
Digital Human: Simulation of the
Heart and other Organs

Kathy Yelick
EECS Department

U.C. Berkeley

The 20+ Year Vision

• Imagine a “digital body double”
– 3D image-based medical record
– Includes diagnostic, pathologic, and other

information
• Used for:

– Diagnosis
– Less invasive surgery-by-robot
– Experimental treatments

• Digital Human Effort
– Lead by the Federation of American Scientists

Digital Human Today: Imaging

• The Visible Human Project
– 18,000 digitized sections of the body

• Male: 1mm sections, released in 1994
• Female: .33mm sections, released in 1995

– Goals
• study of human anatomy
• testing medical imaging algorithms

– Current applications:
• educational, diagnostic, treatment planning,

virtual reality, artistic, mathematical and
industrial

• Used by > 1,400 licensees in 42 countries

Image Source: www.madsci.org

Digital Human Roadmap

1995 2000 2005 2010

1 organ
1 model

multiple
models

multiple
organs

organ
system

digital
human

scalable parallel
implementations

faster
computers

improved
programmability

computer
systems

3D model
construction

faster
algorithms

coupled
models

algorithms &
mathematics

Organ Simulation

Cardiac cells/muscles
– SDSC, Auckland, UW, Utah,

Cardiac flow
– NYU,…

Lung transport
– Vanderbilt

Lung flow
– ORNL

Cochlea
– Caltech, UM, UCB

Kidney mesh
generation

– Dartmouth
Electrocardiography

– Johns Hopkins,…Skeletal mesh
generation

Brain
– ElIisman

Just a few of the efforts at
understanding and simulating
parts of the human body

Immersed Boundaries within the Body

• Fluid flow within the body is one of the major
challenges, e.g.,
– Blood through the heart
– Coagulation of platelets in clots
– Effect of sounds waves on the inner ear
– Movement of bacteria

• A key problem is modeling an elastic
structure immersed in a fluid
– Irregular moving boundaries
– Wide range of scales
– Vary by structure, connectivity, viscosity, external

forced, internally-generated forces, etc.

Heart Simulation

Developed by Peskin and McQueen at NYU
– Ran on vector and shared memory machines
– 100 CPU hours on a Cray C90
– Models blood flow in the heart
– Immersed boundaries are individual muscle fibers

–Rules for contraction,
valves, etc. included

–Applications:
• Understanding structural

abnormalities
• Evaluating artificial heart

valves
• Eventually, artificial hearts Source: www.psc.org

Platelet Coagulation

• Developed by Fogelson and Peskin
– Simulation of blood clotting in 2D
– Immersed boundaries are

• Cell walls, represented by polygons
• Artery walls

– Rules added to simulate adhesion
– For vector and shared memory machines
– We did earlier work on this 2D problem in Split-C

Cochlea Simulation

– Simulates fluid-structure interactions due to
incoming sound waves

– Potential applications: design of cochlear implants

• Simulation by
Givelberg and Bunn
–In OpenMP
–18 hours on HP

Superdome
• Embedded 2D
structures are
–Elastic membranes

and shells

Insect Flight Simulation

• Work by on insect
flight
– Wings are

immersed 2D
structure

• Under development
– UW (Wang) and

NYU (Miller)
• Applications to

– Insect robot design

Source: Dickenson, UCB

Small Animal Motion

• Simulation of small animal motion by
Fauci, Dillon and other
– Swimming of eels, sperm, and bacteria
– Crawling motion of amoeba
– Biofilms, such as plaque, with multiple

micro-organisms
• Applications at a smaller scale

– Molecular motors, fluctuations in DNA
– Thermal properties may become important

• Brownian motion extension by Kramer, RPI

Other Applications

• The immersed boundary method has also
been used, or is being applied to
– Flags and parachutes
– Flagella
– Embryo growth
– Valveless pumping (E. Jung)
– Paper making
– Whirling instability of an elastic filament (S. Lim)
– Flow in collapsible tubes (M. Rozar)
– Flapping of a flexible filament in a flowing soap

film (L. Zhu)
– Deformation of red blood cells in shear flow

(Eggleon and Popel)

Immersed Boundary Simulation
Framework

Model
Builder

Immersed
Boundary
Simulation

Visualization
Data Analysis

C++
workstation

Titanium
Vector Machines

Shared and Distributed
memory parallel machines

PC Clusters

C++/OpenGL
Java3D

workstation
PC

Building 3D Models from Images

Image source: John Sullivan et al,
WPI

Image data from
• visible human
• MRI
• Laboratory experiments

Automatic construction
• Surface mesh
• Volume mesh
• John Sullivan et al, WPI

Heart Structure Model

• Current model is
based on three types
of cones to construct
ventricals
– Outer/Inner layer
– Right-Inner/Left-Outer
– Left Cylinder layer

