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Computing Capabilities of DOE

High Performance Software: Production
Systems Physical Networks development and

support

norm images:
(2013-07-15 02:34)

Culture of collaborative Computer and Data
research on big science Science, especially high
problems
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Collaboration models and example results

* Institutes of expertise dedicated to Science of X
— CAMERA

* Access to HPC systems and performance expertise
— HipMer

* Long-term software and data infrastructure
— KBase

* Co-developing instruments and analysis tools

— Brain and CryoEM

Grand challenges (shown throughout)

— Antibiotics

— Cancer

— Brain
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Collaboration models and example results

* Institutes of expertise dedicated to Science of X
— CAMERA

Computing Sciences Area



Center for Advanced Mathematics

for Energy Research Applications (CAMERA)

Today: Tomorrow: Critical need:
Data analysis time- More data faster algorithms/analysis
consuming More resolution for understanding

New math: Transform experimental data into understanding

e Extract information from murky data
* Interpret, and optimize experiments
* Deliver robust software tools

* Accelerate scientific discovery \Applied Math

James Sethian, PI
e Jointly funded by DOE ASCR (computing) and BES (light sources,
materials and much more) after substantial internal funding
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CAMERA: Mathematics for Experimental Science

Drivers: BES Initially: ALS, LCLS, APS,

" |
" F¥e. Science \Applled Math
User Facilities NSLS, and MF

|

GISAXS: X-ray scattering
data analysis, 1000x faster

Material Informatics:
E.g., Zeo++ high
throughput porosity
characterization

— Image-Based Analysis: X-ray Nano-
Automated Micro-CT Crystallography: solve
k samole analvsis image indexing problem
Ptychography: P Y
solve phase retrieval < » " i
. . pectral clustering, Maximum likelihood estimation,
problem Foundatlon' graph theory, machine learning, Mori-Zwanzig theory, Electronic Structure:
state Of the art Bilateral / anisotropic filters, PDE-based image fast eigensolvers for
segmentation, Computational harmonic analysis, g ]
1F-1041= a1 t-14[- 0 Hamilton-Jacobi solvers, Bayesian analysis, Discrete materials

Galerkin methods, Optimization methods
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CAMERA leverages state-of-the-art mathematics to
transform experimental data into understanding

ML
AR LER Y

S
S
e
S. Marchesml >
-——
X-ray scattering Micro-CT Sample X-ray Nano- Ptychography
data analysis Analysis Crystallographic
Reconstruction
400—1.50.0x faster Autorpatfed Indexing ambiguity D e el
optimization guantitative resolved [PNAS13]
analysis
C2D Now: Image Now: Provable
. : Now: 3D image
NO;V' !\logllnear segmentatior% orientation, find convergence of
optimization, ’ . : "
ggnetic algorithms pattern recognition; crystal shape/smg, algorithm; noisy
" o ’ classification; PDE- address orientation data due to setup;
PR RIET e tiein and graph-based ambiguities; data select lens for
w/ noise variance reduction specimen

analysis
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Computmg, experlments, networkmg and expertise

"w:
ADVANC :3
LIGHT SOURCE

— =1

()N.I 1 (d)NJ 8 (e)NJ 14l

” \ - &
L “ “ g & =l = - 5
- " " . i - 4 Tt 2o ge e .7
» ow i e ROREES 57 - L
' ' ) - P 2 7 oo o
o o - W 22 e - L
. P 7
: 4 2 Pz - r
" - o e ]
s e e
p T e
A
T a» A _es s T a5 4 es e s e e
o ™ -
RO 8. <+]ia)(07(#]i5g
e G i G - i ot i G5

% U.S. DEPARTMENT OF

BN ] Office of
f\m <j ENERGY Science

BERKELEY LAB



Collaboration models and example results

* Access to HPC systems and performance expertise
— HipMer

* Grand challenges (shown throughout)
— Antibiotics

/—*\m 6, u.s.
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De novo Genome Assembly

_—-F::—_:;::__ Input: Reads that may contain errors

e A e —
. B B ___ N BN N B N |

D —————w— Chop reads into k-mers, process

‘ k-mers to exclude errors

Construct & traverse de Bruijn graph

@ of k-mers, generate contigs

contigs EEEEEE S IS
@ Use read information to link contigs
— — - and generate scaffolds.
scaffolds - — =
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De novo Genome Assembly

