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The 20+ Year Vision

• Imagine a “digital body double” 
– 3D image-based medical record
– Includes diagnostic, pathologic, and other 

information
• Used for:

– Diagnosis
– Less invasive surgery-by-robot
– Experimental treatments

• Digital Human Effort
– Lead by the Federation of American Scientists



Digital Human Today: Imaging

• The Visible Human Project
– 18,000 digitized sections of the body

• Male: 1mm sections, released in 1994
• Female: .33mm sections, released in 1995

– Goals
• study of human anatomy
• testing medical imaging algorithms

– Current applications: 
• educational, diagnostic, treatment planning, 

virtual reality, artistic, mathematical and 
industrial

• Used by > 1,400 licensees in 42 countries

Image Source: www.madsci.org
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Organ Simulation

Cardiac cells/muscles
– SDSC, Auckland, UW, Utah,

Cardiac flow
– NYU,…

Lung transport
– Vanderbilt

Lung flow
– ORNL

Cochlea
– Caltech, UM, UCB

Kidney mesh 
generation

– Dartmouth
Electrocardiography

– Johns Hopkins,…Skeletal mesh 
generation

Brain
– ElIisman

Just a few of the efforts at 
understanding and simulating 
parts of the human body



Immersed Boundaries within the Body

• Fluid flow within the body is one of the major 
challenges, e.g., 
– Blood through the heart
– Coagulation of platelets in clots
– Effect of sounds waves on the inner ear
– Movement of bacteria

• A key problem is modeling an elastic 
structure immersed in a fluid
– Irregular moving boundaries
– Wide range of scales
– Vary by structure, connectivity, viscosity, external 

forced, internally-generated forces, etc.



Heart Simulation

Developed by Peskin and McQueen at NYU
– Ran on vector and shared memory machines
– 100 CPU hours on a Cray C90
– Models blood flow in the heart
– Immersed boundaries are individual muscle fibers

–Rules for contraction, 
valves, etc. included

–Applications:  
• Understanding structural 

abnormalities
• Evaluating artificial heart 

valves
• Eventually, artificial hearts Source: www.psc.org



Platelet Coagulation

• Developed by Fogelson and Peskin
– Simulation of blood clotting in 2D
– Immersed boundaries are

• Cell walls, represented by polygons
• Artery walls

– Rules added to simulate adhesion
– For vector and shared memory machines
– We did earlier work on this 2D problem in Split-C



Cochlea Simulation

– Simulates fluid-structure interactions due to 
incoming sound waves

– Potential applications: design of cochlear implants

• Simulation by 
Givelberg and Bunn
–In OpenMP
–18 hours on HP 

Superdome
• Embedded 2D 
structures are
–Elastic membranes 

and shells



Insect Flight Simulation

• Work by on insect 
flight
– Wings are 

immersed 2D 
structure

• Under development 
– UW (Wang) and 

NYU (Miller) 
• Applications to

– Insect robot design

Source: Dickenson, UCB



Small Animal Motion

• Simulation of small animal motion by 
Fauci, Dillon and other
– Swimming of eels, sperm, and bacteria
– Crawling motion of amoeba
– Biofilms, such as plaque, with multiple 

micro-organisms
• Applications at a smaller scale

– Molecular motors, fluctuations in DNA
– Thermal properties may become important

• Brownian motion extension by Kramer, RPI



Other Applications

• The immersed boundary method has also 
been used, or is being applied to
– Flags and parachutes
– Flagella 
– Embryo growth
– Valveless pumping (E. Jung)
– Paper making
– Whirling instability of an elastic filament (S. Lim)
– Flow in collapsible tubes (M. Rozar)
– Flapping of a flexible filament in a flowing soap 

film (L. Zhu)
– Deformation of red blood cells in shear flow 

(Eggleon and Popel)



Immersed Boundary Simulation 
Framework

Model 
Builder

Immersed
Boundary
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Visualization
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Shared and Distributed 
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Building 3D Models from Images

Image source: John Sullivan et al, 
WPI

Image data from 
• visible human
• MRI
• Laboratory experiments

Automatic construction
• Surface mesh
• Volume mesh
• John Sullivan et al, WPI



Heart Structure Model

• Current model is 
based on three types 
of cones to construct 
ventricals
– Outer/Inner layer
– Right-Inner/Left-Outer
– Left Cylinder layer

• Advantages: simple model
• Disadvantages: unrealistic and time-

consuming to compute



Old Heart Model

• Full structure shows 
cone shape

• Includes atria, 
ventricles, valves, 
and some arteries

• The rest of the 
circulatory system 
is modeled by 
sources and sinks



New Heart Model

• New model replaces 
the geodesics with 
triangulated surfaces
• Based on CT scans 

from a healthy human.
• Triangulated surface of 

left ventricle is shown

Work by:
• Peskin & McQueen, NYU
• Paragios & O’Donnell, Siemens
• Setserr, Cleveland Clinic