• Advantages: simple model
• Disadvantages: unrealistic and time-

consuming to compute

Old Heart Model

• Full structure shows
cone shape

• Includes atria,
ventricles, valves,
and some arteries

• The rest of the
circulatory system
is modeled by
sources and sinks

New Heart Model

• New model replaces
the geodesics with
triangulated surfaces
• Based on CT scans

from a healthy human.
• Triangulated surface of

left ventricle is shown

Work by:
• Peskin & McQueen, NYU
• Paragios & O’Donnell, Siemens
• Setserr, Cleveland Clinic

Structure of the Middle Ear

Transmission of
sound wave energy
by the ossicles from

the ear drum into
the cochlear canal

The ossicles:
malleus, incus, stapes

Ear drum Cochlear canal

Sound Energy ! Cochlear Waves

Cochlea and Semi-circular Canals
• The inner ear is a fluid-

filled cavity containing
the cochlea and the
semi-circular canals

• Semi-circular canals
responsible for balance

• The fluid is
incompressible and
viscous

• Input is from the stapes
knocking on the oval
window; the round
window is covered by a
membrane to conserve
volume

1 cm

Schematic Description of the Cochlea

scala tympani

scala vestibuli The cochlear partition

The cochlear partition

bony shelf
basilar membrane

3.5 cm

0.52 mm

0.15 mm

oval window

round
window

helicotrema

Apical Turn of the Cochlea

Geometry of the Cochlea Model

Immersed Boundary Equations

First Order Immersed Boundary Method

Compute the force f the immersed material
applies to the fluid.

Compute the force applied to the fluid grid:

Solve the Navier-Stokes equations:

Move the material:

Immersed Boundary Method

Hooke’s spring law viscous
in-compressible

fluid

Navier-Stokes equations
discretized on a periodic

rectangular 3-d grid

Fourth order PDE
discretized on a 2-d

grid

Hooke’s
spring law
Discretized

on a 1-d
grid

Combines Lagrangean and Eulerian Components

Immersed Boundary Method Structure

Material activation &
force calculation

Interpolate
Velocity

Navier-Stokes
Solver

Spread
Force

4 steps in each timestep

Material Points

Interaction

Fluid Lattice

2D Dirac Delta Function

Challenges to Parallelization
• Irregular material points need to interact

with regular fluid lattice.
– Trade-off between load balancing of

material and minimizing communication
• Efficient “scatter-gather” across processors

• Need a scalable fluid solver
– Currently based on 3D FFT

• Requires an all-to-all “transpose”
– May try to use multigrid in the future

• Adaptive Mesh Refinement would help

Parallel Algorithm

• Immersed materials are described by a hierarchy of
1d or 2d arrays

• Grids in current code
– Reside on a single processor
– Previous (and possibly future) versions may split them

• The 3D fluid grid uses a 1D distribution (slabs)
• Interactions between the fluid and material structures

requires inter-processor communication.
• Special data structures are maintained for efficient

communication.

Fluid Solver

• The incompressible requires an elliptic solver
– High communication demand
– Information propagates across domain

• FFT-based solver divides domain into slabs
– Transposes before last direction of FFT
– Would like to use finer decomposition

1D FFTs

Load Balancing

Egg slicer Pizza cutter

0
50

100
150
200
250
300
350
400
450

0 5 10 15 20
No. of processors.

M
FL

O
PS

Spread Force (Pizza
cutter)

Interpolate Velocity
(Pizza cutter)

Spread Force (Egg
slicer)

Interpolate Velocity
(Egg slicer)

Fluid grid is
divided in
slabs for 3D
FFT

Data Structures for Interaction
• Experimented with several method
• Bounding box is the best (although it sends

significantly more data than necessary)

Cost of Interaction Methods

0

500

1000

1500

2000

original bounding
box

hash boolean
grid

tim
e

(m
se

c) communication

setup

Data Structures for Interaction

3210 3210

• Bounding box computes only low/high
• Logical grid of 4x4x4 cubes used to balance cost of

communication and setup
• Communication aggregation also done

Software Architecture

Application
Models

Generic Immersed Boundary
Method (Titanium)

Heart
(Titanium)

Cochlea
(Titanium+C)

Flagellate
Swimming

…

Spectral
(Titanium)

Multigrid MLC
(KeLP) AMR

Extensible
Simulation

SolversMultigrid
(Titanium)

– Can add new models by extending material points
– Uses Java inheritance for simplicity

