:
e Communicate on one lightweight core
e Reverse offload to heavyweight core
* MPI stack may not run well on lightweight cores
* Issues preventing efficient interoperability:

— Addressability: can’t name remote threads?
— Separability: How to manage communication resources for independent paths

e More feasible for 1-sided than 2-sided
Kha/gg/ Ibrahim, ICS 2Qd4e's L aw End Game

Communication Overlap Complements Avoidance

60000 Performance results on Cray XE6
(24K cores, 32k x 32k matrices)

50000
H2.5D + Overlap

40000 M 2.5D (Avoiding)
. 2D + Overlap
Qo M 2D (Original)
)
& 30000
O

20000

10000

SUMMA Cannon TRSM Cholesky

Even with communication-optimal algorithms (minimized
bandwidth) there are still benefits to overlap and other
things that speed up networks

SC’12 paper (Georganas, Gonzalez-Dominguez, Solomonik, Zheng, Tourifio, Yelick)

Avoid Unnecessary Synchronization

Sources of Unnecessary Synchronization

Loop Parallelism Abstraction

'$OMP PARALLEL DO E L = g
DO I=2,N TR | j =
B(I) = (A(I) + A(I-1)) / 2.0 [T\ s Synchronous = =
ENDDO
1SOMP END PARALLEL DO

Less :

==~ Synchronous
“Simple” OpenMP parallelism implicitly g
synchronized between loops -«

LAPACK: removing barriers ~2x faster (PLASMA)

Libraries Accelerator Offload

!Sacc data copyin(cix,cil,ci2,ci3,ci4,ci5,ci6,ci7,ci8,ci9,cil0,cill, &
!Sacc& cil2,cil3,cilé4, r,b,uxyz,cell, rho,grad, index_max, index, &
!Sacc& ciy,ciz,wet,np,streaming sbufl, &

. o, . !Saccé streaming sbufl,streaming sbuf2, streaming sbuf4, streaming sbuf5, &
Analysls /o ba rrlers Speedup !Saccé streaming_sbuf7s,streaming_sbuf8s, streaming_sbuf9n, streaming sbuflls, &
!$accs streaming_sbuflln,streaming_sbufl2n,streaming_sbufl3s,streaming_sbufldn, &
!Sacc& streaming sbuf7e,streaming_sbuf8w,streaming sbuf9e,streaming sbuflle, &
0 (, !Saccé streaming sbufllw,streaming sbufl2e,streaming sbufl3w,streaming sbuflédw, &
Auto 42 A) 13 /o !Sacc& streaming_rbufl, streaming_rbuf2, streaming_rbuf4,streaming_rbuf5, &
!$acce streaming_ rbuf7n,streaming_rbuf8n,streaming rbuf9s,streaming rbuflOn, &
!Saccé streaming rbuflls, streaming_rbufl2s,streaming rbufl3n, streaming rbufliés, &
. 0 o !Sacc& streaming_rbuf7w,streaming_rbuf8e, streaming_rbuf9w,streaming_ rbufllw, &
G u Id ed 63 A) 14/0 !Saccé streaming rbuflle,streaming rbufl2w,streaming rbufl3e,streaming rbuflie, &
!Saccs send_e,send w,send_n,send_s,recv_e,recv_w,recv_n,recv_s)
NWChem: most of barriers are unnecessary (Corvette) The transfer between host and GPU can be slow and

cumbersome, and may (if not careful) get synchronized

Moore’s Law End Game 55

Beyond Moore

Beyond Digital Computing Law

SN2

Is there a new model of é}}%’j@g‘

Quantum computing that is useful Neuromorphic
for science?

Are there ways of storing, transferring e
and computing on information that s
significantly reduce power?

FPGAs

Science Applications of Neuromorphic Computing

: : : Bio
Physical Sciences Energy Sciences cciences

Event Identification Image Analysis Inverse Problems

Improved Programmability

Usable Hardware

Data processing with special purpose hardware

* General trend towards specialization for continued
performance growth
e Data processing (on raw data) will be first in science

Particle Tracking with Neuromorphic chips

o Deep learning processors for image analysis
Computing in Detectors

FPGAS for genome analysis

And can we also use these for simulation?

IrfnSidqi 2015

Electronic Structure Methods for Chemistry

Improving Quantum Algorithms for Quantum Chemistry

scallng for N M. B. Hastings,""?2 Dave Wecker,? Bela Bauer,! and Matthias Troyer?

electrons ! Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA
2 Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052,
DFT O(N2)-O(N3)

3 Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland

We present several improvements to the standard Trotter-Suzuki based algorithms used i
simulation of quantum chemistry on a quantum computer. First, we modify how Jordan-W
H F O(Nz)-O(N4) transformations are implemented to reduce their cost from linear or logarithmic in the nu
of orbitals to a constant. Our modifzeatice dooc oot oocoizo oddivioo] o-cille qubits. Ther

demonstrate how man; ration . r decrease i
MP2 O(N5) DRIV SAEISNIN Scaling for N electrons ISR
required. Thirdly, we modify the t . ion, signific:
CISD CCSD O(N6) reducing the error at given Trotter-S on Qua ntum DEVICE the Hamiltc
’ to reduce errors introduced by the 1 se technique
CCSD(T) O(N7) validated using numerical simulation FC #1 O(Ng) ic molecules
7
CCSDT O(N®) FC #2 O(N7) .
S —— FC #3 O(NS5)
FCl — O(exp(N)) (N>)

Quantum Simulation:
“What quantum computers do in their sleep” [Scott Aaronson]
Open questions in theory and practice

Moore’s Law End Game 61

End Game for Moore’s Law

More parallelism

More specialization
(hardware and programming models)

Less communication

Understand your applications!

Moore’s Law End Game 62

Y b

\x

/

>

V) Rl ol N oL e

e~ ——

SR\ -U.S. DEPARTMENT OF

Office of
Science

(i

) ENERGY