— - EmEs - - L B J
- - - — --— - T e . -
L *- LR B L
L L LR L B N
-----------------
e Sm e . .
AN AN S R AN AN W e - - .- -
= BN OB O A A N N O . . .- -
LB B - e .- - .. .- * LB )
- e -
SN RN O B AN N O O S ...
-
- - .. L B L R
B N N EN O EEEE s . L L2 __J
B m i Ee SBESGNERGE SaE BN Gn N WS
SN OBEE BEN BEN NN SN SN BN S . LR 1 B N
-----------------
A A A A EEEE A e e -
- e e em e
B ke L LR L_J
- - et R B T e T B e T B )

1

22222222



High Performance de Novo Genome Assembly

High Performance Meraculous assembler - HipMer

Computer Science HPC Expertise

BERKELEY LAB

Remote Atomics 1 overall time
- - 4096 . contig genoration o 1
Dynamic Aggregation A0S e generation
Software Caching (sometimes) 204, \deal overalltime nw=n
Clever algorithms and data structures 1024 e, "
(bloom filters, locality-aware hashing) g 512 m e
Efficient languages (C vs Perl) L e —— W]
N R I, o -.-..,..... ,,,, ]
................ L ]
. S iy,
, ) .. Y LT
960 1920 3840 7680 15360

interconnect networks

@6\% U.S. DEPARTMENT OF
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Number of Cores

Grad student + software engineers

needed to get to production




How Fast Is It?
HipMer = High Performance Meraculous assembler

* Human genome (3Gbp):
— SGA assembler: 140 hours
— Meraculous: 48 hours
— HipMer: 8 minutes (360x speedup)

 Wheat genome (17 Gbp):

— Meraculous (did not run, 170 hours projected):

— HipMer: 39 minutes; 15K cores (first all-in-one assembly)

 Wetland metagenome (1.25 Tbp):
— Meraculous (projected): 15 TB

— HipMER: 11 minutes; 20K cores (contig generation)

> A F==, U.S. DEPARTMENT OF .
B;E\\mu ENERGY gglgr? sz Georganas, Buluc, Chapman, Oliker, Rokhsar, Yelick, [Aluru,Egan,Hofmeyr]




Metagenomics data mining efforts at JGi

Blind Spots

Nature Microbiol
2016

f

165 rRNA gene PCR

Kryptonia

Nature Com.
2016

L]
[ ]

Recoding ‘;}f.’

Science, 2014 ‘

Biosynthetic
clusters

in progress

~

A
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Assembled
metagenomes

Earth Virome

Submitted

Metagenomic
Protein clusters

in progress

Selenocysteine With

Recoding D. Soll
Yale Univ.

A. Chemie in press

OH

Novel Protein With
folds D. Baker
in preparation U. Washington
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Biofoundry: Rapid Production of Antimicrobials

New antibiotic- e W TR
resistant 1% 2/ N X
pathogen

Screen drug & 7 4
variants for f f f
efficacy % X % v a] X

Stockpiled vials

of cells to produce Distributed
drug variants fermentation drug
production
facilities

Rapid surge

j production of

~)2Q effective drug

variant

Grand Challenge:

« Discover new and improved antimicrobials for human, animal, and plant pathogens
« Rapidly identify an effective antibiotic and surge its production at distributed sites
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Collaboration models and example results

* Long-term software and data infrastructure
— KBase

Computing Sciences Area
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KBase: DOE Systems Biology Knowledgebase

Open software and data platform for addressing
the grand challenge of systems biology:

Predicting and designing biological function

Unified system that integrates data and analytical
tools for comparative functional genomics of
microbes, plants, and their communities

Collaborative environment for sharing methods
| and results and placing those results in the
context of knowledge in the field

f‘f\""% U.S. DEPARTMENT OF Oﬁ; f
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KBase: DOE Systems Biology Knowledgebase

KBase Scope of Operations

. . Biodesign & BioGeoMolecular . Watershed
. Genomics Organismal . . Terrestrial Land atmosphere,
Biomolecular X Pore-scale dynamics, Trait- Hydrobio, Dynamic
. and Biology, . Ecology and Earth System
Mechanisms, Models : . dynamics based models, Vegetation X

Functional Dynamics and . i i Subsurface ) observation and
and Networks . . and Biotic- Biogeochemical _. . observation and

Genomics Interactions . . Biogeochemistry models

Abiotic Cycling models
interactions

 Data: 28,300 genomes, 36,700 metabolic models,
27,000 compounds, 33,000 Reactions, 520 media types
* Tools: assembly, annotation, analysis, comparison to models
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“Narrative interface” for collaborative science

An interactive, dynamic, and persistent document created by
users that promotes open, reproducible, and collaborative science

A ion of

What's the problem?

