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Opportunities in Science

Analyze Explore Automate




Analyze Images to Find Cats

Classification

Localization

Detection
Segmentation
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Analyze Simulations to Find Hurricanes

Classification
» Localization

Detection

Extending image-based methods to complex, 3D, scientific data sets is non-trivial!

Source: Prabhat



Fairness in Physics

Separating signal from noise in the search for Lorentz-boosted W bosons at

Large Hadron Collider
Background only
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Signal and background events Back-ground distributions at 50%
without selection. signal efficiency (true positive rate)

for different classifiers.

O. Kitouni, B. Nachman, C. Weisser, M. Williams, 2010.09745



Deep Learning: like addlng 4 000 extra
tons of detectors!

Based on 8/12/2016 slide by Joe Lykken at Fermilab



Extracting signals from noisy data: “Visual Microphone”
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First Image of a Black Hole

This is not replicating human vision



Fillering, De-Noise and Curating Data

AmeriFlux & FLUXNET: 750 users access Arno Penzias and Robert Wilson discover
carbon sensor data from 940 carbon flux Cosmic Microwave Background in 1965

data years; Developing ML to denoise
data.



Al for Natural Language Processing (NLP)
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Slide source: Steve Farrell



Using NLP on scientific publications
Analyze 3.3 million abstracts from materials science papers

alkali metal post-transition metal
alkaline earth metal metalloid

lanthanide polyatomic nonmetal
actinide diatomic nonmetal

transition metal noble gas
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Vahe Tshitoyan, Leigh Weston, John Dagdelen, Anubhav Jain



Opportunities in Science

Analyze Explore Automate




Generate Videos

Caroline Chan, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros, UC Berkeley






Generate Data from Expensive Experiments

Generate convergence maps of weak gravitational lensing, to help in
g
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CosmoGAN: Mustafa Mustara, Deborah Bard, Wahid Bhimyi, Zarija Lukic, Rami Al-Riou, Jan M. Kratochvil



Inverse Design with ML

Designing materials, proteins, and small molecules with ML
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Search for a molecules using an
autofocusing generative model:

moves around the design space,
guided by an oracle Clara Fannjiang and Jennifer Listgarten at NeurlPS ‘20




CNNs for Materials with Physical Laws

Physics-aware learning
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A network with 3D translation- and 3D
rotation-equivariance

Slides from Tess Smidt and Risi Condor; E.g., 2018 paper by Thomas, Smidt, Kearnes, Yang, Li, Kohlhoff, Riley



Opportunities in Science

Analyze Explore Automate




», Edge Computing
for Science

l Interconnected facilitie

Experimental Ueer € )
Facilities stored, analyzed and served ~Ysertommunity

Computing and Data
Facilities

where data is acquired,

Embedded Sensors /




Streaming Experimental Data

Researchers from Turkey working at the Linac Coherent Light Source at SLAC have used X-ray
crystallography to capture detailed images of the structure of the SARS-CoV-2 virus.



Avutomated experiments

N automated
data analysis
sample
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decision-making
algorithm

Utilization and robustness

« Al-based autonomous discovery
« Decisions based on small datasets
* Uncertainty estimates

Source: CAMERA Project, Pl James Sethian
Slide input: Lavanya Ramakrishna



Digital Twins

Simulations
Sensors / data
Multi-level
 Real-time




Robotics and pre<:|5|on confrol in science

Nanoparticle Robot at the Molecular Foundry Robo‘t at SYBLIS beamline at ALS
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Self-Driving Laboratories

Automated COVID-19 Testing at the Innovative Genomics Institute at Berkeley



Strateos Cloud Lab
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Why Cloud Lab?

| . o
D D
1. Efficiency 2. Flexibility 3. Productivity 4. Reproducibility 5. Accessibility
Reduce costs and increase Break free of limitations Focus on intellectual Repeat past work at the All data contextualized with
experimental output. posed by instrumentation contribution instead of push of a button. methods and analyses.

availability. manual labor.

Source: Emerald Cloud Lab
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“Plugging an experiment
into a browser forces
researchers to translate
the exact details of every
step into unambiguous
code”

https://www.theguardian.com/



Learning
across
scales

Control of
experiments

Uncertainty
Quantifi-
cation

Physics-
aware
Learning

Inverse
Design

Complex
Interpret- ’
ability 3D+C,|§%arse

Transfer
learning

Federated
learning on
sensors




Economics of Science
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This is not just about replicating
human capabilities



Is there an ML Advantiage in
science?