Performance Analysis

time breakdown

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

25
6 o

n 2
25

6 o
n 4

25
6 o

n 8
25

6 o
n 1

6
25

6 o
n 3

2
25

6 o
n 6

4
51

2 o
n 3

2
51

2 o
n 6

4
51

2 o
n 1

28

move
Unpack U
Send velocities
Pack U
Copy fluid U
Inverse FFTs
SolveXformXEqns
Forward FFTs
Upwind
Exchange ghost
Unpack F
Set F = 0
Send F
Pack F
Spread F
Compute F

Tools for High Performance

Challenges to parallel simulation of a digital
human are generic

• Parallel machines are too hard to program
– Users “left behind” with each new major generation

• Efficiency is too low
– Even after a large programming effort
– Single digit efficiency numbers are common

• Approach
– Titanium: A modern (Java-based) language that

provides performance transparency
– BeBOP: Self-tuning scientific kernels
– GASNet: Portable fast communication

Titanium Overview

Object-oriented language based on Java with:
• Scalable parallelism

– Single Program Multiple Data (SPMD) model of
parallelism, 1 thread per processor

• Global address space
– Processors can read/write memory on other

processor
– Pointer dereference can cause communication

• Intermediate point between message passing
and shared memory

Language Support for Performance

• Multidimensional arrays
– Contiguous storage
– Support for sub-array operations without copying

• Support for small objects
– E.g., complex numbers
– Called “immutables” in Titanium
– Sometimes called “value” classes

• Semi-automatic memory management
– Create named “regions” for new and delete
– Avoids distributed garbage collection

• Optimizations on parallel code
– Communication and memory hierarchies

Global Address Space Languages

• Static parallelism (like MPI)

Object heaps
are shared

G
lo

ba
l a

dd
re

ss
 s

pa
ce x: 1

y: 2

Program stacks
are private

l: l: l:

g: g: g:

x: 5
y: 6

x: 7
y: 8

p0 p1 pn

• Titanium is similar to UPC and Co-Array Fortran
• Globally shared address space is partitioned
• References (pointers) are either local or global

(meaning possibly remote)
• Distributed arrays and pointer-based structures

Performance of Titanium Compiler

Performance on a Pentium IV (1.5GHz)

0
50

100
150
200
250
300
350
400
450

Overall FFT SOR MC Sparse LU

M
Fl

op
s

java C (gcc -O6) Ti Ti -nobc

Titanium Research Problems

• Analysis of explicitly parallel code
• Optimizations for

– Memory hierarchies
– Communication (overlap and aggregation)
– Synchronization

• Dynamic as well as static optimizations
– For sparse and unstructured data
– Extensible language (compiler support for

scientific data structures)
• Lightweight one-sided communication

– Joint with UPC group
– GASNet layer

Semantics: Sequential Consistency

• When compiling sequential programs:

Valid if y not in expr1 and x not in expr2 (roughly)
• When compiling parallel code, not sufficient test.

y = expr2;

x = expr1;

x = expr1;

y = expr2;

Initially flag = data = 0

Proc A Proc B

data = 1; while (flag!=1);

flag = 1; ... = ...data...;

Cycle Detection: Analysis Problem
• Processors define a “program order” on accesses from

the same thread
P is the union of these total orders

• Memory system define an “access order” on accesses to
the same variable

A is access order (read/write & write/write pairs)

• A violation of sequential consistency is cycle in P U A.
• Intuition: time cannot flow backwards.

write data read flag

write flag read data

Automatic Performance Tuning
• Problem: low single-processor performance

– 100s of arithmetic operations per memory operation
– Complex processors and memory systems are challenging
– Techniques like tiling help, but parameters are hard to find

• Solution: let computers do automatic tuning
– FFTW, Atlas (dense linear algebra), Titanium for multigrid
– BeBOP: sparse matrix kernels, optimizations depend on matrix

machine
profiler

Representative
Matrix

Machine
Profile

Maximum
vectors

optimizer

Data Structure
Definition &

Code

Matrix
Conversion

routine
For sparse matrix-
vector multiply and
related kernels:

Summary of Optimizations

• Optimizations for sparse matrix-vector multiply
– Register blocking: up to 4x
– Variable block splitting: 2.1x
– Diagonals: 2x
– Reordering to create dense structure + splitting: 2x
– Symmetry: 2.8x
– Cache blocking: 2.2x
– Multiple vectors (SpMM): 7x
– And combinations…

• Sparse triangular solve
– Hybrid sparse/dense data structure: 1.8x

• Higher-level kernels
– AAT*x, ATA*x: 4x
– A2222*x: 2x

Example: The Difficulty of Tuning

• Register blocking:
store each block
contiguously with a
single index

• Use 8x8 blocks to
math structure, right?