The following is based on an article called "Use of immunomagnetic separation for the detection of Desulfovibrio vulgaris
from environmental samples" that appeared in Journal of Microbial Methods in 2011.

" Ifate

DV) i known to reduce metals, and has commonly been detected in
DOE contaminated sites through genomic tools. D. vulgaris and (loseg/ related SRB have been routinely found at the
uranium-contaminated groundwater at the Field Research Center (FRC) and the chromium- contaminated site at Hanford, WA
(Chakraborty R. nchi genome). To better comprehend the presence and activity of Dv or Dy- ike microorganisms under these
non-optimal conditions in-situ,it is imperative i g the 11 from their
with minimal disruption or interference caused by cell processing. As part of our ongoing investigations on the stress and
survival of SRB (namely Dv) in the environment (see more at Enigma), we developed and tested a non-destructive method
that uses immunomagnetic separation (IMS) of the model sulfate-reducing bacterium, D.vulgaris, Our ultimate goal is to
develop a field-deployable version of IMS that enables the detection of target microorganisms from often low biomass
environmental samples to be then further processed in various -omics (e.g., transcriptomics and metabolomics) studies to
better characterize the metabolic properties.

In this study, using an antibod) d against Desulfovibrio s/-///oem%h
] 3 i 1 Reach N

Commentary

cells were pulled down from a Hanford
t

mple taken from the 100H region of the Hanfor ational Monument.

i

°0

Visualizations

The organism pulled down from the site

Analysis
steps

You can find more about Desulfovibrio vulgaris as a species by looking at Wikipedia. But it s a sulfate reducing bacteria,
motie, obligate anzerobe, with an extraordinary number of two-component systers. Here i the standard electron
micrograph from Wikipedia. )

Here's what | am going to do:

Upload the genome

Reannotate it for use in KBase.
Annotate ts domains for completeness
Pace tina pylogeneic ree
Compare it o the closest relative

T e metabolic diff

Custom scripts

1am here. Just giving a quick tour functionality for ase.

Upload and examine the data.

[
| used the data browser upload tab to upload the RCHI GenBank file to KBase. This creates two data types: The KBase
Genome and KBase Contigs Objects. Uploadin:

F: 9,00l £00k 3 few seconds and then | ragged the objects tat were created
from the data pabe to this Narrative to examine them.

T8 Genome Desulfovibrio.RHCLGenome LR R
Overview | Contigs Genes
dand provenance
Name Desulfovibrio vulgaris RCHI °
aring
Genetic code n
Source KBase user upload
Source D noid
[ 6327%
Taxonomy
Z)
Size 3734357
Number of Contigs 2
Number of Genes 3223

sG>
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Collaboration models and example results

* Co-developing instruments and analysis tools
— Brain and CryoEM

* Grand challenges (shown throughout)

— Brain

/—*\m 6, u.s.
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Impact of Direct Detectors (DOE developed)

— Overal | * DEDs have higher sensitivity and
—— Top right subregion . .
12 - Bottom left subregion resolution than film or CCDs
12 X5 — New technologies being developed
< . :
S er * Biggest advance is the rate of data
5 ‘2‘ : acquisition (movies)
ot * The movies can be analyzed to
i correct for the particle movement

-12-10-8 6 -4 —2 0 2
Driftcor.reclionoff Dn‘ﬂ{.SA) Driftcor.rectionon v caused by the electron beam
* Computing:

— Fast data rate, and large data storage

— Real time computing for corrections

> A /@% U.S. DEPARTMENT OF .
reeern¥] ENERGY gggjc‘;f Paul Adams et al, LBNL
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Cryo-EM Computational Issues

 Many 2D projections of the 3D
% object need to be aligned to create a

@L ey, 3D reconstruction
: -3%
»  Many images must be held in

econstruction

m , ome noance
‘ | ez memory (32-64GB per core)
image and its
projection anghke s o
& : e * Current algorithms do not scale well
i
S = ° Current codes do not scale well
’%,P

Current best practice is the use of Bayesian
methods (RELION) and a single high resolution
reconstruction will use 100-200 thousand
particles and ~two weeks of 200-300 cores
running in parallel