Structure of the Middle Ear

Transmission of
sound wave energy 
by the ossicles from 

the ear drum into 
the cochlear canal

The ossicles:
malleus, incus, stapes

Ear drum Cochlear canal

Sound Energy ! Cochlear Waves



Cochlea and Semi-circular Canals
• The inner ear is a fluid-

filled cavity containing 
the cochlea and the 
semi-circular canals

• Semi-circular canals 
responsible for balance

• The fluid is 
incompressible and 
viscous

• Input is from the stapes
knocking on the oval
window; the round 
window is covered by a 
membrane to conserve 
volume

1 cm



Schematic Description of  the Cochlea

scala tympani

scala vestibuli The cochlear partition

The cochlear partition

bony shelf
basilar membrane

3.5 cm

0.52 mm

0.15 mm

oval window

round 
window

helicotrema



Apical Turn of the Cochlea



Geometry of the Cochlea Model



Immersed Boundary Equations



First Order Immersed Boundary Method

Compute the force f the immersed material 
applies to the fluid.

Compute the force applied to the fluid grid:

Solve the Navier-Stokes equations:

Move the material:



Immersed Boundary Method

Hooke’s spring law viscous
in-compressible

fluid

Navier-Stokes equations 
discretized on a periodic

rectangular 3-d grid

Fourth order PDE
discretized on a 2-d 

grid

Hooke’s
spring law
Discretized

on a 1-d 
grid

Combines Lagrangean and Eulerian Components



Immersed Boundary Method Structure

Material activation & 
force calculation

Interpolate
Velocity

Navier-Stokes
Solver

Spread
Force

4 steps in each timestep

Material Points

Interaction

Fluid Lattice

2D Dirac Delta Function



Challenges to Parallelization
• Irregular material points need to interact 

with regular fluid lattice. 
– Trade-off between load balancing of 

material and minimizing communication
• Efficient “scatter-gather” across processors

• Need a scalable fluid solver
– Currently based on 3D FFT

• Requires an all-to-all “transpose”
– May try to use multigrid in the future

• Adaptive Mesh Refinement would help



Parallel Algorithm

• Immersed materials are described by a hierarchy of 
1d or 2d arrays

• Grids in current code
– Reside on a single processor
– Previous (and possibly future) versions may split them

• The 3D fluid grid uses a 1D distribution (slabs)
• Interactions between the fluid and material structures 

requires inter-processor communication.
• Special data structures are maintained for efficient 

communication.



Fluid Solver

• The incompressible requires an elliptic solver
– High communication demand
– Information propagates across domain

• FFT-based solver divides domain into slabs
– Transposes before last direction of FFT
– Would like to use finer decomposition

1D FFTs



Load Balancing 
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Data Structures for Interaction
• Experimented with several method
• Bounding box is the best (although it sends 

significantly more data than necessary)

Cost of Interaction Methods
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Data Structures for Interaction

3210 3210

• Bounding box computes only low/high
• Logical grid of 4x4x4 cubes used to balance cost of 

communication and setup
• Communication aggregation also done



Software Architecture

Application 
Models

Generic Immersed Boundary 
Method (Titanium)

Heart
(Titanium) 

Cochlea
(Titanium+C)

Flagellate
Swimming

…

Spectral
(Titanium) 

Multigrid MLC
(KeLP) AMR

Extensible 
Simulation

SolversMultigrid
(Titanium)

– Can add new models by extending material points
– Uses Java inheritance for simplicity



Performance Analysis

time breakdown
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Tools for High Performance

Challenges to parallel simulation of a digital 
human are generic

• Parallel machines are too hard to program
– Users “left behind” with each new major generation 

• Efficiency is too low
– Even after a large programming effort 
– Single digit efficiency numbers are common

• Approach
– Titanium: A modern (Java-based) language that 

provides performance transparency
– BeBOP: Self-tuning scientific kernels
– GASNet: Portable fast communication



Titanium Overview

Object-oriented language based on Java with:
• Scalable parallelism

– Single Program Multiple Data (SPMD) model of 
parallelism, 1 thread per processor

• Global address space
– Processors can read/write memory on other 

processor
– Pointer dereference can cause communication

• Intermediate point between message passing 
and shared memory



Language Support for Performance

• Multidimensional arrays
– Contiguous storage
– Support for sub-array operations without copying

• Support for small objects
– E.g., complex numbers
– Called “immutables” in Titanium
– Sometimes called “value” classes

• Semi-automatic memory management
– Create named “regions” for new and delete
– Avoids distributed garbage collection 

• Optimizations on parallel code
– Communication and memory hierarchies



Global Address Space Languages

• Static parallelism (like MPI) 

Object heaps
are shared

G
lo

ba
l a

dd
re

ss
 s

pa
ce x: 1

y: 2

Program stacks 
are private

l: l: l: 

g: g: g: 

x: 5
y: 6

x: 7
y: 8

p0 p1 pn

• Titanium is similar to UPC and Co-Array Fortran
• Globally shared address space is partitioned 
• References (pointers) are either local or global 