2018 ACM Turing Award for Deep Learning

Hinton's Turing Lecture:
“So | think a lof of the credit
for deep learning really goes
to the people who
collected the big databases
like Fei Fei Li and the people
who made the computers
go fast like David Patterson
and others.”

Yoshua Bengio Yann LeCun Geoffr
Photo: Facebook Photo: Google Photo: Botler Al



Where can data+compute yield breakthroughs?

Big Data

Scalable
Algorithms

Big Iron




Sequencing continues to improve in cost and quality

Cost per Raw Megabase of DNA Sequence

10,000.000

1,000.000

100.000 ﬁ\ Moore’s Law
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. \
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De Novo Mefagenome Assembly is Hard
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. Tara Oceans Assembly

’Ig}\‘i'crobiol data from all
- oceans, collected from 2009-

84 Terabytes, never before
. co-assembled




Terascale Data + HPC Reveals more Genomes and Diversity

More Genomes (MAGs), more phyla, coassembly
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3 more
Multiassemblies Coassembly

Metagenome-assembled genomes
(MAGS)
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Microbiome analysis: Machine Learning Options
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Hardware (and Software and
Algorithms)



Technology Transitions

Application Performance Growth
(Gordon Bell Prizes)
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Al CHiP l.al‘ldscape More on https://basicmi.github.io/Al-Chip/
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Cavtionary tale from HP



Top500: Linpack Benchmark
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Response: sparsity, hierarchy, etc.

Improve runtime
Worse hardware utilization (% peak)



Communication Dominates

Hardware Speed Trends
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Learning Relationships with Graphical Models

Discovering Regions and Co-
Regions of Brain Activity from fMRI

Random graph on Edison (n = 100, 60 nnz/row)

21K x 21K Sample Covariance matrix

262144
—»— BigQUIC
65536 —%— QObs-1
o
1 —a— s-16
6384 Obs-64
4096 | —*— Obs-256

1024

256

64
16 't

4
20k 40k 80k 160k 320k

p (#features)

Koanantakool, Buluc, Morozov, Oliker, Yelick, Oh, AISTAT 2018.



The IPython/Jupyter Notebook

[ ] Lorenz Differential Equations X

C | ® 127.0.0.1:8

Fernando

. J u pyter Lorenz Differential Equations Last Checkpoint: a minute ago (unsaved changes)

File Edit View | Cel Kernel

® @B » ¥ N E C Code @ CellToolbar

* Rich web client

Exploring the Lorenz System of Differential Equations

In this Notebook we explore the Lorenz system of differential equations:

* Text & math

z=—fz+xy

This is one of the classic systems in non-linear differential equations. It exhibits a range of different behaviors as
the parameters (g, f3, p) are varied, including what are known as chaotic solutions. This system was originally

. ( : O d e developed as a simplified mathematical model for atmospheric convection in 1963.
interact(solve_lorenz, N=fixed(10), angle=(9.,360.),

0=(0.0,50.0), ¢=(0.0,50.0));

angle 308.90
. e max_time 12.00

B 263
P 28.00

* Share, reproduce.




It's hard to think exponentially

Tera-scale definition and Motivation

What is Tera-scale? ey S HAVOS
Tera-flops of compute power operating on Tera-bytes of data SRS STy
};‘, B Scientific Grand Challenges
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Prediction of Atlas computing +$1B

LHC/HL-LHC Computing Costs
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at Applications and is Science Different?

Nano Amendment Zone.

o“.-

Control Zone

P ~d
2907
o "991: 202,70
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~a={__“End-to-end Machine Learning” — Forward and Backward P:

3D Atomic Systems """ Intermediate Representation <y Physical Properties

Autoencoders with constraints
Similarity ginalized graph

https://ml4sci.lbl.gov



Superfacility in Practice

Facility

ALS

DESC

DESI
JGI

KSTAR
LCLS
LZ

NCEM

Instrument Location Users Compute

Lightsource

Telescope

Telescope

Genomics

Tokamak

Lightsource

Dark Matter

Electron
Microscope

Berkeley

France

Arizona

Berkeley

Korea

Stanford

South
Dakota

Berkeley

100s

100s

100s
100s

10s

100s

100s

10s

S50M

150M

200M
75M

145M

12M

20M

M

Data/Year

600TB

2000TB

500TB

self

20TB

1000TB

1000TB

600TB

Bandwidth

10Gb/sec

~10GB/night

10GB/hour

100 Gb/sec

1GB/hour

100Gb/sec

Timeframe

2025 Upgrade

2024

2020

Continuously

1-2 per year

~bimonthly

2021, 24/7

2021
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Exascale Architecture Plans (2021)