’@% U.S. DEPARTMENT OF -
ENERGY oo Paul Adams et al, LBNL
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Technology

4D STEM Detector

Peter Denes, LBNL
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Superfacility for 100,000 FPS Detector (for BES / DOE)

«— @ Brocade: 400 Gb/s

350
200 ® °
°. . ° 300
150 * K 250
& . [ ] [ ] 200 0 f‘:',rf:“m"?
e ¢ m - o e i dotl g BROCADE
100 . . . 150 www,bvocade, com
o [
. 100
50
50 April e
0 0
300 350 400 450 500 550 600 650 700 4 ;,:',?, Draney
Pixels (1D) 415-20" Steet
Oakland. CA 946

* 100 kFPS = 10s of TB / hour

* Real time analysis:
— Sparsification
— Clustering
— Dedicated network to NERSC

+ £y ~res -4 = - » |
e aend o project all equipment will be returned to

= =%, U.S. DEPARTMENT OF .
,,,,,,, ‘.ﬁ| / Office of

{2} ENERGY Science Peter Denes et al, LBNL
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Possible DOE computing role in BRAIN

DOE can play a unique role in BRAIN
computing through advances in applied
mathematics and computer science together
with HPC facilities.

jative
i

Y

The BRA| Initi
S

Function Theory & Models Structure

dynamic data abstractions static data

Generation and analysis of raw data
Linking structure to function is a ‘grand challenge’ in general biology and materials

>
- A U.S. DEPARTMENT OF 1
rrrrrrr A Office of

asafxs\lmma EN ERG Science



v +
() v 7))
Q2 Ol co
[¢] B | 'S ‘oo o1
Q P~ . — c
> A ) o =
5 O s o WY c o
=B o)
> s | O = o C =
= o |2 2 a| < g o
n ol o o| 3 &5 o
1) Discovering diversity: provide access to different F
brain cell types to determine roles
2) Maps at multiple scales: generate circuit diagrams ADF
that vary in resolution TFF
3) Brain in action: Produce a dynamic picture of the T TF ADF
functioning brain
4) Demonstrating causality: link brain activities to
intervention tools TF
5) Identifying fundamental principles: develop MIA
theoretical and data analysis tools DF
6) Advancing human neuroscience: develop
technologies to understand human brain T T ADF
From BRAIN initiatives to the brain: Integrate .
technologies from 1-6 to understand the brain and A Analysis -
treat disorders D Data F Facilities
F Facilities T Tool development

/5":"’"\6% U.S. DEPARTMENT OF . . egog e
‘.;| g;) ENERGY Office of M Modeling F Facilities for tool development
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The Functional Connectome

Large
Dimension

A weighted, direct graph
describing the dynamic,

casual interactions amongst
neurons in the functioning brain.

|
uoJnapN

Neuron

(e.g.) Each edge is estimated from data as partial correlation coefficient using
regression.

6“""’ ~ U.S. DEPARTMENT OF Oﬁ-lce Of
ENERGY Science Source: K. Bouchard, LBNL
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Multimodal Brain Analysis

collaboration between UCB, LBNL, UCSF

 MRI with PET or cytology

* Optimization to find the
spatial mapping to align
images

VR PET * Linear algebra (SVD, LLS)

Before registration After registration

/\‘” @: E Source: S. Rit “Image registration”, CREATIS Lab.




Advanced Computing for BRAIN

Familiar cycle in DOE computing: will require Exascale in 2025
" 1 = NEERSC it /I;

i ' Multimodal =
Repository Data Fusion £2net e
: Imaging
Data { Data Anatomy
Formati Model Genetic

ha |S or i1 | f Sensory stimuli
ORG <2 it 9 : - Parallelized o

poh Causal manipulations
(R TR TTIRWRRR R CTTUNRR TR ICR) 000000000 ML Statlstloal

Algorithms

HDF5 format and
data model for HPC

Sparse neural activity for
human speech production

Deep neural networks for

decoding brain activity

S7
W\ 25472
NS 27,

X\ PRy
A

1Cs

X
KRR ZR%L X3 :

s ‘\:‘:\§.?/';"’;r oK ‘¥ .‘v‘,'; 7K :\‘ Y
el lz"gi‘;;\\‘ SRS, ’/!2 R S "/I»‘:‘;g\‘\“‘\ o