(meaning possibly remote)
• Distributed arrays and pointer-based structures



Performance of Titanium Compiler

Performance on a Pentium IV (1.5GHz)
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Titanium Research Problems

• Analysis of explicitly parallel code
• Optimizations for

– Memory hierarchies
– Communication (overlap and aggregation)
– Synchronization

• Dynamic as well as static optimizations
– For sparse and unstructured data
– Extensible language (compiler support for 

scientific data structures)
• Lightweight one-sided communication 

– Joint with UPC group
– GASNet layer



Semantics: Sequential Consistency

• When compiling sequential programs:

Valid if y not in expr1 and x not in expr2 (roughly)
• When compiling parallel code, not sufficient test.

y = expr2;

x = expr1;

x = expr1;

y = expr2;

Initially flag = data = 0

Proc A        Proc B

data = 1;     while (flag!=1);

flag = 1;     ... = ...data...;



Cycle Detection: Analysis Problem
• Processors define a “program order” on accesses from 

the same thread
P is the union of these total orders

• Memory system define an “access order” on accesses to 
the same variable

A is access order (read/write & write/write pairs)

• A violation of sequential consistency is cycle in P U A.
• Intuition: time cannot flow backwards.

write data      read flag

write flag      read data



Automatic Performance Tuning
• Problem: low single-processor performance

– 100s of arithmetic operations per memory operation
– Complex processors and memory systems are challenging
– Techniques like tiling help, but parameters are hard to find

• Solution: let computers do automatic tuning
– FFTW, Atlas (dense linear algebra), Titanium for multigrid 
– BeBOP: sparse matrix kernels, optimizations depend on matrix

machine
profiler

Representative
Matrix

Machine 
Profile

Maximum 
# vectors

optimizer

Data Structure 
Definition & 

Code

Matrix 
Conversion

routine
For sparse matrix-
vector multiply and 
related kernels:



Summary of Optimizations

• Optimizations for sparse matrix-vector multiply
– Register blocking: up to 4x
– Variable block splitting: 2.1x
– Diagonals: 2x
– Reordering to create dense structure + splitting: 2x
– Symmetry: 2.8x
– Cache blocking: 2.2x
– Multiple vectors (SpMM): 7x
– And combinations…

• Sparse triangular solve
– Hybrid sparse/dense data structure: 1.8x

• Higher-level kernels
– AAT*x, ATA*x: 4x
– A2222*x: 2x



Example: The Difficulty of Tuning

• Register blocking: 
store each block 
contiguously with a 
single index

• Use 8x8 blocks to 
math structure, right?

• Source: NASA structural 
analysis problem 

• Matrix:
• n = 21216
• nnz = 1.5 M

• Sparse matrix-vector multiply 



Speedups from Blocking on Itanium 2

Reference

Best: 4x2

Mflop/s

Mflop/s

The “natural” block size is far from optimal: search for best.



Register Profiles
Ultra 3 - 5% 90 Mflop/s

50 Mflop/s

108 Mflop/s

42 Mflop/s

122 Mflop/s

58 Mflop/s

Itanium 2 - 33% 1.2 Gflop/s

190 Mflop/s

Power4 - 16% 820 Mflop/s

459 Mflop/s

Pentium III - 21%



Extra Work Can Improve Efficiency!

• More complicated non-
zero structure in general

• Example: 3x3 blocking
– Logical grid of 3x3 cells
– Fill-in explicit zeros
– Unroll 3x3 block multiplies
– “Fill ratio” = 1.5

• On Pentium III: 1.5x 
speedup!



Network Performance Tuning
• Two-sided message passing (MPI) is not the fastest 

form of communication
• Low latency/overhead allows for easier 

implementations
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Putting it all together

Performance of the Immersed Boundary 
code using:

• Titanium 
• GASNet
• Automatically tuned FFTs (FFTWs)

(No sparse matrices yet)



Scaling Behavior (Synthetic Problem)

• Measured on the IBM SP at NERSC
• Also run on Itanium/Myrinet clusters and 

elsewhere
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A Performance Model

• 5123 in < 1 second per timestep not possible 
• 10x increase in bisection bandwidth would fix this

Performance Model Validation
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Heart Simulation

Source: www.psc.org

Animation of lower portion of the heart



Traveling Wave in the Cochlea

Basilar Membrane
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Sound Wave Propagation in Cochlea

• Centerline of the Basilar membrane
• Response to 10 KHz frequency input



Future Research

• Variable timestepping
• Improved scalability

– Finer decomposition of materials and fluid
– Multigrid or other solvers

• Second-order accurate method
• Adaptive Mesh Refinement
• Multi-physics models

– Incorporating diffusion, electrical models, etc.
– Needed for cardiac muscle contraction
– Needed for Outer Hair Cell in cochlea
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