US DOE Office of Science Systems
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Trend Toward Specialization

NVIDIA builds deep
learning appliance
with P100 Tesla’s

RISC-V is an
open
hardware ‘ >
platform Intel buys deep Google designs its own
RISC learning startup, Tensor Processing Unit
Nervana (TPU)
Specialization Specfrum
Full Open FPGA FPGA + Old GPGPUs Simple High end
Custom  [SA standard ops GPU cores cores

China (Sunway), Japan (ARM), and Europe/Barcelona (RISC-V) are doing this in HPC



Analytics vs. Simulation Kernels:
7 Giants of Big Data

7 Dwarfs of Simulation
Parficle methods
Unstructured meshes

Dense Linear Algebra
Sparse Linear Algebra
Spectral methods
Structured Meshes

Monte Carlo methods
Phil Colella

J

Genera
Graph-t
Linear a

Sorting
Hashing

ized N-Body
neory

gebra

Alignment

Basic Staftistics

NRC Report + our paper

Yelick, et al. “The Parallelism Motifs of Genomic Data Analysis”, Philosophical Transactions A, 2020




Thanks!



2 Parallelism Models

Bulk synchronous
» Latency: reduce span

» Log fime algorithms

» Bandwidth: reduce volume

» Iteration space tiling

» (Sparse) matrix abstraction

» For general semiring

Asynchronous
» Latency: hide cost
» Overlap and minimize overhead

» Bandwidth: maximize utilization

» “All the wires all the time”"

» Partitioned Global Address Space

» Application-specific optimizations



Communication-Avoiding Matrix Multiply

«X
~y i k- 2D algorithm: never chop k dim

« 3D: Assume + is associative;
chop k, which is = replication

| }Z of C matrix

| TIIatrix Multiplication code has a 3D iteration space
Each point in the space is a constant computation (*/+)

fori
for j
fork



Be smart about price vs. cost

Utilization (30% private, 90% HPC, 60%¢ Cloud);
Note: trades off against wait times, elasticity

Cost of people, largest machines lowest people
costs/core

Cost of scientific consulfing

Cost of power, advantage for placement of center,
bulk

Energy efficiency (PUE, 1.1-1.3 is possible; 1.8 typical)
Cost of specialized hardware (interconnect)

Cost of commodity hardware

Profit

Sophisticated users who spend a lot of money on computing, use commercial clouds only
when the spot pricing is very low; otherwise it's too expensive
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Google Computing Platform 1997




NERSC Scientific Computing Center 1996




NERSC 2022

times more computing to do
machine learning!
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Learning from sequence + graph structure

48 &< Which proteins are good
=1 3 A -
& & = & catalysts, bind to small
- = 2N i
: »j ;%s‘ P2t molecules, efc.
LI - T ?’ 8
‘. % o~ "‘\? 1 “3'6) <
. V), e ) Y
i) N V. <
& _
/ l \ g — PersGNN
'S GNN
Graph Persistence S Nt
>equence Structure Network MLP Baseling
\ | ' |
Function | | " Recall |

Aditi S Krishnapriyan, Nicolas Swenson, Dmitriy Morozov, Y, Aydin Buluc



Experimental Science is Changing

By using our website you agree to our use of cookies in accordance with our cookie policy.

0K

PRIVACY POLICY +

Search for Mice

Advanced Mice Search

JAX® MICE & SERVICES

JAX® Mice are the highest quality and most-
published mouse models in the world. Take
advantage of our large inventories of Breed Your Mouse
common inbred strains and the convenience

of having your breeding and drug efficacy Test Your Drug

needs met by the leading experts in mouse

modeling. Cryopreserve Your Mouse




Why HPC for Learnina?

300,000x increase from 2011 (AlexNet) to 2018 (AlphaGoZero)

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute
10,000
e AlphaGo Zero
1,000
e AlphaZero

100 e Neural Machine Translation

e Neural Architecture Search From 20] ]—20] 7 'l'he
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e Dropout
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