RO 5L R OX 25 X .
I \? LGIOCKN /255N :
-4,5’;’: I\Q\% ..‘/,’l",: XN 4511':‘1\§\‘ Middle of Syllable§

Labial
C.Tongue! -
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Machine learning for BRAIN are ubiquitous in DoE

DOE domains overlapping

) . S S
with methods for neuroscience > > e 8o o o
£ 8 Q2 S Q = o K]
q (o] — v o o0 Q. o C ©
Methods for neuroscience € g i";; g > 2 g 9 £ 5 2 ey
: . . o u 5 £
overlapping with DOE domains = @ £ %o 3 S © 23 © =
7] (o] I g @ o @ © O
< O O &» @ 2 o = a2 = aao

|
1
|
\

Classification

>
x
>
x
>

*

Regression

Clustering X X

Dim. Reduction X

*

x| X | X X
R
=

Inference X X x
Model Estimation X x X

Image Processing X X

Semantic Analysis X x X
Feature Learning X X X X X X

Anomaly Detection X X X

> |ﬁ U S. DEPARTMENT OF Oﬁ-lce Of
/\‘H % ENERGY Science Source: Prabhat, NERSC
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Collaboration models and example results

* Grand challenges (shown throughout)

— Cancer

Computing Sciences Area



Models to enable a detailed dissection of progression

Systems for studying the relationship between form (tissue architecture), function,
and genetic information

L Luminal A/B
Lummc;: i;z;hehal Ductal Carcinoma Invasive Ductal ' /
ce ,{ ) in situ (DCIS) Carcinoma

8 i Myoepithelial

80 ! ceIILMEP)

m 4

=

(7p]

2

Q - -

Q >

)

@)

C

()]

i

o

[7p]

Q

o ; .

& Confounding heterogeneity and passenger errors
| -

0

3 o o .
§ Pre-stasis mmm) Post-stasis mmms) Immortal =) Malignant
o

=

&

=~ A Y \ .S. DEP,
/\‘ i %%
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Cell identification and analysis

2 J N A L PR o # .J‘l.’-‘
Y ) WD S

Surf: i 2.
= — //
(N

Fast method to analyze Quantitative time- Motion analysis:
cervical cells: segment and  |gpse image analysis: ~ Associating motion as
identify subcellular confocal microscopy part of the tissue
components in 12 seconds on breast cancer formation and final
IEEE ISBE award pathways in HMEC morphology
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Combining Genome Analysis at Single Cell Level

SCS Milestones in Cancer Research

PNASLS DNA  DNASCS Highly-
DR MALBAC DN:\ SICS Identifies SCS of to study Simultaneous multiplexed
P whole 00" o EMTand® CTCs and Herapy DNA and RNA SCS
InAlGanoms genome SCS e Lol dynamic metastasis ; RNA SCS using
Sequencing of CTCs ioity i : response g - pey et al,) i

Development E of colon @ g plasticity in | in prostate prostate y et al. microwell

Single Human (Heitzer | gjioblastoma (Macaulay b
of Next cancer cancer CTCs ads

; Cancer Cells etal.) (Patel et al.) Yiohe et &l et al.) Fan et al
Generation (Navin et al.) (Zong (Lohr et al.) (Dago (Fan et al.)
Sequencing etal) etal) and Drop-Seq
Platforms (Macosko et
al.)

2007 | 2009 | 2011 2012

First Report .
Live cell
of RNA Exome DNA DNA Mutator Tl

RNA SCS &

Transcriptome SCS of Renal SCS of Phenotypes and of CTC s CDSNA; 1mag|g?\l A
Sequencing of and myelo- CTCs in Punctuated . <

5 roliferative clusters in clonal SCS of
Single P lung @ Copy Number ® e

M » cancers R breast dynamics in chromo-

ammalian cancer Evolution in @ cancer thripsi

(Xu et al) . xenografts ripsis

Cells (Ni et al.) breast cancer (Aceto (Eirew et al.) (Zhang et al.)
(Tang et al.) (Hou et al.) (Wang et al.) etal) .

The first five years of single-cell cancer genomics and beyond
Nicholas E. Navin, U. Texas
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Collaboration models and example results

* Institutes of expertise dedicated to Science of X
— CAMERA and Superfacility model

* Access to HPC systems and performance expertise
— HipMer

* Long-term software and data infrastructure
— KBase

* Co-developing instruments and analysis tools

— Brain and CryoEM

Grand challenges

— Antibiotics

— Cancer

— Brain
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