• Source: NASA structural
analysis problem

• Matrix:
• n = 21216
• nnz = 1.5 M

• Sparse matrix-vector multiply

Speedups from Blocking on Itanium 2

Reference

Best: 4x2

Mflop/s

Mflop/s

The “natural” block size is far from optimal: search for best.

Register Profiles
Ultra 3 - 5% 90 Mflop/s

50 Mflop/s

108 Mflop/s

42 Mflop/s

122 Mflop/s

58 Mflop/s

Itanium 2 - 33% 1.2 Gflop/s

190 Mflop/s

Power4 - 16% 820 Mflop/s

459 Mflop/s

Pentium III - 21%

Extra Work Can Improve Efficiency!

• More complicated non-
zero structure in general

• Example: 3x3 blocking
– Logical grid of 3x3 cells
– Fill-in explicit zeros
– Unroll 3x3 block multiplies
– “Fill ratio” = 1.5

• On Pentium III: 1.5x
speedup!

Network Performance Tuning
• Two-sided message passing (MPI) is not the fastest

form of communication
• Low latency/overhead allows for easier

implementations

0

5

10

15

20

25

T3E/M
PI

T3E/Shmem
T3E/E-R

eg
IBM/M

PI
IBM/LAPI

Quadri
cs/

MPI
Quadri

cs/
Put

Quadri
cs/

Get
M2K

/M
PI

M2K
/GM

Dolph
in/M

PI

Gigan
et/V

IPL
us

ec

Send Overhead (alone) Send & Rec Overhead Rec Overhead (alone) Added Latency

Putting it all together

Performance of the Immersed Boundary
code using:

• Titanium
• GASNet
• Automatically tuned FFTs (FFTWs)

(No sparse matrices yet)

Scaling Behavior (Synthetic Problem)

• Measured on the IBM SP at NERSC
• Also run on Itanium/Myrinet clusters and

elsewhere

Time per timestep

49

25.5

13
7.1

4.1 2.9 1.7

42

23

13
7.9

0

10

20

30

40

50

60

1 2 4 8 16 32 64 12
procs

tim
e

(s
ec

s)

256^3

512^3

A Performance Model

• 5123 in < 1 second per timestep not possible
• 10x increase in bisection bandwidth would fix this

Performance Model Validation

0.1

1

10

100

1000

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

procs

tim
e

(s
ec

s)

Total time (256 model)

Total time (256 actual)

Total time (512 model)

Total time (512 actual)

Heart Simulation

Source: www.psc.org

Animation of lower portion of the heart

Traveling Wave in the Cochlea

Basilar Membrane

1
2

3
4

stapes helicotrema

high frequencies low frequencies

wave envelope

wave envelope
characteristic

frequency
location

4 successive
wave snapshots

Sound Wave Propagation in Cochlea

• Centerline of the Basilar membrane
• Response to 10 KHz frequency input

Future Research

• Variable timestepping
• Improved scalability

– Finer decomposition of materials and fluid
– Multigrid or other solvers

• Second-order accurate method
• Adaptive Mesh Refinement
• Multi-physics models

– Incorporating diffusion, electrical models, etc.
– Needed for cardiac muscle contraction
– Needed for Outer Hair Cell in cochlea

Collaborators
Titanium Faculty:
• Susan Graham
• Paul Hilfinger
• Alex Aiken
• Phillip Colella, LBNL
Bebop faculty
• Jim Demmel
• Eun-Jin Im, Kookmin
NYU IB Method:
• Charlie Peskin
• Dave McQueen
Students, Postdocs, Staff:
• Christian Bell
• Wei Chen
• Greg Balls, SDSC
• Dan Bonachea
• Ed Givelberg*

• Peter McQuorquodale,
LBNL

• Tong Wen, LBNL
• Mike Welcome, LBNL
• Jason Duell, LBNL
• Paul Hargrove, LBNL
• Christian Bell
• Wei Chen
• Sabrina Merchant
• Kaushik Datta
• Dan Bonachea
• Rich Vuduc
• Amir Kamil
• Omair Kamil
• Ben Liblit
• Meling Ngo
• Geoff Pike, ISI

http://titanium.cs.berkeley.edu/
http://upc.lbl.gov
http://bebop.cs.berkeley.edu

• Jimmy Su
• Siu Man Yau
• Shaoib Kamil
• Benjamin Lee
• Rajesh Nishtala
• Costin Iancu, LBNL
• David Gay, Intel
• Armando Solar-

Lezama

* Primary researchers on the IB simulation

